Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,998 Bytes
e79d24a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 |
import os
import cv2
import torch
import gradio as gr
import torchvision
import warnings
import numpy as np
from PIL import Image, ImageSequence
from moviepy.editor import VideoFileClip
import imageio
from diffusers import (
TextToVideoSDPipeline,
AutoencoderKL,
DDPMScheduler,
DDIMScheduler,
UNet3DConditionModel,
)
from transformers import CLIPTokenizer, CLIPTextModel
from diffusers.utils import export_to_video
from typing import List
from text2vid_modded import TextToVideoSDPipelineModded
from invert_utils import ddim_inversion as dd_inversion
from gifs_filter import filter
import subprocess
import spaces
def load_frames(image: Image, mode='RGBA'):
return np.array([np.array(frame.convert(mode)) for frame in ImageSequence.Iterator(image)])
def run_setup():
try:
# Step 1: Install Git LFS
subprocess.run(["git", "lfs", "install"], check=True)
# Step 2: Clone the repository
repo_url = "https://huggingface.co/Hmrishav/t2v_sketch-lora"
subprocess.run(["git", "clone", repo_url], check=True)
# Step 3: Move the checkpoint file
source = "t2v_sketch-lora/checkpoint-2500"
destination = "./checkpoint-2500/"
os.rename(source, destination)
print("Setup completed successfully!")
except subprocess.CalledProcessError as e:
print(f"Error during setup: {e}")
except FileNotFoundError as e:
print(f"File operation error: {e}")
except Exception as e:
print(f"Unexpected error: {e}")
# Automatically run setup during app initialization
run_setup()
def save_gif(frames, path):
imageio.mimsave(
path,
[frame.astype(np.uint8) for frame in frames],
format="GIF",
duration=1 / 10,
loop=0 # 0 means infinite loop
)
def load_image(imgname, target_size=None):
pil_img = Image.open(imgname).convert('RGB')
if target_size:
if isinstance(target_size, int):
target_size = (target_size, target_size)
pil_img = pil_img.resize(target_size, Image.Resampling.LANCZOS)
return torchvision.transforms.ToTensor()(pil_img).unsqueeze(0)
def prepare_latents(pipe, x_aug):
with torch.cuda.amp.autocast():
batch_size, num_frames, channels, height, width = x_aug.shape
x_aug = x_aug.reshape(batch_size * num_frames, channels, height, width)
latents = pipe.vae.encode(x_aug).latent_dist.sample()
latents = latents.view(batch_size, num_frames, -1, latents.shape[2], latents.shape[3])
latents = latents.permute(0, 2, 1, 3, 4)
return pipe.vae.config.scaling_factor * latents
@torch.no_grad()
def invert(pipe, inv, load_name, device="cuda", dtype=torch.bfloat16):
input_img = [load_image(load_name, 256).to(device, dtype=dtype).unsqueeze(1)] * 5
input_img = torch.cat(input_img, dim=1)
latents = prepare_latents(pipe, input_img).to(torch.bfloat16)
inv.set_timesteps(25)
id_latents = dd_inversion(pipe, inv, video_latent=latents, num_inv_steps=25, prompt="")[-1].to(dtype)
return torch.mean(id_latents, dim=2, keepdim=True)
def load_primary_models(pretrained_model_path):
return (
DDPMScheduler.from_config(pretrained_model_path, subfolder="scheduler"),
CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer"),
CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder"),
AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae"),
UNet3DConditionModel.from_pretrained(pretrained_model_path, subfolder="unet"),
)
def initialize_pipeline(model: str, device: str = "cuda"):
with warnings.catch_warnings():
warnings.simplefilter("ignore")
scheduler, tokenizer, text_encoder, vae, unet = load_primary_models(model)
pipe = TextToVideoSDPipeline.from_pretrained(
pretrained_model_name_or_path="damo-vilab/text-to-video-ms-1.7b",
scheduler=scheduler,
tokenizer=tokenizer,
text_encoder=text_encoder.to(device=device, dtype=torch.bfloat16),
vae=vae.to(device=device, dtype=torch.bfloat16),
unet=unet.to(device=device, dtype=torch.bfloat16),
)
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
return pipe, pipe.scheduler
# Initialize the models
LORA_CHECKPOINT = "checkpoint-2500"
os.environ["TORCH_CUDNN_V8_API_ENABLED"] = "1"
device = 'cuda' if torch.cuda.is_available() else 'cpu'
dtype = torch.bfloat16
pipe_inversion, inv = initialize_pipeline(LORA_CHECKPOINT, device)
pipe = TextToVideoSDPipelineModded.from_pretrained(
pretrained_model_name_or_path="damo-vilab/text-to-video-ms-1.7b",
scheduler=pipe_inversion.scheduler,
tokenizer=pipe_inversion.tokenizer,
text_encoder=pipe_inversion.text_encoder,
vae=pipe_inversion.vae,
unet=pipe_inversion.unet,
).to(device)
@spaces.GPU(duration=100)
@torch.no_grad()
def process_video(num_frames, num_seeds, generator, exp_dir, load_name, caption, lambda_):
pipe_inversion.to(device)
id_latents = invert(pipe_inversion, inv, load_name).to(device, dtype=dtype)
latents = id_latents.repeat(num_seeds, 1, 1, 1, 1)
generator = [torch.Generator(device="cuda").manual_seed(i) for i in range(num_seeds)]
video_frames = pipe(
prompt=caption,
negative_prompt="",
num_frames=num_frames,
num_inference_steps=25,
inv_latents=latents,
guidance_scale=9,
generator=generator,
lambda_=lambda_,
).frames
gifs = []
for seed in range(num_seeds):
vid_name = f"{exp_dir}/mp4_logs/vid_{os.path.basename(load_name)[:-4]}-rand{seed}.mp4"
gif_name = f"{exp_dir}/gif_logs/vid_{os.path.basename(load_name)[:-4]}-rand{seed}.gif"
os.makedirs(os.path.dirname(vid_name), exist_ok=True)
os.makedirs(os.path.dirname(gif_name), exist_ok=True)
video_path = export_to_video(video_frames[seed], output_video_path=vid_name)
VideoFileClip(vid_name).write_gif(gif_name)
with Image.open(gif_name) as im:
frames = load_frames(im)
frames_collect = np.empty((0, 1024, 1024), int)
for frame in frames:
frame = cv2.resize(frame, (1024, 1024))[:, :, :3]
frame = cv2.cvtColor(255 - frame, cv2.COLOR_RGB2GRAY)
_, frame = cv2.threshold(255 - frame, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
frames_collect = np.append(frames_collect, [frame], axis=0)
save_gif(frames_collect, gif_name)
gifs.append(gif_name)
return gifs
def generate_output(image, prompt: str, num_seeds: int = 3, lambda_value: float = 0.5) -> List[str]:
"""Main function to generate output GIFs"""
exp_dir = "static/app_tmp"
os.makedirs(exp_dir, exist_ok=True)
# Save the input image temporarily
temp_image_path = os.path.join(exp_dir, "temp_input.png")
image.save(temp_image_path)
# Generate the GIFs
generated_gifs = process_video(
num_frames=10,
num_seeds=num_seeds,
generator=None,
exp_dir=exp_dir,
load_name=temp_image_path,
caption=prompt,
lambda_=1 - lambda_value
)
# Apply filtering (assuming filter function is imported)
filtered_gifs = filter(generated_gifs, temp_image_path)
return filtered_gifs
def create_gradio_interface():
with gr.Blocks(css="""
.container {
max-width: 1200px;
margin: 0 auto;
padding: 20px;
}
.example-gallery {
margin: 20px 0;
padding: 20px;
background: #f7f7f7;
border-radius: 8px;
}
.selected-example {
margin: 20px 0;
padding: 20px;
background: #ffffff;
border-radius: 8px;
}
.controls-section {
background: #ffffff;
padding: 20px;
margin: 20px 0;
border-radius: 8px;
}
.output-gallery {
min-height: 500px;
margin: 20px 0;
padding: 20px;
background: #f7f7f7;
border-radius: 8px;
}
.example-item {
border-radius: 8px;
overflow: hidden;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
transition: transform 0.2s;
cursor: pointer;
}
.example-item:hover {
transform: scale(1.05);
}
/* Prevent gallery images from expanding */
.gallery-image {
height: 200px !important;
width: 200px !important;
object-fit: cover !important;
}
.generate-btn {
width: 100%;
margin-top: 1rem;
}
.generate-btn:disabled {
opacity: 0.7;
cursor: not-allowed;
}
""") as demo:
gr.Markdown(
"""
<div align="center" id = "user-content-toc">
<img align="left" width="70" height="70" src="https://github.com/user-attachments/assets/c61cec76-3c4b-42eb-8c65-f07e0166b7d8" alt="">
# [FlipSketch: Flipping assets Drawings to Text-Guided Sketch Animations](https://hmrishavbandy.github.io/flipsketch-web/)
## [Hmrishav Bandyopadhyay](https://hmrishavbandy.github.io/) . [Yi-Zhe Song](https://personalpages.surrey.ac.uk/y.song/)
</div>
"""
)
with gr.Tabs() as tabs:
# First tab: Examples (Secure)
with gr.Tab("Examples"):
gr.Markdown("## Step 1 π Select a sketch from the gallery of sketches")
examples_dir = "static/examples"
if os.path.exists(examples_dir):
example_images = []
for example in os.listdir(examples_dir):
if example.endswith(('.png', '.jpg', '.jpeg')):
example_path = os.path.join(examples_dir, example)
example_images.append(Image.open(example_path))
example_selection = gr.Gallery(
example_images,
label="Sketch Gallery",
elem_classes="example-gallery",
columns=4,
rows=2,
height="auto",
allow_preview=False, # Disable preview expansion
show_share_button=False,
interactive=False,
selected_index=None # Don't pre-select any image
)
gr.Markdown("## Step 2 π Describe the motion you want to generate")
with gr.Group(elem_classes="selected-example"):
with gr.Row():
selected_example = gr.Image(
type="pil",
label="Selected Sketch",
scale=1,
interactive=False,
show_download_button=False,
height=300 # Fixed height for consistency
)
with gr.Column(scale=2):
example_prompt = gr.Textbox(
label="Prompt",
placeholder="Describe the motion...",
lines=3
)
with gr.Row():
example_num_seeds = gr.Slider(
minimum=1,
maximum=10,
value=5,
step=1,
label="Seeds"
)
example_lambda = gr.Slider(
minimum=0,
maximum=1,
value=0.5,
step=0.1,
label="Motion Strength"
)
example_generate_btn = gr.Button(
"Generate Animation",
variant="primary",
elem_classes="generate-btn",
interactive=True,
)
gr.Markdown("## Result π Generated Animations β€οΈ")
example_gallery = gr.Gallery(
label="Results",
elem_classes="output-gallery",
columns=3,
rows=2,
height="auto",
allow_preview=False, # Disable preview expansion
show_share_button=False,
object_fit="cover",
preview=False
)
# Second tab: Upload
with gr.Tab("Upload Your Sketch"):
with gr.Group(elem_classes="selected-example"):
with gr.Row():
upload_image = gr.Image(
type="pil",
label="Upload Your Sketch",
scale=1,
height=300, # Fixed height for consistency
show_download_button=False,
sources=["upload"],
)
with gr.Column(scale=2):
upload_prompt = gr.Textbox(
label="Prompt",
placeholder="Describe what you want to generate...",
lines=3
)
with gr.Row():
upload_num_seeds = gr.Slider(
minimum=1,
maximum=10,
value=5,
step=1,
label="Number of Variations"
)
upload_lambda = gr.Slider(
minimum=0,
maximum=1,
value=0.5,
step=0.1,
label="Motion Strength"
)
upload_generate_btn = gr.Button(
"Generate Animation",
variant="primary",
elem_classes="generate-btn",
size="lg",
interactive=True,
)
gr.Markdown("## Result π Generated Animations β€οΈ")
upload_gallery = gr.Gallery(
label="Results",
elem_classes="output-gallery",
columns=3,
rows=2,
height="auto",
allow_preview=False, # Disable preview expansion
show_share_button=False,
object_fit="cover",
preview=False
)
# Event handlers
def select_example(evt: gr.SelectData):
prompts = {'sketch1.png': 'The camel walks slowly',
'sketch2.png': 'The wine in the wine glass sways from side to side',
'sketch3.png': 'The squirrel is eating a nut',
'sketch4.png': 'The surfer surfs on the waves',
'sketch5.png': 'A galloping horse',
'sketch6.png': 'The cat walks forward',
'sketch7.png': 'The eagle flies in the sky',
'sketch8.png': 'The flower is blooming slowly',
'sketch9.png': 'The reindeer looks around',
'sketch10.png': 'The cloud floats in the sky',
'sketch11.png': 'The jazz saxophonist performs on stage with a rhythmic sway, his upper body sways subtly to the rhythm of the music.',
'sketch12.png': 'The biker rides on the road',}
if evt.index < len(example_images):
example_img = example_images[evt.index]
prompt_text = prompts.get(os.path.basename(example_img.filename), "")
return [
example_img,
prompt_text
]
return [None, ""]
example_selection.select(
select_example,
None,
[selected_example, example_prompt]
)
example_generate_btn.click(
fn=generate_output,
inputs=[
selected_example,
example_prompt,
example_num_seeds,
example_lambda
],
outputs=example_gallery
)
upload_generate_btn.click(
fn=generate_output,
inputs=[
upload_image,
upload_prompt,
upload_num_seeds,
upload_lambda
],
outputs=upload_gallery
)
return demo
# Launch the app
if __name__ == "__main__":
demo = create_gradio_interface()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
show_api=False
) |