Spaces:
Configuration error
Configuration error
File size: 248,655 Bytes
a4c7650 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
"import yfinance as yf\n",
"import pandas as pd\n",
"import numpy as np\n",
"from sklearn.preprocessing import StandardScaler, MinMaxScaler\n",
"from sklearn.compose import ColumnTransformer\n",
"import joblib\n",
"import keras\n",
"import matplotlib.pyplot as plt"
]
},
{
"cell_type": "code",
"execution_count": 86,
"metadata": {},
"outputs": [],
"source": [
"TEST_DAYS = 40"
]
},
{
"cell_type": "code",
"execution_count": 87,
"metadata": {},
"outputs": [],
"source": [
"INDICATOR_DATASET = False"
]
},
{
"cell_type": "code",
"execution_count": 88,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/var/folders/9c/8m67hqg13wd179_xl1xrnn2c0000gp/T/ipykernel_58100/1703223587.py:24: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" d.dropna(inplace=True)\n"
]
}
],
"source": [
"if INDICATOR_DATASET:\n",
" d = joblib.load('nifty_data.pkl')\n",
"else:\n",
" d = yf.download(\n",
" tickers=\"^NSEI\",\n",
" period='max',\n",
" interval='1d',\n",
" progress=False,\n",
" timeout=10\n",
" )\n",
" d['target'] = d.Open/d.Close.shift(-1)\n",
" d.target = d.target.apply(np.floor)\n",
"\n",
" d['change'] = abs(d['Close'].pct_change() * 100)\n",
"\n",
" d['High'] = d['High'].pct_change() * 100\n",
" d['Low'] = d['Low'].pct_change() * 100\n",
" d['Open'] = d['Open'].pct_change() * 100\n",
" d['Close'] = d['Close'].pct_change() * 100 \n",
" # d.rename(columns = {'HighNew':'High','LowNew':'Low','OpenNew':'Open','CloseNew':'Close'}, inplace = True)\n",
"\n",
" # Remove outliers when Market closes +- 3.5%\n",
" d = d[d['change'] < 3.5]\n",
" d.dropna(inplace=True)\n",
" d.tail()"
]
},
{
"cell_type": "code",
"execution_count": 103,
"metadata": {},
"outputs": [],
"source": [
"def preprocessBeforeScaling(df):\n",
" df['High'] = df['High'].pct_change() * 100\n",
" df['Low'] = df['Low'].pct_change() * 100\n",
" df['Open'] = df['Open'].pct_change() * 100\n",
" df['Close'] = df['Close'].pct_change() * 100 \n",
" return df"
]
},
{
"cell_type": "code",
"execution_count": 89,
"metadata": {},
"outputs": [],
"source": [
"test_dataset = d.tail(TEST_DAYS)"
]
},
{
"cell_type": "code",
"execution_count": 90,
"metadata": {},
"outputs": [],
"source": [
"d = d[:-(TEST_DAYS+1)]"
]
},
{
"cell_type": "code",
"execution_count": 91,
"metadata": {},
"outputs": [],
"source": [
"if INDICATOR_DATASET:\n",
" x = d.drop(columns=['target'])\n",
" y = d.target\n",
"else:\n",
" x = d.drop(columns=['target', 'Adj Close', 'Volume', 'change'], errors='ignore')\n",
" y = d.target"
]
},
{
"cell_type": "code",
"execution_count": 92,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Open</th>\n",
" <th>High</th>\n",
" <th>Low</th>\n",
" <th>Close</th>\n",
" </tr>\n",
" <tr>\n",
" <th>Date</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>2007-09-18</th>\n",
" <td>-0.538904</td>\n",
" <td>0.060452</td>\n",
" <td>-0.029006</td>\n",
" <td>1.146926</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2007-09-20</th>\n",
" <td>4.056922</td>\n",
" <td>0.461070</td>\n",
" <td>3.755835</td>\n",
" <td>0.321187</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2007-09-21</th>\n",
" <td>0.382274</td>\n",
" <td>1.992293</td>\n",
" <td>0.265831</td>\n",
" <td>1.895715</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2007-09-24</th>\n",
" <td>1.771525</td>\n",
" <td>1.759781</td>\n",
" <td>2.185388</td>\n",
" <td>1.956577</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2007-09-25</th>\n",
" <td>2.107650</td>\n",
" <td>0.258037</td>\n",
" <td>0.847607</td>\n",
" <td>0.134826</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2022-12-02</th>\n",
" <td>-0.633474</td>\n",
" <td>-0.559364</td>\n",
" <td>-0.740220</td>\n",
" <td>-0.618740</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2022-12-05</th>\n",
" <td>-0.175175</td>\n",
" <td>-0.284047</td>\n",
" <td>-0.256715</td>\n",
" <td>0.026482</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2022-12-06</th>\n",
" <td>-0.635167</td>\n",
" <td>-0.393512</td>\n",
" <td>-0.072341</td>\n",
" <td>-0.311751</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2022-12-07</th>\n",
" <td>0.205365</td>\n",
" <td>0.071833</td>\n",
" <td>-0.266446</td>\n",
" <td>-0.441190</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2022-12-08</th>\n",
" <td>-0.364829</td>\n",
" <td>-0.231948</td>\n",
" <td>0.046139</td>\n",
" <td>0.263191</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>3632 rows × 4 columns</p>\n",
"</div>"
],
"text/plain": [
" Open High Low Close\n",
"Date \n",
"2007-09-18 -0.538904 0.060452 -0.029006 1.146926\n",
"2007-09-20 4.056922 0.461070 3.755835 0.321187\n",
"2007-09-21 0.382274 1.992293 0.265831 1.895715\n",
"2007-09-24 1.771525 1.759781 2.185388 1.956577\n",
"2007-09-25 2.107650 0.258037 0.847607 0.134826\n",
"... ... ... ... ...\n",
"2022-12-02 -0.633474 -0.559364 -0.740220 -0.618740\n",
"2022-12-05 -0.175175 -0.284047 -0.256715 0.026482\n",
"2022-12-06 -0.635167 -0.393512 -0.072341 -0.311751\n",
"2022-12-07 0.205365 0.071833 -0.266446 -0.441190\n",
"2022-12-08 -0.364829 -0.231948 0.046139 0.263191\n",
"\n",
"[3632 rows x 4 columns]"
]
},
"execution_count": 92,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"x"
]
},
{
"cell_type": "code",
"execution_count": 93,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Date\n",
"2007-09-18 0.0\n",
"2007-09-20 0.0\n",
"2007-09-21 0.0\n",
"2007-09-24 0.0\n",
"2007-09-25 0.0\n",
" ... \n",
"2022-12-02 1.0\n",
"2022-12-05 1.0\n",
"2022-12-06 1.0\n",
"2022-12-07 1.0\n",
"2022-12-08 1.0\n",
"Name: target, Length: 3632, dtype: float64"
]
},
"execution_count": 93,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"y"
]
},
{
"cell_type": "code",
"execution_count": 94,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"No. of Bullish samples: 1853\n",
"No. of Bearish samples: 1779\n"
]
}
],
"source": [
"print('No. of Bullish samples: {}'.format(y[y == 0].size))\n",
"print('No. of Bearish samples: {}'.format(y[y == 1].size))"
]
},
{
"cell_type": "code",
"execution_count": 95,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Using StandardScaler\n"
]
},
{
"data": {
"text/plain": [
"array([[-0.44397101, 0.03341403, -0.07956986, 1.02006975],\n",
" [ 2.99061278, 0.42381322, 2.99941387, 0.25208989],\n",
" [ 0.24444976, 1.91598031, 0.16028141, 1.71648272],\n",
" ...,\n",
" [-0.51591104, -0.40897068, -0.11482332, -0.33657615],\n",
" [ 0.11224095, 0.04450465, -0.27272798, -0.4569611 ],\n",
" [-0.31388057, -0.25152816, -0.0184391 , 0.19815053]])"
]
},
"execution_count": 95,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"if not INDICATOR_DATASET:\n",
" print(\"Using StandardScaler\")\n",
" scaler = StandardScaler()\n",
" x = scaler.fit_transform(x.to_numpy())\n",
" x\n",
"else:\n",
" print(\"Using ColumnTransformer\")\n",
" col_names = ['Open', 'High', 'Low', 'Close', 'ATR']\n",
" scaler = ColumnTransformer(\n",
" [('StandardScaler', StandardScaler(), col_names)],\n",
" remainder='passthrough'\n",
" )\n",
" x = scaler.fit_transform(x)\n",
"x"
]
},
{
"cell_type": "code",
"execution_count": 96,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Model: \"sequential_5\"\n",
"_________________________________________________________________\n",
" Layer (type) Output Shape Param # \n",
"=================================================================\n",
" dense_35 (Dense) (None, 64) 320 \n",
" \n",
" dense_36 (Dense) (None, 32) 2080 \n",
" \n",
" dense_37 (Dense) (None, 16) 528 \n",
" \n",
" dense_38 (Dense) (None, 8) 136 \n",
" \n",
" dense_39 (Dense) (None, 4) 36 \n",
" \n",
" dense_40 (Dense) (None, 2) 10 \n",
" \n",
" dense_41 (Dense) (None, 1) 3 \n",
" \n",
"=================================================================\n",
"Total params: 3,113\n",
"Trainable params: 3,113\n",
"Non-trainable params: 0\n",
"_________________________________________________________________\n"
]
}
],
"source": [
"import tensorflow as tf\n",
"from keras import Sequential\n",
"from keras import Model\n",
"from keras.layers import Dense\n",
"from keras.optimizers import SGD\n",
"import keras\n",
"\n",
"lr_list = []\n",
"def scheduler(epoch, lr):\n",
" if epoch < 15:\n",
" lr = lr\n",
" else:\n",
" lr = lr * tf.math.exp(-0.01)\n",
" lr_list.append(lr)\n",
" return lr\n",
"\n",
"units = 64 #1024\n",
"# sgd = SGD(learning_rate=0.0001, momentum=0.0, nesterov=True)\n",
"sgd = SGD(learning_rate=0.001, momentum=0.45, nesterov=True)\n",
"kernel_init = 'he_uniform'\n",
"activation = 'relu'\n",
"\n",
"callback_mc = keras.callbacks.ModelCheckpoint(\n",
" 'best_model.h5',\n",
" verbose=1,\n",
" monitor='val_accuracy',\n",
" save_best_only=True,\n",
" mode='auto'\n",
" )\n",
"callback_es = keras.callbacks.EarlyStopping(\n",
" monitor='val_accuracy',\n",
" mode='auto',\n",
" verbose=0,\n",
" patience=200\n",
")\n",
"callback_lr = keras.callbacks.LearningRateScheduler(scheduler)\n",
"\n",
"model = Sequential([\n",
" Dense(units, kernel_initializer=kernel_init, activation=activation, input_dim=x.shape[1]),\n",
" # Dense(units, kernel_initializer=kernel_init, activation=activation),\n",
" Dense(units//2, kernel_initializer=kernel_init, activation=activation),\n",
" Dense(units//4, kernel_initializer=kernel_init, activation=activation),\n",
" Dense(units//8, kernel_initializer=kernel_init, activation=activation),\n",
" Dense(units//16, kernel_initializer=kernel_init, activation=activation),\n",
" Dense(units//32, kernel_initializer=kernel_init, activation=activation),\n",
" Dense(1, kernel_initializer=kernel_init, activation='sigmoid'),\n",
"])\n",
"model.compile(optimizer=sgd, loss='binary_crossentropy', metrics=['accuracy'])\n",
"model.summary()"
]
},
{
"cell_type": "code",
"execution_count": 97,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 1/500\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"2023-02-07 21:32:56.887556: I tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.cc:113] Plugin optimizer for device_type GPU is enabled.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Epoch 1: val_accuracy improved from -inf to 0.56514, saving model to best_model.h5\n",
"25/25 - 1s - loss: 0.7395 - accuracy: 0.5190 - val_loss: 0.6813 - val_accuracy: 0.5651 - lr: 0.0010 - 798ms/epoch - 32ms/step\n",
"Epoch 2/500\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"2023-02-07 21:32:57.345736: I tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.cc:113] Plugin optimizer for device_type GPU is enabled.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Epoch 2: val_accuracy improved from 0.56514 to 0.56881, saving model to best_model.h5\n",
"25/25 - 0s - loss: 0.7237 - accuracy: 0.5238 - val_loss: 0.6748 - val_accuracy: 0.5688 - lr: 0.0010 - 227ms/epoch - 9ms/step\n",
"Epoch 3/500\n",
"\n",
"Epoch 3: val_accuracy improved from 0.56881 to 0.57064, saving model to best_model.h5\n",
"25/25 - 0s - loss: 0.7119 - accuracy: 0.5287 - val_loss: 0.6682 - val_accuracy: 0.5706 - lr: 0.0010 - 232ms/epoch - 9ms/step\n",
"Epoch 4/500\n",
"\n",
"Epoch 4: val_accuracy improved from 0.57064 to 0.57798, saving model to best_model.h5\n",
"25/25 - 0s - loss: 0.7027 - accuracy: 0.5368 - val_loss: 0.6624 - val_accuracy: 0.5780 - lr: 0.0010 - 228ms/epoch - 9ms/step\n",
"Epoch 5/500\n",
"\n",
"Epoch 5: val_accuracy improved from 0.57798 to 0.59266, saving model to best_model.h5\n",
"25/25 - 0s - loss: 0.6922 - accuracy: 0.5465 - val_loss: 0.6567 - val_accuracy: 0.5927 - lr: 0.0010 - 205ms/epoch - 8ms/step\n",
"Epoch 6/500\n",
"\n",
"Epoch 6: val_accuracy improved from 0.59266 to 0.60734, saving model to best_model.h5\n",
"25/25 - 0s - loss: 0.6815 - accuracy: 0.5640 - val_loss: 0.6493 - val_accuracy: 0.6073 - lr: 0.0010 - 205ms/epoch - 8ms/step\n",
"Epoch 7/500\n",
"\n",
"Epoch 7: val_accuracy improved from 0.60734 to 0.66055, saving model to best_model.h5\n",
"25/25 - 0s - loss: 0.6670 - accuracy: 0.6158 - val_loss: 0.6347 - val_accuracy: 0.6606 - lr: 0.0010 - 203ms/epoch - 8ms/step\n",
"Epoch 8/500\n",
"\n",
"Epoch 8: val_accuracy improved from 0.66055 to 0.68257, saving model to best_model.h5\n",
"25/25 - 0s - loss: 0.6458 - accuracy: 0.6683 - val_loss: 0.6256 - val_accuracy: 0.6826 - lr: 0.0010 - 214ms/epoch - 9ms/step\n",
"Epoch 9/500\n",
"\n",
"Epoch 9: val_accuracy improved from 0.68257 to 0.69358, saving model to best_model.h5\n",
"25/25 - 0s - loss: 0.6340 - accuracy: 0.6796 - val_loss: 0.6224 - val_accuracy: 0.6936 - lr: 0.0010 - 210ms/epoch - 8ms/step\n",
"Epoch 10/500\n",
"\n",
"Epoch 10: val_accuracy improved from 0.69358 to 0.70642, saving model to best_model.h5\n",
"25/25 - 0s - loss: 0.6285 - accuracy: 0.6884 - val_loss: 0.6199 - val_accuracy: 0.7064 - lr: 0.0010 - 208ms/epoch - 8ms/step\n",
"Epoch 11/500\n",
"\n",
"Epoch 11: val_accuracy improved from 0.70642 to 0.71376, saving model to best_model.h5\n",
"25/25 - 0s - loss: 0.6239 - accuracy: 0.6916 - val_loss: 0.6174 - val_accuracy: 0.7138 - lr: 0.0010 - 207ms/epoch - 8ms/step\n",
"Epoch 12/500\n",
"\n",
"Epoch 12: val_accuracy improved from 0.71376 to 0.71927, saving model to best_model.h5\n",
"25/25 - 0s - loss: 0.6202 - accuracy: 0.6910 - val_loss: 0.6154 - val_accuracy: 0.7193 - lr: 0.0010 - 206ms/epoch - 8ms/step\n",
"Epoch 13/500\n",
"\n",
"Epoch 13: val_accuracy improved from 0.71927 to 0.72661, saving model to best_model.h5\n",
"25/25 - 0s - loss: 0.6181 - accuracy: 0.6923 - val_loss: 0.6136 - val_accuracy: 0.7266 - lr: 0.0010 - 214ms/epoch - 9ms/step\n",
"Epoch 14/500\n",
"\n",
"Epoch 14: val_accuracy improved from 0.72661 to 0.72844, saving model to best_model.h5\n",
"25/25 - 0s - loss: 0.6157 - accuracy: 0.6929 - val_loss: 0.6117 - val_accuracy: 0.7284 - lr: 0.0010 - 212ms/epoch - 8ms/step\n",
"Epoch 15/500\n",
"\n",
"Epoch 15: val_accuracy did not improve from 0.72844\n",
"25/25 - 0s - loss: 0.6137 - accuracy: 0.6955 - val_loss: 0.6098 - val_accuracy: 0.7284 - lr: 0.0010 - 186ms/epoch - 7ms/step\n",
"Epoch 16/500\n",
"\n",
"Epoch 16: val_accuracy improved from 0.72844 to 0.73028, saving model to best_model.h5\n",
"25/25 - 0s - loss: 0.6117 - accuracy: 0.6945 - val_loss: 0.6080 - val_accuracy: 0.7303 - lr: 9.9005e-04 - 256ms/epoch - 10ms/step\n",
"Epoch 17/500\n",
"\n",
"Epoch 17: val_accuracy improved from 0.73028 to 0.73578, saving model to best_model.h5\n",
"25/25 - 0s - loss: 0.6098 - accuracy: 0.6952 - val_loss: 0.6064 - val_accuracy: 0.7358 - lr: 9.8020e-04 - 212ms/epoch - 8ms/step\n",
"Epoch 18/500\n",
"\n",
"Epoch 18: val_accuracy did not improve from 0.73578\n",
"25/25 - 0s - loss: 0.6079 - accuracy: 0.6948 - val_loss: 0.6044 - val_accuracy: 0.7339 - lr: 9.7045e-04 - 179ms/epoch - 7ms/step\n",
"Epoch 19/500\n",
"\n",
"Epoch 19: val_accuracy did not improve from 0.73578\n",
"25/25 - 0s - loss: 0.6063 - accuracy: 0.6991 - val_loss: 0.6025 - val_accuracy: 0.7321 - lr: 9.6079e-04 - 195ms/epoch - 8ms/step\n",
"Epoch 20/500\n",
"\n",
"Epoch 20: val_accuracy did not improve from 0.73578\n",
"25/25 - 0s - loss: 0.6049 - accuracy: 0.6965 - val_loss: 0.6008 - val_accuracy: 0.7321 - lr: 9.5123e-04 - 185ms/epoch - 7ms/step\n",
"Epoch 21/500\n",
"\n",
"Epoch 21: val_accuracy did not improve from 0.73578\n",
"25/25 - 0s - loss: 0.6032 - accuracy: 0.6968 - val_loss: 0.5987 - val_accuracy: 0.7358 - lr: 9.4176e-04 - 186ms/epoch - 7ms/step\n",
"Epoch 22/500\n",
"\n",
"Epoch 22: val_accuracy improved from 0.73578 to 0.73761, saving model to best_model.h5\n",
"25/25 - 0s - loss: 0.6015 - accuracy: 0.6994 - val_loss: 0.5973 - val_accuracy: 0.7376 - lr: 9.3239e-04 - 224ms/epoch - 9ms/step\n",
"Epoch 23/500\n",
"\n",
"Epoch 23: val_accuracy did not improve from 0.73761\n",
"25/25 - 0s - loss: 0.6001 - accuracy: 0.6994 - val_loss: 0.5964 - val_accuracy: 0.7358 - lr: 9.2312e-04 - 187ms/epoch - 7ms/step\n",
"Epoch 24/500\n",
"\n",
"Epoch 24: val_accuracy did not improve from 0.73761\n",
"25/25 - 0s - loss: 0.5990 - accuracy: 0.7007 - val_loss: 0.5959 - val_accuracy: 0.7358 - lr: 9.1393e-04 - 188ms/epoch - 8ms/step\n",
"Epoch 25/500\n",
"\n",
"Epoch 25: val_accuracy improved from 0.73761 to 0.73945, saving model to best_model.h5\n",
"25/25 - 0s - loss: 0.5980 - accuracy: 0.7007 - val_loss: 0.5947 - val_accuracy: 0.7394 - lr: 9.0484e-04 - 234ms/epoch - 9ms/step\n",
"Epoch 26/500\n",
"\n",
"Epoch 26: val_accuracy did not improve from 0.73945\n",
"25/25 - 0s - loss: 0.5968 - accuracy: 0.7017 - val_loss: 0.5935 - val_accuracy: 0.7394 - lr: 8.9583e-04 - 178ms/epoch - 7ms/step\n",
"Epoch 27/500\n",
"\n",
"Epoch 27: val_accuracy did not improve from 0.73945\n",
"25/25 - 0s - loss: 0.5957 - accuracy: 0.7033 - val_loss: 0.5924 - val_accuracy: 0.7394 - lr: 8.8692e-04 - 180ms/epoch - 7ms/step\n",
"Epoch 28/500\n",
"\n",
"Epoch 28: val_accuracy did not improve from 0.73945\n",
"25/25 - 0s - loss: 0.5947 - accuracy: 0.7026 - val_loss: 0.5912 - val_accuracy: 0.7376 - lr: 8.7809e-04 - 180ms/epoch - 7ms/step\n",
"Epoch 29/500\n",
"\n",
"Epoch 29: val_accuracy did not improve from 0.73945\n",
"25/25 - 0s - loss: 0.5938 - accuracy: 0.7020 - val_loss: 0.5902 - val_accuracy: 0.7376 - lr: 8.6936e-04 - 178ms/epoch - 7ms/step\n",
"Epoch 30/500\n",
"\n",
"Epoch 30: val_accuracy did not improve from 0.73945\n",
"25/25 - 0s - loss: 0.5929 - accuracy: 0.7026 - val_loss: 0.5892 - val_accuracy: 0.7394 - lr: 8.6071e-04 - 201ms/epoch - 8ms/step\n",
"Epoch 31/500\n",
"\n",
"Epoch 31: val_accuracy did not improve from 0.73945\n",
"25/25 - 0s - loss: 0.5920 - accuracy: 0.7023 - val_loss: 0.5884 - val_accuracy: 0.7358 - lr: 8.5214e-04 - 181ms/epoch - 7ms/step\n",
"Epoch 32/500\n",
"\n",
"Epoch 32: val_accuracy did not improve from 0.73945\n",
"25/25 - 0s - loss: 0.5911 - accuracy: 0.7049 - val_loss: 0.5877 - val_accuracy: 0.7358 - lr: 8.4366e-04 - 179ms/epoch - 7ms/step\n",
"Epoch 33/500\n",
"\n",
"Epoch 33: val_accuracy did not improve from 0.73945\n",
"25/25 - 0s - loss: 0.5904 - accuracy: 0.7059 - val_loss: 0.5866 - val_accuracy: 0.7376 - lr: 8.3527e-04 - 180ms/epoch - 7ms/step\n",
"Epoch 34/500\n",
"\n",
"Epoch 34: val_accuracy did not improve from 0.73945\n",
"25/25 - 0s - loss: 0.5896 - accuracy: 0.7049 - val_loss: 0.5854 - val_accuracy: 0.7376 - lr: 8.2696e-04 - 178ms/epoch - 7ms/step\n",
"Epoch 35/500\n",
"\n",
"Epoch 35: val_accuracy did not improve from 0.73945\n",
"25/25 - 0s - loss: 0.5892 - accuracy: 0.7033 - val_loss: 0.5848 - val_accuracy: 0.7339 - lr: 8.1873e-04 - 180ms/epoch - 7ms/step\n",
"Epoch 36/500\n",
"\n",
"Epoch 36: val_accuracy did not improve from 0.73945\n",
"25/25 - 0s - loss: 0.5883 - accuracy: 0.7049 - val_loss: 0.5847 - val_accuracy: 0.7339 - lr: 8.1058e-04 - 179ms/epoch - 7ms/step\n",
"Epoch 37/500\n",
"\n",
"Epoch 37: val_accuracy did not improve from 0.73945\n",
"25/25 - 0s - loss: 0.5877 - accuracy: 0.7033 - val_loss: 0.5838 - val_accuracy: 0.7358 - lr: 8.0252e-04 - 194ms/epoch - 8ms/step\n",
"Epoch 38/500\n",
"\n",
"Epoch 38: val_accuracy did not improve from 0.73945\n",
"25/25 - 0s - loss: 0.5869 - accuracy: 0.7039 - val_loss: 0.5832 - val_accuracy: 0.7358 - lr: 7.9453e-04 - 179ms/epoch - 7ms/step\n",
"Epoch 39/500\n",
"\n",
"Epoch 39: val_accuracy did not improve from 0.73945\n",
"25/25 - 0s - loss: 0.5863 - accuracy: 0.7039 - val_loss: 0.5825 - val_accuracy: 0.7358 - lr: 7.8663e-04 - 182ms/epoch - 7ms/step\n",
"Epoch 40/500\n",
"\n",
"Epoch 40: val_accuracy did not improve from 0.73945\n",
"25/25 - 0s - loss: 0.5857 - accuracy: 0.7052 - val_loss: 0.5821 - val_accuracy: 0.7358 - lr: 7.7880e-04 - 178ms/epoch - 7ms/step\n",
"Epoch 41/500\n",
"\n",
"Epoch 41: val_accuracy did not improve from 0.73945\n",
"25/25 - 0s - loss: 0.5849 - accuracy: 0.7046 - val_loss: 0.5817 - val_accuracy: 0.7339 - lr: 7.7105e-04 - 175ms/epoch - 7ms/step\n",
"Epoch 42/500\n",
"\n",
"Epoch 42: val_accuracy did not improve from 0.73945\n",
"25/25 - 0s - loss: 0.5844 - accuracy: 0.7039 - val_loss: 0.5811 - val_accuracy: 0.7358 - lr: 7.6338e-04 - 178ms/epoch - 7ms/step\n",
"Epoch 43/500\n",
"\n",
"Epoch 43: val_accuracy did not improve from 0.73945\n",
"25/25 - 0s - loss: 0.5837 - accuracy: 0.7042 - val_loss: 0.5806 - val_accuracy: 0.7358 - lr: 7.5578e-04 - 178ms/epoch - 7ms/step\n",
"Epoch 44/500\n",
"\n",
"Epoch 44: val_accuracy did not improve from 0.73945\n",
"25/25 - 0s - loss: 0.5831 - accuracy: 0.7046 - val_loss: 0.5797 - val_accuracy: 0.7339 - lr: 7.4826e-04 - 176ms/epoch - 7ms/step\n",
"Epoch 45/500\n",
"\n",
"Epoch 45: val_accuracy did not improve from 0.73945\n",
"25/25 - 0s - loss: 0.5826 - accuracy: 0.7042 - val_loss: 0.5794 - val_accuracy: 0.7358 - lr: 7.4082e-04 - 177ms/epoch - 7ms/step\n",
"Epoch 46/500\n",
"\n",
"Epoch 46: val_accuracy did not improve from 0.73945\n",
"25/25 - 0s - loss: 0.5819 - accuracy: 0.7046 - val_loss: 0.5790 - val_accuracy: 0.7358 - lr: 7.3345e-04 - 178ms/epoch - 7ms/step\n",
"Epoch 47/500\n",
"\n",
"Epoch 47: val_accuracy did not improve from 0.73945\n",
"25/25 - 0s - loss: 0.5813 - accuracy: 0.7055 - val_loss: 0.5788 - val_accuracy: 0.7358 - lr: 7.2615e-04 - 176ms/epoch - 7ms/step\n",
"Epoch 48/500\n",
"\n",
"Epoch 48: val_accuracy did not improve from 0.73945\n",
"25/25 - 0s - loss: 0.5810 - accuracy: 0.7059 - val_loss: 0.5785 - val_accuracy: 0.7376 - lr: 7.1892e-04 - 175ms/epoch - 7ms/step\n",
"Epoch 49/500\n",
"\n",
"Epoch 49: val_accuracy did not improve from 0.73945\n",
"25/25 - 0s - loss: 0.5804 - accuracy: 0.7062 - val_loss: 0.5779 - val_accuracy: 0.7394 - lr: 7.1177e-04 - 182ms/epoch - 7ms/step\n",
"Epoch 50/500\n",
"\n",
"Epoch 50: val_accuracy did not improve from 0.73945\n",
"25/25 - 0s - loss: 0.5798 - accuracy: 0.7065 - val_loss: 0.5776 - val_accuracy: 0.7394 - lr: 7.0469e-04 - 179ms/epoch - 7ms/step\n",
"Epoch 51/500\n",
"\n",
"Epoch 51: val_accuracy improved from 0.73945 to 0.74128, saving model to best_model.h5\n",
"25/25 - 0s - loss: 0.5792 - accuracy: 0.7065 - val_loss: 0.5768 - val_accuracy: 0.7413 - lr: 6.9767e-04 - 208ms/epoch - 8ms/step\n",
"Epoch 52/500\n",
"\n",
"Epoch 52: val_accuracy did not improve from 0.74128\n",
"25/25 - 0s - loss: 0.5786 - accuracy: 0.7081 - val_loss: 0.5762 - val_accuracy: 0.7394 - lr: 6.9073e-04 - 184ms/epoch - 7ms/step\n",
"Epoch 53/500\n",
"\n",
"Epoch 53: val_accuracy did not improve from 0.74128\n",
"25/25 - 0s - loss: 0.5780 - accuracy: 0.7065 - val_loss: 0.5758 - val_accuracy: 0.7394 - lr: 6.8386e-04 - 184ms/epoch - 7ms/step\n",
"Epoch 54/500\n",
"\n",
"Epoch 54: val_accuracy did not improve from 0.74128\n",
"25/25 - 0s - loss: 0.5777 - accuracy: 0.7085 - val_loss: 0.5753 - val_accuracy: 0.7394 - lr: 6.7706e-04 - 185ms/epoch - 7ms/step\n",
"Epoch 55/500\n",
"\n",
"Epoch 55: val_accuracy did not improve from 0.74128\n",
"25/25 - 0s - loss: 0.5773 - accuracy: 0.7088 - val_loss: 0.5746 - val_accuracy: 0.7413 - lr: 6.7032e-04 - 184ms/epoch - 7ms/step\n",
"Epoch 56/500\n",
"\n",
"Epoch 56: val_accuracy did not improve from 0.74128\n",
"25/25 - 0s - loss: 0.5768 - accuracy: 0.7088 - val_loss: 0.5739 - val_accuracy: 0.7413 - lr: 6.6365e-04 - 185ms/epoch - 7ms/step\n",
"Epoch 57/500\n",
"\n",
"Epoch 57: val_accuracy did not improve from 0.74128\n",
"25/25 - 0s - loss: 0.5764 - accuracy: 0.7101 - val_loss: 0.5735 - val_accuracy: 0.7394 - lr: 6.5705e-04 - 182ms/epoch - 7ms/step\n",
"Epoch 58/500\n",
"\n",
"Epoch 58: val_accuracy did not improve from 0.74128\n",
"25/25 - 0s - loss: 0.5760 - accuracy: 0.7088 - val_loss: 0.5731 - val_accuracy: 0.7394 - lr: 6.5051e-04 - 187ms/epoch - 7ms/step\n",
"Epoch 59/500\n",
"\n",
"Epoch 59: val_accuracy improved from 0.74128 to 0.74312, saving model to best_model.h5\n",
"25/25 - 0s - loss: 0.5757 - accuracy: 0.7091 - val_loss: 0.5722 - val_accuracy: 0.7431 - lr: 6.4403e-04 - 206ms/epoch - 8ms/step\n",
"Epoch 60/500\n",
"\n",
"Epoch 60: val_accuracy did not improve from 0.74312\n",
"25/25 - 0s - loss: 0.5753 - accuracy: 0.7101 - val_loss: 0.5717 - val_accuracy: 0.7413 - lr: 6.3763e-04 - 184ms/epoch - 7ms/step\n",
"Epoch 61/500\n",
"\n",
"Epoch 61: val_accuracy did not improve from 0.74312\n",
"25/25 - 0s - loss: 0.5749 - accuracy: 0.7101 - val_loss: 0.5711 - val_accuracy: 0.7431 - lr: 6.3128e-04 - 181ms/epoch - 7ms/step\n",
"Epoch 62/500\n",
"\n",
"Epoch 62: val_accuracy did not improve from 0.74312\n",
"25/25 - 0s - loss: 0.5745 - accuracy: 0.7094 - val_loss: 0.5708 - val_accuracy: 0.7431 - lr: 6.2500e-04 - 184ms/epoch - 7ms/step\n",
"Epoch 63/500\n",
"\n",
"Epoch 63: val_accuracy did not improve from 0.74312\n",
"25/25 - 0s - loss: 0.5741 - accuracy: 0.7101 - val_loss: 0.5704 - val_accuracy: 0.7413 - lr: 6.1878e-04 - 190ms/epoch - 8ms/step\n",
"Epoch 64/500\n",
"\n",
"Epoch 64: val_accuracy did not improve from 0.74312\n",
"25/25 - 0s - loss: 0.5737 - accuracy: 0.7104 - val_loss: 0.5698 - val_accuracy: 0.7431 - lr: 6.1262e-04 - 194ms/epoch - 8ms/step\n",
"Epoch 65/500\n",
"\n",
"Epoch 65: val_accuracy improved from 0.74312 to 0.74495, saving model to best_model.h5\n",
"25/25 - 0s - loss: 0.5734 - accuracy: 0.7098 - val_loss: 0.5694 - val_accuracy: 0.7450 - lr: 6.0653e-04 - 210ms/epoch - 8ms/step\n",
"Epoch 66/500\n",
"\n",
"Epoch 66: val_accuracy did not improve from 0.74495\n",
"25/25 - 0s - loss: 0.5730 - accuracy: 0.7098 - val_loss: 0.5691 - val_accuracy: 0.7450 - lr: 6.0049e-04 - 190ms/epoch - 8ms/step\n",
"Epoch 67/500\n",
"\n",
"Epoch 67: val_accuracy did not improve from 0.74495\n",
"25/25 - 0s - loss: 0.5727 - accuracy: 0.7098 - val_loss: 0.5688 - val_accuracy: 0.7431 - lr: 5.9452e-04 - 189ms/epoch - 8ms/step\n",
"Epoch 68/500\n",
"\n",
"Epoch 68: val_accuracy did not improve from 0.74495\n",
"25/25 - 0s - loss: 0.5724 - accuracy: 0.7088 - val_loss: 0.5684 - val_accuracy: 0.7431 - lr: 5.8860e-04 - 186ms/epoch - 7ms/step\n",
"Epoch 69/500\n",
"\n",
"Epoch 69: val_accuracy did not improve from 0.74495\n",
"25/25 - 0s - loss: 0.5720 - accuracy: 0.7104 - val_loss: 0.5681 - val_accuracy: 0.7413 - lr: 5.8275e-04 - 185ms/epoch - 7ms/step\n",
"Epoch 70/500\n",
"\n",
"Epoch 70: val_accuracy did not improve from 0.74495\n",
"25/25 - 0s - loss: 0.5717 - accuracy: 0.7110 - val_loss: 0.5679 - val_accuracy: 0.7413 - lr: 5.7695e-04 - 186ms/epoch - 7ms/step\n",
"Epoch 71/500\n",
"\n",
"Epoch 71: val_accuracy did not improve from 0.74495\n",
"25/25 - 0s - loss: 0.5715 - accuracy: 0.7110 - val_loss: 0.5673 - val_accuracy: 0.7413 - lr: 5.7121e-04 - 177ms/epoch - 7ms/step\n",
"Epoch 72/500\n",
"\n",
"Epoch 72: val_accuracy did not improve from 0.74495\n",
"25/25 - 0s - loss: 0.5711 - accuracy: 0.7117 - val_loss: 0.5672 - val_accuracy: 0.7413 - lr: 5.6552e-04 - 179ms/epoch - 7ms/step\n",
"Epoch 73/500\n",
"\n",
"Epoch 73: val_accuracy did not improve from 0.74495\n",
"25/25 - 0s - loss: 0.5710 - accuracy: 0.7104 - val_loss: 0.5670 - val_accuracy: 0.7431 - lr: 5.5990e-04 - 179ms/epoch - 7ms/step\n",
"Epoch 74/500\n",
"\n",
"Epoch 74: val_accuracy did not improve from 0.74495\n",
"25/25 - 0s - loss: 0.5707 - accuracy: 0.7114 - val_loss: 0.5662 - val_accuracy: 0.7431 - lr: 5.5433e-04 - 178ms/epoch - 7ms/step\n",
"Epoch 75/500\n",
"\n",
"Epoch 75: val_accuracy did not improve from 0.74495\n",
"25/25 - 0s - loss: 0.5703 - accuracy: 0.7114 - val_loss: 0.5661 - val_accuracy: 0.7413 - lr: 5.4881e-04 - 175ms/epoch - 7ms/step\n",
"Epoch 76/500\n",
"\n",
"Epoch 76: val_accuracy did not improve from 0.74495\n",
"25/25 - 0s - loss: 0.5701 - accuracy: 0.7117 - val_loss: 0.5660 - val_accuracy: 0.7450 - lr: 5.4335e-04 - 178ms/epoch - 7ms/step\n",
"Epoch 77/500\n",
"\n",
"Epoch 77: val_accuracy did not improve from 0.74495\n",
"25/25 - 0s - loss: 0.5699 - accuracy: 0.7114 - val_loss: 0.5657 - val_accuracy: 0.7450 - lr: 5.3794e-04 - 186ms/epoch - 7ms/step\n",
"Epoch 78/500\n",
"\n",
"Epoch 78: val_accuracy did not improve from 0.74495\n",
"25/25 - 0s - loss: 0.5697 - accuracy: 0.7123 - val_loss: 0.5655 - val_accuracy: 0.7450 - lr: 5.3259e-04 - 194ms/epoch - 8ms/step\n",
"Epoch 79/500\n",
"\n",
"Epoch 79: val_accuracy did not improve from 0.74495\n",
"25/25 - 0s - loss: 0.5694 - accuracy: 0.7117 - val_loss: 0.5654 - val_accuracy: 0.7450 - lr: 5.2729e-04 - 185ms/epoch - 7ms/step\n",
"Epoch 80/500\n",
"\n",
"Epoch 80: val_accuracy did not improve from 0.74495\n",
"25/25 - 0s - loss: 0.5692 - accuracy: 0.7120 - val_loss: 0.5655 - val_accuracy: 0.7450 - lr: 5.2204e-04 - 187ms/epoch - 7ms/step\n",
"Epoch 81/500\n",
"\n",
"Epoch 81: val_accuracy did not improve from 0.74495\n",
"25/25 - 0s - loss: 0.5691 - accuracy: 0.7117 - val_loss: 0.5657 - val_accuracy: 0.7450 - lr: 5.1685e-04 - 188ms/epoch - 8ms/step\n",
"Epoch 82/500\n",
"\n",
"Epoch 82: val_accuracy did not improve from 0.74495\n",
"25/25 - 0s - loss: 0.5690 - accuracy: 0.7130 - val_loss: 0.5653 - val_accuracy: 0.7450 - lr: 5.1171e-04 - 184ms/epoch - 7ms/step\n",
"Epoch 83/500\n",
"\n",
"Epoch 83: val_accuracy did not improve from 0.74495\n",
"25/25 - 0s - loss: 0.5687 - accuracy: 0.7127 - val_loss: 0.5647 - val_accuracy: 0.7450 - lr: 5.0661e-04 - 184ms/epoch - 7ms/step\n",
"Epoch 84/500\n",
"\n",
"Epoch 84: val_accuracy did not improve from 0.74495\n",
"25/25 - 0s - loss: 0.5685 - accuracy: 0.7123 - val_loss: 0.5645 - val_accuracy: 0.7450 - lr: 5.0157e-04 - 182ms/epoch - 7ms/step\n",
"Epoch 85/500\n",
"\n",
"Epoch 85: val_accuracy did not improve from 0.74495\n",
"25/25 - 0s - loss: 0.5683 - accuracy: 0.7133 - val_loss: 0.5643 - val_accuracy: 0.7450 - lr: 4.9658e-04 - 189ms/epoch - 8ms/step\n",
"Epoch 86/500\n",
"\n",
"Epoch 86: val_accuracy did not improve from 0.74495\n",
"25/25 - 0s - loss: 0.5681 - accuracy: 0.7123 - val_loss: 0.5642 - val_accuracy: 0.7450 - lr: 4.9164e-04 - 215ms/epoch - 9ms/step\n",
"Epoch 87/500\n",
"\n",
"Epoch 87: val_accuracy did not improve from 0.74495\n",
"25/25 - 0s - loss: 0.5680 - accuracy: 0.7117 - val_loss: 0.5639 - val_accuracy: 0.7450 - lr: 4.8675e-04 - 188ms/epoch - 8ms/step\n",
"Epoch 88/500\n",
"\n",
"Epoch 88: val_accuracy did not improve from 0.74495\n",
"25/25 - 0s - loss: 0.5678 - accuracy: 0.7117 - val_loss: 0.5638 - val_accuracy: 0.7450 - lr: 4.8191e-04 - 189ms/epoch - 8ms/step\n",
"Epoch 89/500\n",
"\n",
"Epoch 89: val_accuracy improved from 0.74495 to 0.74679, saving model to best_model.h5\n",
"25/25 - 0s - loss: 0.5676 - accuracy: 0.7123 - val_loss: 0.5635 - val_accuracy: 0.7468 - lr: 4.7711e-04 - 219ms/epoch - 9ms/step\n",
"Epoch 90/500\n",
"\n",
"Epoch 90: val_accuracy did not improve from 0.74679\n",
"25/25 - 0s - loss: 0.5674 - accuracy: 0.7117 - val_loss: 0.5633 - val_accuracy: 0.7468 - lr: 4.7236e-04 - 185ms/epoch - 7ms/step\n",
"Epoch 91/500\n",
"\n",
"Epoch 91: val_accuracy improved from 0.74679 to 0.75046, saving model to best_model.h5\n",
"25/25 - 0s - loss: 0.5673 - accuracy: 0.7120 - val_loss: 0.5630 - val_accuracy: 0.7505 - lr: 4.6766e-04 - 223ms/epoch - 9ms/step\n",
"Epoch 92/500\n",
"\n",
"Epoch 92: val_accuracy did not improve from 0.75046\n",
"25/25 - 0s - loss: 0.5671 - accuracy: 0.7130 - val_loss: 0.5628 - val_accuracy: 0.7468 - lr: 4.6301e-04 - 183ms/epoch - 7ms/step\n",
"Epoch 93/500\n",
"\n",
"Epoch 93: val_accuracy did not improve from 0.75046\n",
"25/25 - 0s - loss: 0.5670 - accuracy: 0.7123 - val_loss: 0.5626 - val_accuracy: 0.7468 - lr: 4.5840e-04 - 186ms/epoch - 7ms/step\n",
"Epoch 94/500\n",
"\n",
"Epoch 94: val_accuracy did not improve from 0.75046\n",
"25/25 - 0s - loss: 0.5668 - accuracy: 0.7117 - val_loss: 0.5624 - val_accuracy: 0.7486 - lr: 4.5384e-04 - 183ms/epoch - 7ms/step\n",
"Epoch 95/500\n",
"\n",
"Epoch 95: val_accuracy did not improve from 0.75046\n",
"25/25 - 0s - loss: 0.5666 - accuracy: 0.7127 - val_loss: 0.5621 - val_accuracy: 0.7468 - lr: 4.4933e-04 - 183ms/epoch - 7ms/step\n",
"Epoch 96/500\n",
"\n",
"Epoch 96: val_accuracy did not improve from 0.75046\n",
"25/25 - 0s - loss: 0.5665 - accuracy: 0.7123 - val_loss: 0.5617 - val_accuracy: 0.7486 - lr: 4.4486e-04 - 175ms/epoch - 7ms/step\n",
"Epoch 97/500\n",
"\n",
"Epoch 97: val_accuracy did not improve from 0.75046\n",
"25/25 - 0s - loss: 0.5664 - accuracy: 0.7130 - val_loss: 0.5616 - val_accuracy: 0.7505 - lr: 4.4043e-04 - 174ms/epoch - 7ms/step\n",
"Epoch 98/500\n",
"\n",
"Epoch 98: val_accuracy improved from 0.75046 to 0.75229, saving model to best_model.h5\n",
"25/25 - 0s - loss: 0.5662 - accuracy: 0.7120 - val_loss: 0.5615 - val_accuracy: 0.7523 - lr: 4.3605e-04 - 195ms/epoch - 8ms/step\n",
"Epoch 99/500\n",
"\n",
"Epoch 99: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5661 - accuracy: 0.7114 - val_loss: 0.5614 - val_accuracy: 0.7505 - lr: 4.3171e-04 - 177ms/epoch - 7ms/step\n",
"Epoch 100/500\n",
"\n",
"Epoch 100: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5660 - accuracy: 0.7114 - val_loss: 0.5612 - val_accuracy: 0.7486 - lr: 4.2741e-04 - 176ms/epoch - 7ms/step\n",
"Epoch 101/500\n",
"\n",
"Epoch 101: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5658 - accuracy: 0.7120 - val_loss: 0.5610 - val_accuracy: 0.7486 - lr: 4.2316e-04 - 175ms/epoch - 7ms/step\n",
"Epoch 102/500\n",
"\n",
"Epoch 102: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5657 - accuracy: 0.7117 - val_loss: 0.5610 - val_accuracy: 0.7486 - lr: 4.1895e-04 - 177ms/epoch - 7ms/step\n",
"Epoch 103/500\n",
"\n",
"Epoch 103: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5655 - accuracy: 0.7114 - val_loss: 0.5609 - val_accuracy: 0.7468 - lr: 4.1478e-04 - 178ms/epoch - 7ms/step\n",
"Epoch 104/500\n",
"\n",
"Epoch 104: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5654 - accuracy: 0.7130 - val_loss: 0.5609 - val_accuracy: 0.7468 - lr: 4.1065e-04 - 175ms/epoch - 7ms/step\n",
"Epoch 105/500\n",
"\n",
"Epoch 105: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5653 - accuracy: 0.7130 - val_loss: 0.5609 - val_accuracy: 0.7468 - lr: 4.0657e-04 - 174ms/epoch - 7ms/step\n",
"Epoch 106/500\n",
"\n",
"Epoch 106: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5651 - accuracy: 0.7130 - val_loss: 0.5607 - val_accuracy: 0.7468 - lr: 4.0252e-04 - 174ms/epoch - 7ms/step\n",
"Epoch 107/500\n",
"\n",
"Epoch 107: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5649 - accuracy: 0.7127 - val_loss: 0.5606 - val_accuracy: 0.7468 - lr: 3.9852e-04 - 173ms/epoch - 7ms/step\n",
"Epoch 108/500\n",
"\n",
"Epoch 108: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5648 - accuracy: 0.7123 - val_loss: 0.5606 - val_accuracy: 0.7468 - lr: 3.9455e-04 - 174ms/epoch - 7ms/step\n",
"Epoch 109/500\n",
"\n",
"Epoch 109: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5647 - accuracy: 0.7130 - val_loss: 0.5605 - val_accuracy: 0.7468 - lr: 3.9063e-04 - 173ms/epoch - 7ms/step\n",
"Epoch 110/500\n",
"\n",
"Epoch 110: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5645 - accuracy: 0.7133 - val_loss: 0.5603 - val_accuracy: 0.7468 - lr: 3.8674e-04 - 174ms/epoch - 7ms/step\n",
"Epoch 111/500\n",
"\n",
"Epoch 111: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5644 - accuracy: 0.7133 - val_loss: 0.5604 - val_accuracy: 0.7468 - lr: 3.8289e-04 - 177ms/epoch - 7ms/step\n",
"Epoch 112/500\n",
"\n",
"Epoch 112: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5643 - accuracy: 0.7133 - val_loss: 0.5603 - val_accuracy: 0.7468 - lr: 3.7908e-04 - 182ms/epoch - 7ms/step\n",
"Epoch 113/500\n",
"\n",
"Epoch 113: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5642 - accuracy: 0.7133 - val_loss: 0.5600 - val_accuracy: 0.7486 - lr: 3.7531e-04 - 175ms/epoch - 7ms/step\n",
"Epoch 114/500\n",
"\n",
"Epoch 114: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5640 - accuracy: 0.7123 - val_loss: 0.5600 - val_accuracy: 0.7468 - lr: 3.7157e-04 - 178ms/epoch - 7ms/step\n",
"Epoch 115/500\n",
"\n",
"Epoch 115: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5640 - accuracy: 0.7130 - val_loss: 0.5598 - val_accuracy: 0.7505 - lr: 3.6788e-04 - 174ms/epoch - 7ms/step\n",
"Epoch 116/500\n",
"\n",
"Epoch 116: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5639 - accuracy: 0.7127 - val_loss: 0.5597 - val_accuracy: 0.7505 - lr: 3.6422e-04 - 175ms/epoch - 7ms/step\n",
"Epoch 117/500\n",
"\n",
"Epoch 117: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5637 - accuracy: 0.7130 - val_loss: 0.5597 - val_accuracy: 0.7486 - lr: 3.6059e-04 - 175ms/epoch - 7ms/step\n",
"Epoch 118/500\n",
"\n",
"Epoch 118: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5636 - accuracy: 0.7133 - val_loss: 0.5596 - val_accuracy: 0.7468 - lr: 3.5700e-04 - 176ms/epoch - 7ms/step\n",
"Epoch 119/500\n",
"\n",
"Epoch 119: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5635 - accuracy: 0.7133 - val_loss: 0.5594 - val_accuracy: 0.7486 - lr: 3.5345e-04 - 177ms/epoch - 7ms/step\n",
"Epoch 120/500\n",
"\n",
"Epoch 120: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5634 - accuracy: 0.7127 - val_loss: 0.5593 - val_accuracy: 0.7468 - lr: 3.4994e-04 - 174ms/epoch - 7ms/step\n",
"Epoch 121/500\n",
"\n",
"Epoch 121: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5633 - accuracy: 0.7130 - val_loss: 0.5592 - val_accuracy: 0.7468 - lr: 3.4645e-04 - 173ms/epoch - 7ms/step\n",
"Epoch 122/500\n",
"\n",
"Epoch 122: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5632 - accuracy: 0.7136 - val_loss: 0.5591 - val_accuracy: 0.7486 - lr: 3.4301e-04 - 177ms/epoch - 7ms/step\n",
"Epoch 123/500\n",
"\n",
"Epoch 123: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5631 - accuracy: 0.7133 - val_loss: 0.5589 - val_accuracy: 0.7505 - lr: 3.3959e-04 - 173ms/epoch - 7ms/step\n",
"Epoch 124/500\n",
"\n",
"Epoch 124: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5630 - accuracy: 0.7133 - val_loss: 0.5588 - val_accuracy: 0.7505 - lr: 3.3621e-04 - 174ms/epoch - 7ms/step\n",
"Epoch 125/500\n",
"\n",
"Epoch 125: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5629 - accuracy: 0.7130 - val_loss: 0.5586 - val_accuracy: 0.7505 - lr: 3.3287e-04 - 174ms/epoch - 7ms/step\n",
"Epoch 126/500\n",
"\n",
"Epoch 126: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5628 - accuracy: 0.7136 - val_loss: 0.5586 - val_accuracy: 0.7505 - lr: 3.2956e-04 - 173ms/epoch - 7ms/step\n",
"Epoch 127/500\n",
"\n",
"Epoch 127: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5628 - accuracy: 0.7130 - val_loss: 0.5586 - val_accuracy: 0.7468 - lr: 3.2628e-04 - 172ms/epoch - 7ms/step\n",
"Epoch 128/500\n",
"\n",
"Epoch 128: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5627 - accuracy: 0.7143 - val_loss: 0.5586 - val_accuracy: 0.7486 - lr: 3.2303e-04 - 173ms/epoch - 7ms/step\n",
"Epoch 129/500\n",
"\n",
"Epoch 129: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5626 - accuracy: 0.7136 - val_loss: 0.5584 - val_accuracy: 0.7486 - lr: 3.1982e-04 - 174ms/epoch - 7ms/step\n",
"Epoch 130/500\n",
"\n",
"Epoch 130: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5625 - accuracy: 0.7143 - val_loss: 0.5582 - val_accuracy: 0.7505 - lr: 3.1663e-04 - 174ms/epoch - 7ms/step\n",
"Epoch 131/500\n",
"\n",
"Epoch 131: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5625 - accuracy: 0.7133 - val_loss: 0.5581 - val_accuracy: 0.7505 - lr: 3.1348e-04 - 175ms/epoch - 7ms/step\n",
"Epoch 132/500\n",
"\n",
"Epoch 132: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5624 - accuracy: 0.7136 - val_loss: 0.5581 - val_accuracy: 0.7505 - lr: 3.1036e-04 - 174ms/epoch - 7ms/step\n",
"Epoch 133/500\n",
"\n",
"Epoch 133: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5623 - accuracy: 0.7136 - val_loss: 0.5579 - val_accuracy: 0.7505 - lr: 3.0728e-04 - 173ms/epoch - 7ms/step\n",
"Epoch 134/500\n",
"\n",
"Epoch 134: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5622 - accuracy: 0.7133 - val_loss: 0.5578 - val_accuracy: 0.7505 - lr: 3.0422e-04 - 173ms/epoch - 7ms/step\n",
"Epoch 135/500\n",
"\n",
"Epoch 135: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5621 - accuracy: 0.7133 - val_loss: 0.5578 - val_accuracy: 0.7505 - lr: 3.0119e-04 - 173ms/epoch - 7ms/step\n",
"Epoch 136/500\n",
"\n",
"Epoch 136: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5620 - accuracy: 0.7133 - val_loss: 0.5577 - val_accuracy: 0.7505 - lr: 2.9820e-04 - 173ms/epoch - 7ms/step\n",
"Epoch 137/500\n",
"\n",
"Epoch 137: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5620 - accuracy: 0.7136 - val_loss: 0.5574 - val_accuracy: 0.7505 - lr: 2.9523e-04 - 171ms/epoch - 7ms/step\n",
"Epoch 138/500\n",
"\n",
"Epoch 138: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5619 - accuracy: 0.7136 - val_loss: 0.5574 - val_accuracy: 0.7505 - lr: 2.9229e-04 - 172ms/epoch - 7ms/step\n",
"Epoch 139/500\n",
"\n",
"Epoch 139: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5618 - accuracy: 0.7136 - val_loss: 0.5574 - val_accuracy: 0.7505 - lr: 2.8938e-04 - 172ms/epoch - 7ms/step\n",
"Epoch 140/500\n",
"\n",
"Epoch 140: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5617 - accuracy: 0.7136 - val_loss: 0.5573 - val_accuracy: 0.7505 - lr: 2.8650e-04 - 171ms/epoch - 7ms/step\n",
"Epoch 141/500\n",
"\n",
"Epoch 141: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5616 - accuracy: 0.7133 - val_loss: 0.5572 - val_accuracy: 0.7486 - lr: 2.8365e-04 - 171ms/epoch - 7ms/step\n",
"Epoch 142/500\n",
"\n",
"Epoch 142: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5616 - accuracy: 0.7127 - val_loss: 0.5571 - val_accuracy: 0.7486 - lr: 2.8083e-04 - 173ms/epoch - 7ms/step\n",
"Epoch 143/500\n",
"\n",
"Epoch 143: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5615 - accuracy: 0.7127 - val_loss: 0.5570 - val_accuracy: 0.7468 - lr: 2.7804e-04 - 172ms/epoch - 7ms/step\n",
"Epoch 144/500\n",
"\n",
"Epoch 144: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5614 - accuracy: 0.7130 - val_loss: 0.5569 - val_accuracy: 0.7468 - lr: 2.7527e-04 - 171ms/epoch - 7ms/step\n",
"Epoch 145/500\n",
"\n",
"Epoch 145: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5613 - accuracy: 0.7127 - val_loss: 0.5568 - val_accuracy: 0.7468 - lr: 2.7253e-04 - 181ms/epoch - 7ms/step\n",
"Epoch 146/500\n",
"\n",
"Epoch 146: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5613 - accuracy: 0.7123 - val_loss: 0.5567 - val_accuracy: 0.7468 - lr: 2.6982e-04 - 174ms/epoch - 7ms/step\n",
"Epoch 147/500\n",
"\n",
"Epoch 147: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5612 - accuracy: 0.7123 - val_loss: 0.5567 - val_accuracy: 0.7468 - lr: 2.6713e-04 - 171ms/epoch - 7ms/step\n",
"Epoch 148/500\n",
"\n",
"Epoch 148: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5612 - accuracy: 0.7127 - val_loss: 0.5567 - val_accuracy: 0.7468 - lr: 2.6448e-04 - 173ms/epoch - 7ms/step\n",
"Epoch 149/500\n",
"\n",
"Epoch 149: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5611 - accuracy: 0.7130 - val_loss: 0.5564 - val_accuracy: 0.7468 - lr: 2.6184e-04 - 172ms/epoch - 7ms/step\n",
"Epoch 150/500\n",
"\n",
"Epoch 150: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5610 - accuracy: 0.7117 - val_loss: 0.5563 - val_accuracy: 0.7468 - lr: 2.5924e-04 - 172ms/epoch - 7ms/step\n",
"Epoch 151/500\n",
"\n",
"Epoch 151: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5609 - accuracy: 0.7123 - val_loss: 0.5562 - val_accuracy: 0.7468 - lr: 2.5666e-04 - 171ms/epoch - 7ms/step\n",
"Epoch 152/500\n",
"\n",
"Epoch 152: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5609 - accuracy: 0.7136 - val_loss: 0.5562 - val_accuracy: 0.7468 - lr: 2.5411e-04 - 173ms/epoch - 7ms/step\n",
"Epoch 153/500\n",
"\n",
"Epoch 153: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5608 - accuracy: 0.7123 - val_loss: 0.5562 - val_accuracy: 0.7468 - lr: 2.5158e-04 - 172ms/epoch - 7ms/step\n",
"Epoch 154/500\n",
"\n",
"Epoch 154: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5608 - accuracy: 0.7130 - val_loss: 0.5562 - val_accuracy: 0.7468 - lr: 2.4907e-04 - 172ms/epoch - 7ms/step\n",
"Epoch 155/500\n",
"\n",
"Epoch 155: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5607 - accuracy: 0.7123 - val_loss: 0.5561 - val_accuracy: 0.7468 - lr: 2.4660e-04 - 175ms/epoch - 7ms/step\n",
"Epoch 156/500\n",
"\n",
"Epoch 156: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5606 - accuracy: 0.7130 - val_loss: 0.5560 - val_accuracy: 0.7468 - lr: 2.4414e-04 - 175ms/epoch - 7ms/step\n",
"Epoch 157/500\n",
"\n",
"Epoch 157: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5606 - accuracy: 0.7123 - val_loss: 0.5559 - val_accuracy: 0.7468 - lr: 2.4171e-04 - 177ms/epoch - 7ms/step\n",
"Epoch 158/500\n",
"\n",
"Epoch 158: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5605 - accuracy: 0.7127 - val_loss: 0.5558 - val_accuracy: 0.7468 - lr: 2.3931e-04 - 174ms/epoch - 7ms/step\n",
"Epoch 159/500\n",
"\n",
"Epoch 159: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5605 - accuracy: 0.7123 - val_loss: 0.5557 - val_accuracy: 0.7468 - lr: 2.3693e-04 - 179ms/epoch - 7ms/step\n",
"Epoch 160/500\n",
"\n",
"Epoch 160: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5604 - accuracy: 0.7130 - val_loss: 0.5556 - val_accuracy: 0.7468 - lr: 2.3457e-04 - 171ms/epoch - 7ms/step\n",
"Epoch 161/500\n",
"\n",
"Epoch 161: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5603 - accuracy: 0.7123 - val_loss: 0.5556 - val_accuracy: 0.7468 - lr: 2.3223e-04 - 173ms/epoch - 7ms/step\n",
"Epoch 162/500\n",
"\n",
"Epoch 162: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5602 - accuracy: 0.7133 - val_loss: 0.5556 - val_accuracy: 0.7468 - lr: 2.2992e-04 - 175ms/epoch - 7ms/step\n",
"Epoch 163/500\n",
"\n",
"Epoch 163: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5602 - accuracy: 0.7130 - val_loss: 0.5555 - val_accuracy: 0.7468 - lr: 2.2764e-04 - 174ms/epoch - 7ms/step\n",
"Epoch 164/500\n",
"\n",
"Epoch 164: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5601 - accuracy: 0.7123 - val_loss: 0.5553 - val_accuracy: 0.7468 - lr: 2.2537e-04 - 186ms/epoch - 7ms/step\n",
"Epoch 165/500\n",
"\n",
"Epoch 165: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5600 - accuracy: 0.7127 - val_loss: 0.5554 - val_accuracy: 0.7468 - lr: 2.2313e-04 - 179ms/epoch - 7ms/step\n",
"Epoch 166/500\n",
"\n",
"Epoch 166: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5599 - accuracy: 0.7127 - val_loss: 0.5554 - val_accuracy: 0.7468 - lr: 2.2091e-04 - 172ms/epoch - 7ms/step\n",
"Epoch 167/500\n",
"\n",
"Epoch 167: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5599 - accuracy: 0.7130 - val_loss: 0.5554 - val_accuracy: 0.7468 - lr: 2.1871e-04 - 176ms/epoch - 7ms/step\n",
"Epoch 168/500\n",
"\n",
"Epoch 168: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5599 - accuracy: 0.7123 - val_loss: 0.5554 - val_accuracy: 0.7468 - lr: 2.1653e-04 - 172ms/epoch - 7ms/step\n",
"Epoch 169/500\n",
"\n",
"Epoch 169: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5598 - accuracy: 0.7127 - val_loss: 0.5553 - val_accuracy: 0.7468 - lr: 2.1438e-04 - 172ms/epoch - 7ms/step\n",
"Epoch 170/500\n",
"\n",
"Epoch 170: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5597 - accuracy: 0.7130 - val_loss: 0.5552 - val_accuracy: 0.7468 - lr: 2.1225e-04 - 174ms/epoch - 7ms/step\n",
"Epoch 171/500\n",
"\n",
"Epoch 171: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5597 - accuracy: 0.7123 - val_loss: 0.5552 - val_accuracy: 0.7468 - lr: 2.1013e-04 - 177ms/epoch - 7ms/step\n",
"Epoch 172/500\n",
"\n",
"Epoch 172: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5596 - accuracy: 0.7130 - val_loss: 0.5551 - val_accuracy: 0.7468 - lr: 2.0804e-04 - 178ms/epoch - 7ms/step\n",
"Epoch 173/500\n",
"\n",
"Epoch 173: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5595 - accuracy: 0.7136 - val_loss: 0.5550 - val_accuracy: 0.7468 - lr: 2.0597e-04 - 179ms/epoch - 7ms/step\n",
"Epoch 174/500\n",
"\n",
"Epoch 174: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5595 - accuracy: 0.7133 - val_loss: 0.5550 - val_accuracy: 0.7468 - lr: 2.0392e-04 - 178ms/epoch - 7ms/step\n",
"Epoch 175/500\n",
"\n",
"Epoch 175: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5594 - accuracy: 0.7130 - val_loss: 0.5549 - val_accuracy: 0.7468 - lr: 2.0189e-04 - 171ms/epoch - 7ms/step\n",
"Epoch 176/500\n",
"\n",
"Epoch 176: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5594 - accuracy: 0.7127 - val_loss: 0.5547 - val_accuracy: 0.7468 - lr: 1.9989e-04 - 173ms/epoch - 7ms/step\n",
"Epoch 177/500\n",
"\n",
"Epoch 177: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5593 - accuracy: 0.7127 - val_loss: 0.5548 - val_accuracy: 0.7468 - lr: 1.9790e-04 - 173ms/epoch - 7ms/step\n",
"Epoch 178/500\n",
"\n",
"Epoch 178: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5593 - accuracy: 0.7130 - val_loss: 0.5547 - val_accuracy: 0.7468 - lr: 1.9593e-04 - 172ms/epoch - 7ms/step\n",
"Epoch 179/500\n",
"\n",
"Epoch 179: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5592 - accuracy: 0.7133 - val_loss: 0.5546 - val_accuracy: 0.7468 - lr: 1.9398e-04 - 174ms/epoch - 7ms/step\n",
"Epoch 180/500\n",
"\n",
"Epoch 180: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5592 - accuracy: 0.7133 - val_loss: 0.5545 - val_accuracy: 0.7468 - lr: 1.9205e-04 - 173ms/epoch - 7ms/step\n",
"Epoch 181/500\n",
"\n",
"Epoch 181: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5591 - accuracy: 0.7127 - val_loss: 0.5545 - val_accuracy: 0.7468 - lr: 1.9014e-04 - 174ms/epoch - 7ms/step\n",
"Epoch 182/500\n",
"\n",
"Epoch 182: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5591 - accuracy: 0.7127 - val_loss: 0.5544 - val_accuracy: 0.7468 - lr: 1.8825e-04 - 174ms/epoch - 7ms/step\n",
"Epoch 183/500\n",
"\n",
"Epoch 183: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5590 - accuracy: 0.7130 - val_loss: 0.5542 - val_accuracy: 0.7468 - lr: 1.8637e-04 - 180ms/epoch - 7ms/step\n",
"Epoch 184/500\n",
"\n",
"Epoch 184: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5590 - accuracy: 0.7120 - val_loss: 0.5542 - val_accuracy: 0.7468 - lr: 1.8452e-04 - 185ms/epoch - 7ms/step\n",
"Epoch 185/500\n",
"\n",
"Epoch 185: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5589 - accuracy: 0.7123 - val_loss: 0.5542 - val_accuracy: 0.7468 - lr: 1.8268e-04 - 180ms/epoch - 7ms/step\n",
"Epoch 186/500\n",
"\n",
"Epoch 186: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5589 - accuracy: 0.7127 - val_loss: 0.5542 - val_accuracy: 0.7468 - lr: 1.8086e-04 - 183ms/epoch - 7ms/step\n",
"Epoch 187/500\n",
"\n",
"Epoch 187: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5589 - accuracy: 0.7127 - val_loss: 0.5541 - val_accuracy: 0.7468 - lr: 1.7906e-04 - 177ms/epoch - 7ms/step\n",
"Epoch 188/500\n",
"\n",
"Epoch 188: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5588 - accuracy: 0.7127 - val_loss: 0.5540 - val_accuracy: 0.7468 - lr: 1.7728e-04 - 185ms/epoch - 7ms/step\n",
"Epoch 189/500\n",
"\n",
"Epoch 189: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5587 - accuracy: 0.7123 - val_loss: 0.5541 - val_accuracy: 0.7468 - lr: 1.7552e-04 - 175ms/epoch - 7ms/step\n",
"Epoch 190/500\n",
"\n",
"Epoch 190: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5587 - accuracy: 0.7127 - val_loss: 0.5540 - val_accuracy: 0.7468 - lr: 1.7377e-04 - 178ms/epoch - 7ms/step\n",
"Epoch 191/500\n",
"\n",
"Epoch 191: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5586 - accuracy: 0.7127 - val_loss: 0.5539 - val_accuracy: 0.7468 - lr: 1.7204e-04 - 187ms/epoch - 7ms/step\n",
"Epoch 192/500\n",
"\n",
"Epoch 192: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5586 - accuracy: 0.7120 - val_loss: 0.5538 - val_accuracy: 0.7468 - lr: 1.7033e-04 - 184ms/epoch - 7ms/step\n",
"Epoch 193/500\n",
"\n",
"Epoch 193: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5586 - accuracy: 0.7120 - val_loss: 0.5539 - val_accuracy: 0.7468 - lr: 1.6864e-04 - 178ms/epoch - 7ms/step\n",
"Epoch 194/500\n",
"\n",
"Epoch 194: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5585 - accuracy: 0.7123 - val_loss: 0.5537 - val_accuracy: 0.7468 - lr: 1.6696e-04 - 178ms/epoch - 7ms/step\n",
"Epoch 195/500\n",
"\n",
"Epoch 195: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5585 - accuracy: 0.7120 - val_loss: 0.5536 - val_accuracy: 0.7468 - lr: 1.6530e-04 - 177ms/epoch - 7ms/step\n",
"Epoch 196/500\n",
"\n",
"Epoch 196: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5584 - accuracy: 0.7123 - val_loss: 0.5537 - val_accuracy: 0.7468 - lr: 1.6365e-04 - 191ms/epoch - 8ms/step\n",
"Epoch 197/500\n",
"\n",
"Epoch 197: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5584 - accuracy: 0.7123 - val_loss: 0.5536 - val_accuracy: 0.7468 - lr: 1.6202e-04 - 204ms/epoch - 8ms/step\n",
"Epoch 198/500\n",
"\n",
"Epoch 198: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5583 - accuracy: 0.7127 - val_loss: 0.5536 - val_accuracy: 0.7468 - lr: 1.6041e-04 - 189ms/epoch - 8ms/step\n",
"Epoch 199/500\n",
"\n",
"Epoch 199: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5583 - accuracy: 0.7130 - val_loss: 0.5536 - val_accuracy: 0.7468 - lr: 1.5882e-04 - 203ms/epoch - 8ms/step\n",
"Epoch 200/500\n",
"\n",
"Epoch 200: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5583 - accuracy: 0.7127 - val_loss: 0.5536 - val_accuracy: 0.7468 - lr: 1.5724e-04 - 192ms/epoch - 8ms/step\n",
"Epoch 201/500\n",
"\n",
"Epoch 201: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5582 - accuracy: 0.7130 - val_loss: 0.5536 - val_accuracy: 0.7468 - lr: 1.5567e-04 - 189ms/epoch - 8ms/step\n",
"Epoch 202/500\n",
"\n",
"Epoch 202: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5582 - accuracy: 0.7127 - val_loss: 0.5535 - val_accuracy: 0.7468 - lr: 1.5412e-04 - 178ms/epoch - 7ms/step\n",
"Epoch 203/500\n",
"\n",
"Epoch 203: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5582 - accuracy: 0.7127 - val_loss: 0.5535 - val_accuracy: 0.7468 - lr: 1.5259e-04 - 174ms/epoch - 7ms/step\n",
"Epoch 204/500\n",
"\n",
"Epoch 204: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5581 - accuracy: 0.7127 - val_loss: 0.5535 - val_accuracy: 0.7468 - lr: 1.5107e-04 - 172ms/epoch - 7ms/step\n",
"Epoch 205/500\n",
"\n",
"Epoch 205: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5581 - accuracy: 0.7133 - val_loss: 0.5535 - val_accuracy: 0.7468 - lr: 1.4957e-04 - 171ms/epoch - 7ms/step\n",
"Epoch 206/500\n",
"\n",
"Epoch 206: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5580 - accuracy: 0.7140 - val_loss: 0.5534 - val_accuracy: 0.7468 - lr: 1.4808e-04 - 184ms/epoch - 7ms/step\n",
"Epoch 207/500\n",
"\n",
"Epoch 207: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5580 - accuracy: 0.7127 - val_loss: 0.5534 - val_accuracy: 0.7468 - lr: 1.4661e-04 - 175ms/epoch - 7ms/step\n",
"Epoch 208/500\n",
"\n",
"Epoch 208: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5580 - accuracy: 0.7140 - val_loss: 0.5533 - val_accuracy: 0.7468 - lr: 1.4515e-04 - 175ms/epoch - 7ms/step\n",
"Epoch 209/500\n",
"\n",
"Epoch 209: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5579 - accuracy: 0.7143 - val_loss: 0.5533 - val_accuracy: 0.7468 - lr: 1.4370e-04 - 174ms/epoch - 7ms/step\n",
"Epoch 210/500\n",
"\n",
"Epoch 210: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5579 - accuracy: 0.7143 - val_loss: 0.5533 - val_accuracy: 0.7468 - lr: 1.4227e-04 - 189ms/epoch - 8ms/step\n",
"Epoch 211/500\n",
"\n",
"Epoch 211: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5579 - accuracy: 0.7146 - val_loss: 0.5533 - val_accuracy: 0.7468 - lr: 1.4086e-04 - 228ms/epoch - 9ms/step\n",
"Epoch 212/500\n",
"\n",
"Epoch 212: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5578 - accuracy: 0.7140 - val_loss: 0.5533 - val_accuracy: 0.7468 - lr: 1.3946e-04 - 184ms/epoch - 7ms/step\n",
"Epoch 213/500\n",
"\n",
"Epoch 213: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5578 - accuracy: 0.7143 - val_loss: 0.5532 - val_accuracy: 0.7468 - lr: 1.3807e-04 - 193ms/epoch - 8ms/step\n",
"Epoch 214/500\n",
"\n",
"Epoch 214: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5578 - accuracy: 0.7143 - val_loss: 0.5532 - val_accuracy: 0.7486 - lr: 1.3669e-04 - 186ms/epoch - 7ms/step\n",
"Epoch 215/500\n",
"\n",
"Epoch 215: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5577 - accuracy: 0.7140 - val_loss: 0.5532 - val_accuracy: 0.7486 - lr: 1.3533e-04 - 183ms/epoch - 7ms/step\n",
"Epoch 216/500\n",
"\n",
"Epoch 216: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5577 - accuracy: 0.7143 - val_loss: 0.5532 - val_accuracy: 0.7486 - lr: 1.3399e-04 - 179ms/epoch - 7ms/step\n",
"Epoch 217/500\n",
"\n",
"Epoch 217: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5577 - accuracy: 0.7153 - val_loss: 0.5531 - val_accuracy: 0.7486 - lr: 1.3265e-04 - 181ms/epoch - 7ms/step\n",
"Epoch 218/500\n",
"\n",
"Epoch 218: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5577 - accuracy: 0.7143 - val_loss: 0.5531 - val_accuracy: 0.7486 - lr: 1.3133e-04 - 176ms/epoch - 7ms/step\n",
"Epoch 219/500\n",
"\n",
"Epoch 219: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5576 - accuracy: 0.7156 - val_loss: 0.5531 - val_accuracy: 0.7486 - lr: 1.3003e-04 - 176ms/epoch - 7ms/step\n",
"Epoch 220/500\n",
"\n",
"Epoch 220: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5576 - accuracy: 0.7156 - val_loss: 0.5531 - val_accuracy: 0.7486 - lr: 1.2873e-04 - 180ms/epoch - 7ms/step\n",
"Epoch 221/500\n",
"\n",
"Epoch 221: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5575 - accuracy: 0.7156 - val_loss: 0.5530 - val_accuracy: 0.7486 - lr: 1.2745e-04 - 177ms/epoch - 7ms/step\n",
"Epoch 222/500\n",
"\n",
"Epoch 222: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5575 - accuracy: 0.7153 - val_loss: 0.5530 - val_accuracy: 0.7486 - lr: 1.2618e-04 - 173ms/epoch - 7ms/step\n",
"Epoch 223/500\n",
"\n",
"Epoch 223: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5575 - accuracy: 0.7156 - val_loss: 0.5530 - val_accuracy: 0.7486 - lr: 1.2493e-04 - 178ms/epoch - 7ms/step\n",
"Epoch 224/500\n",
"\n",
"Epoch 224: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5575 - accuracy: 0.7156 - val_loss: 0.5529 - val_accuracy: 0.7486 - lr: 1.2369e-04 - 183ms/epoch - 7ms/step\n",
"Epoch 225/500\n",
"\n",
"Epoch 225: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5574 - accuracy: 0.7153 - val_loss: 0.5529 - val_accuracy: 0.7486 - lr: 1.2245e-04 - 191ms/epoch - 8ms/step\n",
"Epoch 226/500\n",
"\n",
"Epoch 226: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5574 - accuracy: 0.7149 - val_loss: 0.5528 - val_accuracy: 0.7468 - lr: 1.2124e-04 - 182ms/epoch - 7ms/step\n",
"Epoch 227/500\n",
"\n",
"Epoch 227: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5573 - accuracy: 0.7156 - val_loss: 0.5528 - val_accuracy: 0.7486 - lr: 1.2003e-04 - 174ms/epoch - 7ms/step\n",
"Epoch 228/500\n",
"\n",
"Epoch 228: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5573 - accuracy: 0.7153 - val_loss: 0.5528 - val_accuracy: 0.7486 - lr: 1.1884e-04 - 179ms/epoch - 7ms/step\n",
"Epoch 229/500\n",
"\n",
"Epoch 229: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5573 - accuracy: 0.7153 - val_loss: 0.5528 - val_accuracy: 0.7486 - lr: 1.1765e-04 - 204ms/epoch - 8ms/step\n",
"Epoch 230/500\n",
"\n",
"Epoch 230: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5573 - accuracy: 0.7156 - val_loss: 0.5527 - val_accuracy: 0.7486 - lr: 1.1648e-04 - 180ms/epoch - 7ms/step\n",
"Epoch 231/500\n",
"\n",
"Epoch 231: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5572 - accuracy: 0.7153 - val_loss: 0.5526 - val_accuracy: 0.7486 - lr: 1.1532e-04 - 178ms/epoch - 7ms/step\n",
"Epoch 232/500\n",
"\n",
"Epoch 232: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5572 - accuracy: 0.7153 - val_loss: 0.5526 - val_accuracy: 0.7486 - lr: 1.1418e-04 - 174ms/epoch - 7ms/step\n",
"Epoch 233/500\n",
"\n",
"Epoch 233: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5572 - accuracy: 0.7153 - val_loss: 0.5526 - val_accuracy: 0.7486 - lr: 1.1304e-04 - 176ms/epoch - 7ms/step\n",
"Epoch 234/500\n",
"\n",
"Epoch 234: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5571 - accuracy: 0.7156 - val_loss: 0.5526 - val_accuracy: 0.7486 - lr: 1.1192e-04 - 175ms/epoch - 7ms/step\n",
"Epoch 235/500\n",
"\n",
"Epoch 235: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5571 - accuracy: 0.7153 - val_loss: 0.5526 - val_accuracy: 0.7486 - lr: 1.1080e-04 - 174ms/epoch - 7ms/step\n",
"Epoch 236/500\n",
"\n",
"Epoch 236: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5571 - accuracy: 0.7153 - val_loss: 0.5526 - val_accuracy: 0.7486 - lr: 1.0970e-04 - 174ms/epoch - 7ms/step\n",
"Epoch 237/500\n",
"\n",
"Epoch 237: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5571 - accuracy: 0.7149 - val_loss: 0.5525 - val_accuracy: 0.7486 - lr: 1.0861e-04 - 172ms/epoch - 7ms/step\n",
"Epoch 238/500\n",
"\n",
"Epoch 238: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5570 - accuracy: 0.7153 - val_loss: 0.5525 - val_accuracy: 0.7486 - lr: 1.0753e-04 - 171ms/epoch - 7ms/step\n",
"Epoch 239/500\n",
"\n",
"Epoch 239: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5570 - accuracy: 0.7149 - val_loss: 0.5524 - val_accuracy: 0.7486 - lr: 1.0646e-04 - 180ms/epoch - 7ms/step\n",
"Epoch 240/500\n",
"\n",
"Epoch 240: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5570 - accuracy: 0.7159 - val_loss: 0.5524 - val_accuracy: 0.7486 - lr: 1.0540e-04 - 173ms/epoch - 7ms/step\n",
"Epoch 241/500\n",
"\n",
"Epoch 241: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5570 - accuracy: 0.7153 - val_loss: 0.5524 - val_accuracy: 0.7486 - lr: 1.0435e-04 - 178ms/epoch - 7ms/step\n",
"Epoch 242/500\n",
"\n",
"Epoch 242: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5570 - accuracy: 0.7159 - val_loss: 0.5524 - val_accuracy: 0.7486 - lr: 1.0331e-04 - 172ms/epoch - 7ms/step\n",
"Epoch 243/500\n",
"\n",
"Epoch 243: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5569 - accuracy: 0.7153 - val_loss: 0.5524 - val_accuracy: 0.7486 - lr: 1.0228e-04 - 179ms/epoch - 7ms/step\n",
"Epoch 244/500\n",
"\n",
"Epoch 244: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5569 - accuracy: 0.7153 - val_loss: 0.5524 - val_accuracy: 0.7486 - lr: 1.0127e-04 - 173ms/epoch - 7ms/step\n",
"Epoch 245/500\n",
"\n",
"Epoch 245: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5569 - accuracy: 0.7153 - val_loss: 0.5523 - val_accuracy: 0.7486 - lr: 1.0026e-04 - 179ms/epoch - 7ms/step\n",
"Epoch 246/500\n",
"\n",
"Epoch 246: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5569 - accuracy: 0.7159 - val_loss: 0.5523 - val_accuracy: 0.7486 - lr: 9.9260e-05 - 179ms/epoch - 7ms/step\n",
"Epoch 247/500\n",
"\n",
"Epoch 247: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5568 - accuracy: 0.7156 - val_loss: 0.5523 - val_accuracy: 0.7486 - lr: 9.8272e-05 - 175ms/epoch - 7ms/step\n",
"Epoch 248/500\n",
"\n",
"Epoch 248: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5568 - accuracy: 0.7153 - val_loss: 0.5522 - val_accuracy: 0.7486 - lr: 9.7294e-05 - 174ms/epoch - 7ms/step\n",
"Epoch 249/500\n",
"\n",
"Epoch 249: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5568 - accuracy: 0.7149 - val_loss: 0.5522 - val_accuracy: 0.7486 - lr: 9.6326e-05 - 175ms/epoch - 7ms/step\n",
"Epoch 250/500\n",
"\n",
"Epoch 250: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5567 - accuracy: 0.7159 - val_loss: 0.5522 - val_accuracy: 0.7486 - lr: 9.5368e-05 - 178ms/epoch - 7ms/step\n",
"Epoch 251/500\n",
"\n",
"Epoch 251: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5567 - accuracy: 0.7159 - val_loss: 0.5522 - val_accuracy: 0.7468 - lr: 9.4419e-05 - 172ms/epoch - 7ms/step\n",
"Epoch 252/500\n",
"\n",
"Epoch 252: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5567 - accuracy: 0.7156 - val_loss: 0.5522 - val_accuracy: 0.7468 - lr: 9.3479e-05 - 172ms/epoch - 7ms/step\n",
"Epoch 253/500\n",
"\n",
"Epoch 253: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5567 - accuracy: 0.7159 - val_loss: 0.5521 - val_accuracy: 0.7486 - lr: 9.2549e-05 - 181ms/epoch - 7ms/step\n",
"Epoch 254/500\n",
"\n",
"Epoch 254: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5567 - accuracy: 0.7162 - val_loss: 0.5521 - val_accuracy: 0.7486 - lr: 9.1628e-05 - 179ms/epoch - 7ms/step\n",
"Epoch 255/500\n",
"\n",
"Epoch 255: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5566 - accuracy: 0.7159 - val_loss: 0.5521 - val_accuracy: 0.7468 - lr: 9.0717e-05 - 174ms/epoch - 7ms/step\n",
"Epoch 256/500\n",
"\n",
"Epoch 256: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5566 - accuracy: 0.7153 - val_loss: 0.5520 - val_accuracy: 0.7468 - lr: 8.9814e-05 - 174ms/epoch - 7ms/step\n",
"Epoch 257/500\n",
"\n",
"Epoch 257: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5566 - accuracy: 0.7153 - val_loss: 0.5520 - val_accuracy: 0.7468 - lr: 8.8920e-05 - 172ms/epoch - 7ms/step\n",
"Epoch 258/500\n",
"\n",
"Epoch 258: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5566 - accuracy: 0.7149 - val_loss: 0.5520 - val_accuracy: 0.7468 - lr: 8.8036e-05 - 177ms/epoch - 7ms/step\n",
"Epoch 259/500\n",
"\n",
"Epoch 259: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5566 - accuracy: 0.7159 - val_loss: 0.5520 - val_accuracy: 0.7486 - lr: 8.7160e-05 - 171ms/epoch - 7ms/step\n",
"Epoch 260/500\n",
"\n",
"Epoch 260: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5565 - accuracy: 0.7159 - val_loss: 0.5520 - val_accuracy: 0.7486 - lr: 8.6292e-05 - 173ms/epoch - 7ms/step\n",
"Epoch 261/500\n",
"\n",
"Epoch 261: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5565 - accuracy: 0.7156 - val_loss: 0.5520 - val_accuracy: 0.7486 - lr: 8.5434e-05 - 172ms/epoch - 7ms/step\n",
"Epoch 262/500\n",
"\n",
"Epoch 262: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5565 - accuracy: 0.7159 - val_loss: 0.5520 - val_accuracy: 0.7486 - lr: 8.4584e-05 - 172ms/epoch - 7ms/step\n",
"Epoch 263/500\n",
"\n",
"Epoch 263: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5565 - accuracy: 0.7153 - val_loss: 0.5520 - val_accuracy: 0.7486 - lr: 8.3742e-05 - 172ms/epoch - 7ms/step\n",
"Epoch 264/500\n",
"\n",
"Epoch 264: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5565 - accuracy: 0.7149 - val_loss: 0.5519 - val_accuracy: 0.7486 - lr: 8.2909e-05 - 173ms/epoch - 7ms/step\n",
"Epoch 265/500\n",
"\n",
"Epoch 265: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5564 - accuracy: 0.7162 - val_loss: 0.5519 - val_accuracy: 0.7486 - lr: 8.2084e-05 - 183ms/epoch - 7ms/step\n",
"Epoch 266/500\n",
"\n",
"Epoch 266: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5564 - accuracy: 0.7159 - val_loss: 0.5519 - val_accuracy: 0.7486 - lr: 8.1267e-05 - 179ms/epoch - 7ms/step\n",
"Epoch 267/500\n",
"\n",
"Epoch 267: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5564 - accuracy: 0.7156 - val_loss: 0.5519 - val_accuracy: 0.7486 - lr: 8.0458e-05 - 173ms/epoch - 7ms/step\n",
"Epoch 268/500\n",
"\n",
"Epoch 268: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5564 - accuracy: 0.7156 - val_loss: 0.5519 - val_accuracy: 0.7486 - lr: 7.9658e-05 - 173ms/epoch - 7ms/step\n",
"Epoch 269/500\n",
"\n",
"Epoch 269: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5564 - accuracy: 0.7143 - val_loss: 0.5518 - val_accuracy: 0.7486 - lr: 7.8865e-05 - 172ms/epoch - 7ms/step\n",
"Epoch 270/500\n",
"\n",
"Epoch 270: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5564 - accuracy: 0.7149 - val_loss: 0.5518 - val_accuracy: 0.7486 - lr: 7.8081e-05 - 173ms/epoch - 7ms/step\n",
"Epoch 271/500\n",
"\n",
"Epoch 271: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5563 - accuracy: 0.7153 - val_loss: 0.5518 - val_accuracy: 0.7486 - lr: 7.7304e-05 - 173ms/epoch - 7ms/step\n",
"Epoch 272/500\n",
"\n",
"Epoch 272: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5563 - accuracy: 0.7149 - val_loss: 0.5518 - val_accuracy: 0.7486 - lr: 7.6534e-05 - 177ms/epoch - 7ms/step\n",
"Epoch 273/500\n",
"\n",
"Epoch 273: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5563 - accuracy: 0.7156 - val_loss: 0.5518 - val_accuracy: 0.7486 - lr: 7.5773e-05 - 201ms/epoch - 8ms/step\n",
"Epoch 274/500\n",
"\n",
"Epoch 274: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5563 - accuracy: 0.7149 - val_loss: 0.5517 - val_accuracy: 0.7486 - lr: 7.5019e-05 - 175ms/epoch - 7ms/step\n",
"Epoch 275/500\n",
"\n",
"Epoch 275: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5563 - accuracy: 0.7149 - val_loss: 0.5517 - val_accuracy: 0.7486 - lr: 7.4272e-05 - 173ms/epoch - 7ms/step\n",
"Epoch 276/500\n",
"\n",
"Epoch 276: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5562 - accuracy: 0.7156 - val_loss: 0.5517 - val_accuracy: 0.7486 - lr: 7.3533e-05 - 173ms/epoch - 7ms/step\n",
"Epoch 277/500\n",
"\n",
"Epoch 277: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5562 - accuracy: 0.7149 - val_loss: 0.5517 - val_accuracy: 0.7486 - lr: 7.2802e-05 - 181ms/epoch - 7ms/step\n",
"Epoch 278/500\n",
"\n",
"Epoch 278: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5562 - accuracy: 0.7156 - val_loss: 0.5517 - val_accuracy: 0.7486 - lr: 7.2077e-05 - 174ms/epoch - 7ms/step\n",
"Epoch 279/500\n",
"\n",
"Epoch 279: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5562 - accuracy: 0.7153 - val_loss: 0.5517 - val_accuracy: 0.7486 - lr: 7.1360e-05 - 176ms/epoch - 7ms/step\n",
"Epoch 280/500\n",
"\n",
"Epoch 280: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5562 - accuracy: 0.7153 - val_loss: 0.5517 - val_accuracy: 0.7486 - lr: 7.0650e-05 - 179ms/epoch - 7ms/step\n",
"Epoch 281/500\n",
"\n",
"Epoch 281: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5562 - accuracy: 0.7149 - val_loss: 0.5516 - val_accuracy: 0.7486 - lr: 6.9947e-05 - 173ms/epoch - 7ms/step\n",
"Epoch 282/500\n",
"\n",
"Epoch 282: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5562 - accuracy: 0.7149 - val_loss: 0.5515 - val_accuracy: 0.7486 - lr: 6.9251e-05 - 179ms/epoch - 7ms/step\n",
"Epoch 283/500\n",
"\n",
"Epoch 283: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5561 - accuracy: 0.7149 - val_loss: 0.5515 - val_accuracy: 0.7486 - lr: 6.8562e-05 - 177ms/epoch - 7ms/step\n",
"Epoch 284/500\n",
"\n",
"Epoch 284: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5561 - accuracy: 0.7146 - val_loss: 0.5515 - val_accuracy: 0.7486 - lr: 6.7880e-05 - 173ms/epoch - 7ms/step\n",
"Epoch 285/500\n",
"\n",
"Epoch 285: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5561 - accuracy: 0.7149 - val_loss: 0.5515 - val_accuracy: 0.7486 - lr: 6.7204e-05 - 172ms/epoch - 7ms/step\n",
"Epoch 286/500\n",
"\n",
"Epoch 286: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5561 - accuracy: 0.7153 - val_loss: 0.5514 - val_accuracy: 0.7486 - lr: 6.6536e-05 - 170ms/epoch - 7ms/step\n",
"Epoch 287/500\n",
"\n",
"Epoch 287: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5561 - accuracy: 0.7149 - val_loss: 0.5514 - val_accuracy: 0.7486 - lr: 6.5874e-05 - 170ms/epoch - 7ms/step\n",
"Epoch 288/500\n",
"\n",
"Epoch 288: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5561 - accuracy: 0.7149 - val_loss: 0.5514 - val_accuracy: 0.7486 - lr: 6.5218e-05 - 174ms/epoch - 7ms/step\n",
"Epoch 289/500\n",
"\n",
"Epoch 289: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5561 - accuracy: 0.7149 - val_loss: 0.5514 - val_accuracy: 0.7486 - lr: 6.4569e-05 - 172ms/epoch - 7ms/step\n",
"Epoch 290/500\n",
"\n",
"Epoch 290: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5560 - accuracy: 0.7149 - val_loss: 0.5514 - val_accuracy: 0.7486 - lr: 6.3927e-05 - 173ms/epoch - 7ms/step\n",
"Epoch 291/500\n",
"\n",
"Epoch 291: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5560 - accuracy: 0.7149 - val_loss: 0.5514 - val_accuracy: 0.7486 - lr: 6.3291e-05 - 170ms/epoch - 7ms/step\n",
"Epoch 292/500\n",
"\n",
"Epoch 292: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5560 - accuracy: 0.7153 - val_loss: 0.5514 - val_accuracy: 0.7486 - lr: 6.2661e-05 - 169ms/epoch - 7ms/step\n",
"Epoch 293/500\n",
"\n",
"Epoch 293: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5560 - accuracy: 0.7153 - val_loss: 0.5514 - val_accuracy: 0.7486 - lr: 6.2038e-05 - 168ms/epoch - 7ms/step\n",
"Epoch 294/500\n",
"\n",
"Epoch 294: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5560 - accuracy: 0.7149 - val_loss: 0.5514 - val_accuracy: 0.7486 - lr: 6.1420e-05 - 171ms/epoch - 7ms/step\n",
"Epoch 295/500\n",
"\n",
"Epoch 295: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5560 - accuracy: 0.7153 - val_loss: 0.5514 - val_accuracy: 0.7486 - lr: 6.0809e-05 - 174ms/epoch - 7ms/step\n",
"Epoch 296/500\n",
"\n",
"Epoch 296: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5560 - accuracy: 0.7153 - val_loss: 0.5514 - val_accuracy: 0.7486 - lr: 6.0204e-05 - 173ms/epoch - 7ms/step\n",
"Epoch 297/500\n",
"\n",
"Epoch 297: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5559 - accuracy: 0.7153 - val_loss: 0.5513 - val_accuracy: 0.7486 - lr: 5.9605e-05 - 170ms/epoch - 7ms/step\n",
"Epoch 298/500\n",
"\n",
"Epoch 298: val_accuracy did not improve from 0.75229\n",
"25/25 - 0s - loss: 0.5559 - accuracy: 0.7156 - val_loss: 0.5513 - val_accuracy: 0.7486 - lr: 5.9012e-05 - 168ms/epoch - 7ms/step\n"
]
}
],
"source": [
"BATCH_SIZE = 128 #24 #4\n",
"history = model.fit(x, y, callbacks=[callback_mc, callback_es, callback_lr], batch_size=BATCH_SIZE, epochs=500, validation_split=0.15, verbose=2)"
]
},
{
"cell_type": "code",
"execution_count": 99,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABaEAAAFqCAYAAAADXpY3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAD5RElEQVR4nOzdd1hU19YG8HcYeu9dKYoIdkEQUMCGLWqsmChqjKAxMRrUGKPGGI2aaBTFFqIG21UTa6Imigas2GvsDRUBAZXemfP9QZjPcagKDML7e555bjizZ5+1B657zjp71hYJgiCAiIiIiIiIiIiIiKgaKCk6ACIiIiIiIiIiIiKqu5iEJiIiIiIiIiIiIqJqwyQ0EREREREREREREVUbJqGJiIiIiIiIiIiIqNowCU1ERERERERERERE1YZJaCIiIiIiIiIiIiKqNkxCExEREREREREREVG1YRKaiIiIiIiIiIiIiKoNk9BEREREREREREREVG2YhCYiIiIiIiIiIiKiasMkNBERERERERERERFVGyahiYiIiIiIiIiIiKjaMAlNRERERERERERERNWGSWgiIiIiIiIiIiIiqjZMQhMRERERERERERFRtWESmoiIiIiIiIiIiIiqDZPQRERERERERERERFRtmIQmIiIiIiIiIiIiomrDJDQRERERERERERERVRsmoYmIiIiIiIiIiIio2jAJTURERERERERERETVhkloIiIiIiIiIiIiIqo2TEITERERERERERERUbVhEpqIiIiIiIiIiIiIqg2T0ERERERERERERERUbZiEJiIiIiIiIiIiIqJqwyQ0EREREREREREREVUbJqGp1ouKioJIJEJUVJSiQyEiIqIawvmfiIiIarPw8HCIRCLExMQoOhSidwKT0PTGRCJRhR7h4eGKDrVMc+bMgUgkQpcuXRQdSp2xZcsWtGzZEurq6rCxscHs2bORn59f7uuKEw6lPQIDA2Xaz58/H++//z4sLS0hEokwbty4Evst/nBQ0uPevXsybUeNGlViO2tra7l+s7OzMX/+fDg7O0NTUxOWlpbo168fzp8/L9e2orG+bt68eRCJRGjatGmJz2/btg3u7u7Q19eHoaEhPD098dtvv1WobyKiN/Euz//ffvstRCIREhISFB3KG3v27BkCAgJgZGQEbW1tdO7cGRcuXKjQa6trPrS1tS2x7fDhw+XaPnjwAEOHDoWRkRE0NDTQrl077NmzR65dREQE3nvvPTRo0ADq6uowNzdHjx49cOzYsXLH2a1btzLn2vT0dEybNg329vZQV1eHlZUVBg0ahKysLGmb4r+V0h5btmwpNw4iIipf8dx0+vRpRYfyznl9btLV1YWPjw/279//xn3u27cP3377bdUFSfQKZUUHQO+uTZs2yfwcFhaG06dPY/369TLHPT093+o83t7eyM7Ohqqq6lv1U5otW7bA1tYWUVFRePr0KaysrKrlPPXFhg0bMGrUKPTu3RsTJkzAtWvXMG/ePDx58kTub+N1Tk5Ocn9XALBnzx7s3LkT3bt3lzk+Y8YMmJqaol27dhWaaL/99ls0atRI5pi5ublcOxUVFblYtbS05NoNHToU+/fvx+jRo/HFF1/g2bNnWL16NTp06IAzZ86gVatWbxwrADx58gQLFiwo8dwAsHTpUgQHB8PPzw/z589Hfn4+Nm/eDH9/f7x48aLCiW4iosqoK/P/uyg7OxudO3dGQkICgoODoa+vj1WrVsHX1xdnzpyBs7Nzhfqp6vkQAFq2bImpU6fKHLO3t5f5OTY2Fh4eHpBIJJg4cSIMDQ2xbds29O/fH9u3b8eQIUOkbW/evAk1NTWMHz8epqamePHiBbZs2YJOnTphz5496NOnT4lx7Nq1C9HR0aWOPTU1FT4+PoiNjUVQUBAaN26MpKQkHD9+HLm5udDU1AQADBgwAI0bN5Z7/YIFC3D79m0uXiAiIgQEBGDo0KFQU1NTWAydO3fGRx99BEEQ8OjRI6xevRp9+vTBX3/9JXf9XBH79u3Dzz//zEQ0VQ+BqIqMHDlSUFNTK7ddZmZmDURTMadPnxYACIcOHRI0NTWFH3/8UdEhlao2vW+lycnJEUxMTIQuXbrIHJ89e7YAQLh48eIb9evm5ibo6ekJ2dnZMscfPHgg/W8AwtixY0t8/a+//ioAEKKjo8s9V0X/jh89eiQAEL744guZ45cvXxYACF9++eUbxfqqIUOGCF26dBF8fHwER0dHueft7OwEFxcXQSKRSI9lZWUJFhYWgpubW7n9ExFVhXdp/i+ej+Lj4xUdyhtZsmSJAEA4duyY9FhycrJgZGQk9OvXr9zXV8d8KAiCYGNjI3Tv3r3cduPHjxfEYrFw7do16bGCggLBxcVFsLCwEPLy8sp8fWZmpmBubi73OaNYdna2YGtrK8ydO7fUufaTTz4RDAwMhIcPH5Yb7+tevnwpqKmpVWisRERUMZWZm6pbVlaWokOolJLmuhs3bggAhJ49e75Rn2PHjhWYKqTqwnIcVK1GjRoFdXV1PHr0CO+//z709PTQq1cvAMDVq1cxatQoNGrUCOrq6jAxMcEHH3yAJ0+eyPRRUk3I4n6fPXsGf39/6OrqwsDAAEFBQcjJyalwfJs3b4aNjQ26du2KPn36YPPmzSW2S01NxdSpU2Fvbw81NTVYWVnhww8/xNOnT6Vt8vLyMG/ePDRt2hRqamowMzNDv379cP369VLHUUwkEsncaSz+CuiNGzcwcuRIGBkZoVmzZgCAR48eYfz48WjatCk0NTWhr6+PPn36SM/zqrJikkgkaNiwIfr16yf3usLCQlhYWGDQoEEAgPv37+P+/fvlvp+RkZFISkrCZ599JnP8008/hUgkeqMyEXfv3sXZs2cxaNAgqKuryzxnZ2dX6f7S09NRWFhYbjuJRIK0tDQIglDi82lpaQAAS0tLmePFPxevpHrTWI8ePYqdO3di6dKlpbZJS0uDubk5RCKR9JiGhgYMDAzkzk9EVJNq+/xfnhMnTqBz587Q1taGjo4OunXrhjNnzsi0KSgowLx589CkSRNoaGjA2NgYnp6e2LFjh7TNs2fPMGbMGDRo0ABqamqwtLTEe++9h2vXrknbpKam4tatW0hNTS03ru3bt6NVq1bo2LGj9JiRkRE++OADHDhwAOnp6RUeY1XNh6/Kz89HZmZmqc8fP34cLVq0QPPmzaXHxGIxhg4divj4+HLrf2tqasLQ0LDU9+qHH36ARCLB5MmTS3w+JSUFv/76K4KCgmBra4u8vDzk5uaWO65iv//+O3Jzc0ssM0JERNUrPj4eQUFBsLS0hJqaGhwcHPDjjz/KzU+LFy+Gl5cXjI2Noa6ujhYtWmDdunVy/dna2qJHjx6IjIxE+/btoa6ujh9++AExMTEQiURYuHAhNm7cKL2WbtmyJQ4fPizTR0k1oX19fdG0aVPcvXsXPXr0gJaWFszMzDB9+nRIJBKZ1798+RIfffQR9PX1oauri0GDBiE+Pl4uP1AZTk5OMDY2lrt+/+OPP/Dee+/BysoKampqsLGxwbRp02TmwVGjRuHnn38GIFvq49XxFZeD1NTUhJ6eHvr06YMbN268UaxU/zAJTdVOIpHAz88P2tra+PHHHxEQEACgqNbfrVu3MHz4cISGhmL06NE4cOAAOnXqhOzs7Ar3q6qqih9//BHvv/8+fvnlF3z33XcViqugoADbt2+Hv78/RCIRPvzwQ1y9elXmwhAAMjMz4ePjgyVLlsDX1xchISEYP348Hj16JK2fKJFI0LdvX8yaNQvNmzfHTz/9hMmTJyMvL6/CdRpLMmTIEDx//hxz587FxIkTAQDnzp3D0aNHMWDAAISEhGDSpEk4d+4cvL29ZWpclheTkpISAgIC8Ndff+H58+cy5z18+DASEhKkv6suXbpU6GunFy9eBAC4ubnJHDcxMYG9vb30+coovjFQFRd83bp1g66uLjQ0NNCzZ89SJ8u8vDzo6upCT09PmtxISUmRadOkSRNYWlpi0aJF2LNnD2JjY3Hx4kWMHDkSZmZmGDNmzBvHWVhYiAkTJiAwMBAtWrQotV2nTp3w119/ISQkBA8fPsTdu3cxbdo03L17F19++eUbn5+IqCrU1vm/PMeOHUOXLl3w6NEjzJw5E9OnT8ft27fh4+Mjk4ieM2cOvvnmG/j4+GD58uWYOXMmHBwcZNoMGjQIO3bswMiRI7Fq1Sp8/vnnkEgkuH37trTN7t274eTkhN27d5c77itXrsjNsQDg7u6O/Px8/PvvvxUaY1XOh8WOHj0KTU1NaGtro0GDBvjxxx/lLrbz8vJKvElafKykz0ypqalITk7GjRs3MGXKFNy4cQN+fn5y7R49eoQffvgBP/74IzQ0NEqM8cSJE8jJyUGjRo3Qv39/aGhoQENDAx06dMDVq1dLfM2rNm/eDC0tLfTv37/ctkREVHUSExPRvn177Nu3D0FBQVi+fDnc3d0xbdo0fPHFFzJtly5dCicnJ8yaNQs//vgjjI2NMWbMGISFhcn1e+/ePQwcOBDe3t5Yvnw52rdvL31ux44d+OabbzBy5Ej88MMPSEtLQ//+/fHixYty401NTUXXrl3RqFEj/PTTT/Dw8MDChQuxdu1aaZvi6/UNGzbA398fCxcuhCAI6N2791u8U0XnfvnyJQwNDWWOr1+/HsrKypgwYQKWL18OX19fLF68GB999JG0zdixY9G5c2cAReXXih8mJiYAim72fvDBB7C2tsaiRYvw9ddf4+rVq/Dy8sLDhw/fKm6qJxS7EJvqkpK+tjly5MgSSxYIQslfyz1+/LgAQNi8ebP0WGRkpABAiIyMlOt3xowZMq/v16+fYGxsXKF4//zzT5kSEbm5uYKBgYFcGYXir+6+GlOx4jIIxV8hmjdvXqltShpHMQDC7Nmz5c45YMAAubYlvW93794V1NTUZM5fkZhu374tABBWrlwp8/zw4cMFIyMj6ddibWxsBBsbG7l+Xvfpp58KAITCwkK55zp27Cg0b9683D5e17hxY6Fhw4YyJSdKgjJKXGzfvl0YNWqUEB4eLuzevVuYNWuWoKWlJejp6Ql3796VafvVV18J06ZNE7Zt2yZs27ZN+OijjwSRSCS0bdtWyMnJkWkbHR0tNGrUSAAgfTRt2lS4d+/eG8cqCIIQGhoq6OvrC0lJSYIgCKWW40hISBA6d+4sc35dXV3hwIEDZZ6fiKgqvUvzf0XKcbi4uAiGhoZCYmKi9FhsbKygra0teHl5SY+1bt1a6N27d6n9pKSkCACERYsWlRlT8Xz966+/ltkuKSlJACB88803cs8dOXJEACDs2LGjzD6qaz7s06eP8MMPPwh79uwR1q1bJ/j4+AgAhPHjx8u069u3r6CjoyO8fPlS5viQIUMEAMJnn30mF7OXl5d0jlNXVxfGjx8v5ObmyrUbOHCgzO+npLm2uJyJkZGR0L59e+F///ufsHr1asHc3FwwMjIS4uLiSn3vHj9+LIhEImH48OGltiEiosqrSDmOwMBAwdTUVEhISJA5PnXqVEFJSUmmxFJJnzO6du0qNG7cWOaYjY2NAEDYu3evzPGHDx8KAAR9fX2ZzwKXLl0SAAgrVqyQi/3V8xfPgb/88otMv61atRJcXV2lP+/atUsAICxcuFCmXUBAgFx+oDQAhJEjRwpJSUlCYmKicP78eaFHjx4CAGHp0qUybUt6X+bOnSuIRCLhyZMn0mOlleN49OiRoKysLBdXXFycoKenJ4wePbrceImYhKYqU9ZF6OsXNq9LT08XkpOThaSkJEFfX1/morWsi9CnT5/K9FN8cZGWllZuvP7+/kKTJk1kjo0ZM0awtraWSaI2a9ZMcHZ2LrOv3r17C/r6+nIXZa96kyR0REREmefNzMyUvm8tWrQQ+vfvX6mYBEEQ2rdvL7Rv3176c0ZGhqClpSV34VgRo0ePFlRUVEp8rlu3bkKjRo0q1V90dLQAQPjqq6/KbVteYrekvpWUlIRhw4aV2/aHH34o8YPEzZs3hb59+wrBwcHC7t27hZUrVwo2NjaCo6Oj3AekisaalJQkGBgYCEuWLJEeKy0JnZaWJgQFBQlDhw4Vtm3bJmzatEnw8fERtLW1hePHj5c7LiKiqvAuzf/lJaHj4+NLTZ4HBQUJIpFIePHihSAIguDt7S3Y2toKt2/fLrGvnJwcQUVFRejdu7fw/PnzMuOqiMePHwsAhO+//17uuZMnTwoAhE2bNlW636qYD18nkUiE3r17CyKRSOb9OXjwoABA6NKli3D27Fnh3r17wnfffSeoqqoKAISPP/5Yrq9z584JBw8eFH755RfBw8NDGDlypNzv+ciRI4KSkpJw/vx56bGS5trvvvtOACCYmJgIGRkZ0uNnz54VAAjTp08vdUwLFiwQAAh///13mWMnIqLKKS8JLZFIBAMDA2H06NFCUlKSzOPw4cMCACE8PFzudXl5ecLz58+FpKQkYf78+QIAISUlRfq8jY2NYG1tLfe64iR0YGCg3HO6urpCcHCwXOyvJ6HV1dWFgoICmdd+/vnngqGhofTnwMBAQUlJSW5OO3fuXKWS0K8/VFVVhZkzZ5a6iKuwsFBISUkRkpKShKNHj8ol4ktLQi9dulQAINy8eVPu9+Dn5yfY2tqWGy8Ry3FQtVNSUoKtra3c8ZcvX2Ls2LEwMjKCjo4OjI2NYWJigpSUlFK/6vkqFRUVuXq8BgYGAFDuV2TS09Pxxx9/oGvXroiJiZE+OnbsiNjYWBw9elTa9v79+zK1C0ty//59NGnSpMp3xX1953oAyMnJwZdffglLS0toaWlJ37dr167JvG8VjWnkyJE4ffq0tGbU7t27kZmZKf3adGVoaGggPz+/xLqROTk5pX49tjRVWYrjde3bt0eHDh3k6nqVZNKkSVBRUZFpm5KSAm9vb7Rv3x4//fQT3n//fYwfPx6RkZGIiYnBvHnz3iiuGTNmwMTERK6udkkGDhyImJgYbN26Ff7+/hg+fDgOHz6Mhg0b4pNPPnmj8xMRVZXaOP+Xp7jmYdOmTeWec3Z2hiAIePz4MYCichwpKSlwdHREs2bNEBwcjHPnzknbq6mpYeHChfj7779hZmaGDh06YP78+dLXV1bxHFpSDePietiVnWeBt58PSyISiTB58mQIgoB//vlHetzPzw9r1qzB2bNn4ebmhsaNG2P16tVYtmwZAEBHR0euL1dXV/j5+WHMmDH4559/cPr0aZmvDhcUFODzzz/HiBEj4OLiUmZcxe9Pnz59oKWlJT3erl072Nvb48SJE6W+dsuWLTA3N0fXrl3LPAcREVWtpKQkvHz5EuvXr4eJiYnMo/jf5MTERGn7vXv3wtXVFRoaGjAyMoKJiQm+/vprAJDbU8De3r7U89rY2MgdMzAwqNBnDWtra4jF4jJf++jRI5ibm8vNfU2aNCm3/1e99957iIiIwIEDBzB79mwAReN8dd8gALh+/Tp69eoFbW1t6Ovrw8TEBD4+PgBQoc9fd+7cAVBUc/r138OhQ4dkfgdEpVFWdABU96moqEBZWf5PbejQoTh27BimTJmCNm3aQEdHByKRCEOHDpWrIVgSJaXS76GUlAR91Y4dO5CdnY1Vq1Zh1apVcs9v3rwZnTp1kv78+j/gJZ2vvDalPV/WpkAlXUxOnDgRa9euxYQJE+Dl5QU9PT0oKSlh0qRJMu9bRWICAH9/f0yaNAmbN2/G7NmzsXnzZjRu3FimHlZFWVhYACjaNOL1BEFcXFyJSfXSFBQU4LfffkPr1q2lmzJWNRsbG0RHR5fbTlVVFebm5jIfGnbt2oWkpCS8//77Mm3t7OzQsmVLHD9+vNLx3LlzB2vXrsXSpUvx6NEj6fHs7Gzk5+fj3r170NPTg4mJCR48eICIiAi5v19lZWX07t0bixYtQkpKCvT19SsdBxFRVaiN8//beL1vX19fPHjwAH/++ScOHTqEjRs3IiQkBN9//z2mT58OAAgODkb//v2xd+9eREREYO7cuZg/fz727t1bob0WXmVoaAg1NTXEx8fLPRcXFwdAfrPcinqb+bCsPgH5GwNjx47FiBEjpDWY27Rpg8jISADlX3irq6ujb9++WLx4MbKzs6GhoYHw8HDcuXMHq1evlu7VUSwtLQ337t2Dubk5tLW1pe+PqampXN+mpqZ4+fJliee9fPky/v33X0yaNEkuqUBERNWr+LPBBx98gNGjR5fYxsHBAQBw8uRJ9O/fHx06dMDPP/8MCwsLqKqq4sCBA1i6dKnc54yybt6W9u99RT5r1ORcYWVlJU3G9+zZE2ZmZhg/fjw6deok3cMgNTUVnTp1gqamJubPn49GjRpBQ0MDT58+xahRoyr0+au4zV9//VXi5zvOj1QRTEKTQqSkpODQoUP49ttvpXfrgKKVPKVdAFSlzZs3o2nTpliwYIHcc1u3bsXOnTuxcuVKqKuro1GjRnKbFb6ucePGOHXqFPLy8qCqqlpim+JVWq/fZXx1p9mK2L59O0aMGIGQkBCZ4y9fvoSxsXGlYiqOq2/fvti8eTPGjh2Lw4cP45tvvqlUTMWKVyCdPXtWJjmbnJyMBw8eYPDgwRXu6+DBg0hKSsJXX331RrFUxIMHD6SbLJQlJycH8fHx6Nixo/TYs2fPABQly19XUFBQ4vHyxMXFQSKRYOLEidKNKF/l4OCAsWPHYs2aNeWev7TniIgUSdHzf3mKV27funVL7rlbt25BJBKhYcOG0mMGBgYYMWIERowYgezsbPTs2RNz5szBl19+Kb0Ys7Ozw6RJkzBp0iQ8efIEbdq0wcKFCyudhFZSUkLr1q1x9uxZuefOnDkDFRWVcr+5VZq3mQ/L6hNAif1qaGjA3d1d+vOhQ4cAoEKrjLOzsyEIAtLT06GhoYHY2Fjk5+fD29tbru3WrVulj6FDh0o/pzx9+lSu7dOnT9G4ceMSz7llyxYAeKNviRER0dsxMTGBrq4uCgoKyp0nfv/9d6irq+PQoUNQV1eXHi++2Vmb2NjY4PDhw0hPT5dZDV284vhNBQUFISQkBF9//TX69esHJSUlREZGIikpCVFRUdLVz0DRZtGvK20hW/GCsoYNG8LZ2fmtYqT6i+U4SCGKVzG9fhexpLuTVe3p06eIiorCoEGD8P7778s9xo0bh9TUVPz5558Aina2v3HjBrZt2ybXV3H8gwYNwsuXL7FkyZJS29ja2kIsFstNgCtWrKhU/GKxWO5927p1q3QVVLGKxFRs5MiRuHfvHiZOnIjCwkK5i6z79+9Ly3WUxdfXF8bGxli5cqXM8RUrVkAQBJkkdFZWFm7duoXk5OQS+9q8eTPEYjE++OCDcs9bnpJWbB05cgQnT55Ejx49pMdyc3ORlZUl13b+/PkoKCiQaevo6AgA+N///ifT9urVq7h27Vq5XwkuSbNmzfD777/LPZydnWFpaYnff/8dY8eOBVCUkFZSUsK2bdtk/j+TlZWF3bt3o2HDhjI3JYiIagNFzv8VYW5uDhcXF2zcuFFmfoqLi8OWLVvg6ekpvan8/PlzmddqaGjAyclJOpdkZWUhOztbpk2DBg3kVtympqbi1q1bcl8RLsngwYNx5coVmbIRz58/x9atW9GjRw+Zi9jHjx/LJdOrYz5MSUmR+30WFBRgwYIFEIvF5SYMbt++jbCwMPTr10+6kg1AiV/rffHiBXbv3i19HwFgyJAhJc6dANCtWzf8/vvv6NChA4CiubtVq1b4448/ZN6Lw4cP48mTJ+jWrZvcOSUSCbZu3QonJye0bdu2zLEQEVHVE4vFGDRoEHbv3o2LFy/KPZ+amor8/HxpW5FIJPOZoriUR23Ts2dPSCQSuW+2Ll++/K36FYvFmDx5Mm7duoVdu3ZJjwGyn78kEkmJuYLiclWvLw4YNGgQlJWVMXv27BI/syUlJb1V3FQ/cCU0KYSuri58fX3x448/Ii8vDzY2Njhx4gSOHj0KIyOjaj33li1bIJFI0Ldv3xKf79ixI/T19bF582YMHjwYU6dOxc6dOzFs2DBERESgXbt2SElJwV9//YXvvvsOPj4+CAgIwObNmzF9+nRcvHgRPj4+yMnJQWRkJPz9/REQEABdXV188MEHWLlyJUQiERwdHREZGSldKVRRffv2xcaNG6Grq4vmzZvj8uXL2L59u1w9q4rEVKx79+4wMzPDb7/9hg4dOsDOzk6mr+LVWuWt2lZXV8cPP/yAjz/+GH369EG/fv1w9epVrFy5EiNGjJC5eDt79iw6deqE2bNn49tvv5XpJyMjA3/88Qc6d+4sLfFRkk2bNsmUrbh48aK0FnNAQID0q8AdOnRAmzZt0LJlS+jr6+Py5ctYt24dzMzMZM4dHx8PDw8PDBgwAE2aNIFIJMLhw4fx559/wsfHRyYh3qdPHzRv3hwLFy7E48eP0bFjR8TFxWHFihVQVVXF1KlTKx2riYkJBg0aJDfOFStWoLCwUOY5Y2NjBAYG4ueff4a3tzeGDBmC/Px8rF+/HjExMbXygxYRkSLn/1eFhIRAW1tb7vjUqVOxZMkSdO3aFe3bt0dgYCAEQcDq1auRn5+PxYsXS9s6OTnB29sb7dq1g7GxMa5cuYK1a9eid+/e0NHRweXLl9G5c2cMHjwYzZo1g5qaGg4cOICbN29i0aJF0n52796Njz76CL/++itGjRpVZtyffPIJ1q5di379+mHy5MnQ09PDqlWrkJOTg/nz58u0HTFiBI4ePSpzwVkd8+GePXvw008/oXfv3rCzs8PLly+xbds2XLlyBV9//bXMZ4pHjx5h0KBB6Nu3L6ysrHDnzh2sWbMGpqamWL16tUz8Xl5eaNWqFVxdXWFsbCyd2549e4bt27dL2zk7O5e6Isve3l5uXl26dCm6desGLy8vBAUFIS0tDUuWLEHjxo3x6aefyvURGRmJp0+fYvz48WX8ZoiI6G2Fh4eXuOdAYGAgFi5ciKNHj8LLywsff/wxWrRogbS0NPz777/YuXOntPRSnz59sGTJEnTr1g0BAQF48eIFfvnlF5ibmyMhIUEBoypdv3794OHhgenTp+Phw4do2bIljhw5Is0PVKS0ZmlGjBiBWbNmYcGCBRg0aBC8vLxgZGSEkSNHYsKECVBRUcGOHTuQkZEh91pXV1cAwGeffYaePXtCWVkZffr0gZ2dHX788UcEBwejffv2GDBgAAwNDfHo0SMcOHAA7u7uWLNmzRvHTPVEjW6DSHXayJEjBTU1tXKPFYuLixMGDx4sGBoaCjo6OkLv3r2Fu3fvCjY2NsLIkSOl7SIjIwUAQmRkZLn9lrQ77etatGghWFpalrpbrCAIwtChQwUVFRUhOTlZEARBePHihfD5558L1tbWgoqKimBlZSV8+OGHwtOnT6Wvyc7OFmbNmiU0atRIUFFREczMzIR+/foJ169fl7Z5/vy54O/vL2hrawu6urrCBx98ICQmJsrtfjt79mwBgBAfHy8XW2pqqhAYGCiYmpoKmpqagre3t3D27FnBx8dH8PHxkWlbkZiKBQcHCwCEn3/+We45GxsbwcbGptT363UbN24UmjdvLqiqqgrW1tbCzJkzhdzcXJk2xb/Xknb93bBhgwBA2LBhQ5nn8fHxKXFH4Nf/XmbMmCG0adNG0NfXF1RUVIQGDRoIgYGBQmxsrEx/L1++FAICAgQHBwdBS0tLUFNTE5ycnIQ5c+YI2dnZcud/+fKl8OWXXwpNmzYV1NXVBX19feG9994TLl68+MaxljZOR0dHueMFBQXCmjVrhLZt2wp6enqChoaG4O7uLvz2229l9kdEVJXelflfEP5/fi3t8fLlS0EQBOHYsWOCr6+voKmpKWhpaQldunQRoqOjZfr6/vvvBXd3d8HAwEBQV1cXHBwchJkzZwrp6emCIAhCcnKy8NlnnwlOTk6Ctra2oKOjI7i4uAjr1q0rMfZff/21zNiLxcfHC8OGDRMMDAwETU1NwdfXVzh79qxcu+J551XVMR9euHBB6Nu3r2BtbS2oqqoK2tragoeHh7B582a5mF68eCG8//77goWFhfT8EyZMkH7eetWPP/4oeHh4CEZGRoKysrJgamoq9OvXTzh27FiF3icAwtixY0t8LiIiQmjfvr2grq4uGBgYCMOGDRPi4uJKbPvRRx8JIpFIiImJqdB5iYiocornwdIely5dEgShaF6dNGmSYGtrK6ioqAgmJiaCl5eXsGjRIplrzQ0bNghNmzYV1NTUhEaNGgk//fSTsH79ernPCTY2NkL37t3l4nn48KEAQFiwYIHcc69/Vinp80dp127Fn0Fe9fz5c2HEiBGCrq6uoKOjIwwcOFC4c+eOAEBYuHBhue9dWXPdnDlzBADC33//LQiCIJw+fVrw8vISNDU1BVNTU+GTTz4Rrl69KvcZpKCgQPj8888FMzMzQSQSyY1v3759gq+vr6CjoyNoaGgIjRs3FkaNGlXiZxGi14kEoRp3cCGid8b06dOxdOlSxMfHS79qTEREREREREQ149KlS2jbti02b96MYcOGKTocoirFmtBEhLy8PGzYsAF9+/ZlApqIiIiIiIiomr2+dwQALFmyBEpKSjIbCBLVFawJTVSPJSYm4vDhw9i7dy/i4+MRHBys6JCIiIiIiIiI6rwJEyYgNTUVXl5eEIlE2L9/PyIiIvDJJ5/A2tpa0eERVbkaXwm9atUq2NnZQV1dHS4uLjh+/Hipbb/99luIRKISH8U7Zu/atQt+fn4wMTGBjo4O3N3d8ccff8j0Ex4eXmIfOTk51TpWotruxo0bGDZsGCIjI7FkyRK0b99e0SERERERERER1XmdO3dGTEwMvv32W0ydOhUxMTH4/vvvERoaqujQiKpFjdaE3r59O4YPH45Vq1ahQ4cOWLVqFX799VfcuHEDDRs2lGufkZEht1vn0KFDIRKJEBkZCQCYOHEiLCws0LlzZxgaGmLLli347rvvEBUVhY4dOwIoSkJ/+umnuH//vkxf5ubm1TRSIiIiIiIiIiIiIgJqOAnt7u6Oli1b4pdffpEec3BwwKBBg7BgwYJyX//kyRPY2tpi06ZN+PDDD0tt5+bmho4dO+Knn34CUJSE/uyzz+QS2kRERERERERERERUvWqsJnReXh4uXLiAKVOmyBz38/PDqVOnKtTHunXroK+vj4EDB5bZLj09XW5ztezsbNjY2KCwsBCtW7fG3Llz0aZNm3LPaWxsDFtb2wrFV5rMzExoaWm9VR/vgvowzvowRoDjrEvqwxiBNxtnTEwMkpOTqykiUgTO2RVXH8ZZH8YIcJx1SX0YI8A5m4pwzq64+jDO+jBGgOOsS+rDGIGqn7NrLAmdnJyMwsJCmJmZyRw3MzPD4cOHy329RCLB+vXrMWLECKipqZXabuXKlYiNjUVAQID0mKOjI9avX49WrVohPT0dy5Ytg5eXF65cuQIHBwe5PsLCwhAWFgYAUFZWxuLFiys6zBJlZGRAW1v7rfp4F9SHcdaHMQIcZ11SH8YIvNk4X78pSu8+W1tbnD9//q36iIqKgq+vb9UEVIvVh3HWhzECHGddUh/GCLzZOF1dXasnGFIYztkVVx/GWR/GCHCcdUl9GCNQ9XN2jSWhi4lEIpmfBUGQO1aSv/76C0+ePMGYMWNKbbNz505MnToV27Ztg42NjfS4h4cHPDw8pD97enqidevWCA0NxfLly+X6CQoKQlBQEICiN+9t/7D4x1l31IcxAhxnXVIfxgjUn3ESERERERERvYuUaupExsbGEIvFSEhIkDmemJgotzq6JGFhYfD09ESzZs1KfH7nzp0ICAjAxo0b0bdv3zL7EovFcHV1xd27dys+ACIiIiIiIiIiIiKqtBpLQquqqsLFxQUREREyxyMiIuDp6Vnma+Pi4rB//34EBgaW+Pxvv/2G4cOHIzw8HIMGDSo3FkEQcPXqVVhYWFR8AERERERERERERERUaTVajiM4OBgBAQFwc3ODl5cX1qxZg7i4OIwbNw4AMH36dJw9exZHjhyRed369euhpaWFIUOGyPW5bds2BAQEYPHixfD29pautFZVVYWhoSEAYM6cOWjfvj0cHByQlpaG5cuX4+rVq1i9enU1j5iIiIiIiIiIiIiofqvRJLS/vz+eP3+OefPmIT4+Hs2bN8eBAwek9Zvj4+Nx//59mdcIgoB169Zh2LBh0NTUlOtzzZo1KCgowKRJkzBp0iTpcR8fH0RFRQEAUlJSEBQUhISEBOjp6aFNmzY4duwY3Nzcqm2sRERERERERERERKSAjQnHjx+P8ePHl/hceHi43DGRSISHDx+W2l9xorksS5cuxdKlSysaIhERERERvQWJRILk5GSkpKSgsLDwrfvT09PDzZs3qyCy2qs+jBEoeZzq6uqwtraGioqKgqIiIqrbqnpeLkt9mM/qwxiBqp+zazwJTUREREREdVtsbCxEIhFsbW2hoqICkUj0Vv2lp6dDR0eniqKrnerDGAH5cQqCgOfPnyM2NhZ2dnYKjKz2WrVqFRYtWoT4+Hg0a9YMISEh6NixY6ntr127hs8++wxnz56FoaEhxo4di1mzZsn8//Do0aMIDg7G9evXYWlpiS+//FJaJhMArl+/jtmzZ+PixYt4+PAhZs+ejW+//fatYyMixajqebks9WE+qw9jBKp+zq6xjQmJiIiIiKh+yMzMhJWVFVRVVav1QpfefSKRCEZGRsjJyVF0KLXS9u3bMXHiRHz99de4dOkSPD090bNnTzx+/LjE9mlpaejWrRvMzMxw7tw5LF++HIsWLcKSJUukbR4+fIhevXrB09MTly5dwvTp0zFhwgTs3LlT2iYrKwu2traYN29eqYmGysZGRIrDeZmqwtvO2UxCExERERFRlVNS4qUGVQwTIqVbsmQJRo0ahcDAQDg5OSE0NBQWFhZYvXp1ie23bNmCrKwsbNiwAc2bN8fAgQMxbdo0LFmyBIIgACjaV8nS0hKhoaFwcnJCYGAgRo4cicWLF0v7adeuHRYvXowPP/ywxL2Z3iQ2IlIszstUFd5mzmY5DiKiKvLkRRZyCwohEolgY6iJrPxCJKblwFBLDYZaqgCA1Ox86KgpQ0lJhKy8AhRKBOio/38tpaT0XBhqqUKsJPsPe2ZuATZGP0LP5uY4eT8ZDQw04d3EBAAQl5KNPZefok0DA7jbGUJJSYTo+88RceMZXj7LQ6HZMxy5lYjIW4lobKqNsd6N0MHBGACQnJGL8JMxyCuUwMXGAE9fZsPeRAu+jqbYdzUO8/bdhHcTY7zX0hJWBhqwM9KC0muxPc8oilkkEiE7rxASQYCmqhhp2QXQ06z62o6FEgH/Pk1Fqwb6Vd431W8rI+9haUQm7voITIgQEZHC5eXl4cKFC5gyZYrMcT8/P5w6darE10RHR6Njx47Q0NCQHuvevTtmzZqFmJgY2NnZITo6Gn5+fjKv6969OzZs2ID8/PwK1fl8k9iq0k+HbuPnqEwoHfnrjfsw1lbDH591kH5OJyKi6sUkNBHRWwg/+RDxaTnQVVfBooO3pccNtVSRkVOAvEIJlESARyMjWOhpYMeFWFjoqcNSXwP/Pk1FoURAC2s9qCgpISU7D3eeZcBERw12RlqwNdaEvqYqHj/PQlJGLi48eokfD97Cf4tY0LqBPlTFSriZkIb0nAIAgJmuGjo5mmLnxVgoiUTIK5Bg973z0FARo4ODMW7EpWH4ujNo01AflnoauJeYgbuJ6VAWKyHs2ANp/H7OZjh1/zn0NFSw/2o8fjsfCwDo3dICX/Vois1nHuFRcha01JSx82IsujczQ0cHE6z45x4KJBLYGWvhXMxLOJrpwEBLBW62hrAz0QIAmOtqwMZIEweuxeP0g+do3UAfVgb/f6EEAHEpOTh5LxkSQYCrjSEev8hCQmrRV34evcjEs7RcHJ3qCxsjrWr73VL9oyIWoUACZOUVQkuNH5GIiEixkpOTUVhYCDMzM5njZmZmOHz4cImvSUhIgLW1tVz74ufs7OyQkJCArl27yrUpKChAcnIyLCwsqiW2sLAwhIWFASiqTxsVFVXueUqjnFoAbwsBKqriN3p9gURAxKNszN0ahX6Na3cSOiMj463eq3dBfRgjoNhx6unpIT09vUbOVVhYWGPnUpT6MEag9HHm5OS80d8yr7CI3gE5+YXYGB2D7s3Mcer+cziYasPV1lDRYdU5giBIV+/GvszCvqvxeJaWg6uxqcgvlGCkhy3uJKZDIhHgYmOIi49fyiRuuzqZoV9rS+TkF+LkvWQYaauhVQN93H2Wjj+uxOHkvecY7GKNjNwCpGTlY2i7BlBTEePfp6kQBMBcTwN9Wlri1rN0JKfn4sC1BOTkF8JYWw2J6TmY2dsJN+LS4NHICI+eZ+HCo5cAAO8mJpjQuTHuPsvAH1fisOviUzQx08H/Atsj8thxGNi1QDtbA2iqKiMnvxDLjtzF5ccpOBvzAqnZ+dg42h1udoY4H/MC5nrq2HM5DpuiYyBWEmH72PYw1lZD9P3nOH43GetPPsSh6wkQhKLVIwlpOfBzNkPkrSQcvP4MjUy0oKasihtxaQjsaIfbzzKQmp2P0Mh70uT5q6z0NXD4ZmKJv4/mVroQi0RYGXUPhpqqcDDThggiuNoYokdzc5jpqlfL3wHVX9pqRSu/MnILmIQmoiozatQoJCcnY9++fRV+ja+vL5o3b44VK1ZUY2T0rnj92zmCUPY3dkpq//rxirSp6tiCgoIQFBQEAHB1dYWvr2+lzvUqXwBRUVFv1cfo8HM49iQFC0Z2hLrKmyWza8LbjvNdUB/GCCh2nDdv3qyxjfTqw6Z96enp+Omnn7Bjxw78+++/ig6n2pT2u1RXV0ebNm0q3R+vsKjOi32ZhZx8CRqbatfI+fILJTjz4AWSM3Klx8z11NHe3kj6syAIuPY0FQ+SMmFloIF2toa4n5SB5UfuoqGhJhqZaMPWWAt3nqXjxN1kKCuJsOvSUyz4q2gVrJqyEvq3scKDpExoqYnh62gKPQ0V5BVKcOpeMuJS/r9IvIaqGF2dTDHYtUGFP1xdSSrAP3v/xTfvOUNZXH7dqLMPX8BMV63Cq1KP3HyGnRdj4W5nhF4tLGCioyZ97smLLFx8/BLqKmJ0bmoKlQqcvyokZ+Tiq53XEHk7EdN7NsXiQ7eRky+BjpoyrA01kZqVh8m/X4GqWAkQAb8cfwgAGNDWCjaGWjh6JxE/DWkFPY2iJNZg1wYy/Qd3a4LMvEJoVyKxlZNfiPxCCbTVlJGSlQ+Dcr4q2NRcF31aWSIjtwAqYhHUlMXQV1OCz39lOwBAXUWMaT2aAigqa5GR8/8lMzwbG0tjndC5MXLyC6WlQjo1NYVPExM8S89BTl4h5r7fHBZ66tIxvczMQ2p2PqwMNKAkKio18mqZkReZeUjLzocA4GZ8Gp68yEI3ZzPYm2gjKT0XmbkFMmPRUlOW/l2kZuVDS01cob9ForehrV70/8/0nAKY6So4GCKqceUl30aOHInw8PBK97ts2TJpgq+idu3aVaGSCG/r22+/rfMX0O8yY2NjiMViJCQkyBxPTEyUW4FczNzcvMT2wP+viC6tjbKyMoyMjFARbxJbbRPkbY+hYaex82IshrnbKDocIirBm9zIrSlTpkzBhAkTqv08UVFR6NSpk/RnQ0NDtGrVCnPnzoWXl1el+0lKSoKxsXF1hFouJqHpnZedVwiRCNIE673EdHwUfg5NzXXh08QEiw/dRm6+BBs/dkO7/1YPv8zMg76mCiQCMHPPNdyIT8fCAS3Q0FAT4adiYKmvjvUnYtCqgR6+69tcrgauIAj4bOsl/PPfCk4DTRV0b26OpuY6WBJxB8/ScvG6wS7WOBfzArbGWniYnIlHz7Okz7nYGODfp6lQVhIhO78QkleuU5REgEQoen2hREAbGwNsio7BrktP0cpaDzHPszD7j+vS9gaaKnA014EIRTHHvszCrL3Xsen0I3g2MsbpB88BAL1bWKBTU1Nk5RXiwLV4HL75DB952aGbkxlWX85FTuEjPHmRhTvPMjCgrRUibjyDk4UuPOyNkJaTj6y8Qmw/9wQdGhtj+/knAIpKOPg1M8fN+DTEp2bj36dpCGhvg4zcAvz9bwIaGGrAWFsN2849gY66Mg5cS8CcP6/Dq7ExHEx1cPnJS1x8nCIdS0trPbRuoI+T95LRylof8we0wMl7yTjz8AUKJQKURECbhgZ4lpaD2P9qGQ9t1xBiJRGS0nNhpKWKtJx8JGfk4mpsKv68EodbCelobqWHf5+mwkQ1H8czbkAiCPjjchzScwtgqqOGeftvwkRHDQcneUgT62k5+bgRl4bWDfQhVhLhXMwLWOlrSJ+f2NWhzL9TkUhUqQQ0UPQ3Xfx3XV4C+lUVPY9YSVRqzWYVsZLcDQAlJRFWfti2xHMZaKnKxPhqAhooKk9SXG/Pzlj2ZoWJjprMjYjXVUddaaKS6Pz395zx2k0RIqof4uPjpf+9b98+BAYGyhx7tcYugArXztXT06t0LIaG/MYbAaqqqnBxcUFERAQGDx4sPR4REYGBAweW+BoPDw9MmzYNOTk5UFdXl7a3tLSEra2ttM2ePXtkXhcREQFXV9cK3/x4k9hqG3c7Q7S01sPa4w+l1xBERHl5eVBVLf/6W1tbG9raNbPYEQCuX78OQ0NDJCUlYd68eejduzfu3LkDU1PTGovhbTEJTe+E4g3fGpsWfQ0gO68QZx4W1audtP0ycvIL0buFJeJSsnEvKQNp2QW48iQFETeewUxXDYaaqghYdwYTOjsgNTsfa48/gGcjY6gqK+GfW4nQUVNG3xUnYG+sjdvPiurd6Kgp49rTVGTlFWLe+81x5UkqVl7OwT3xAygribD/ajz6tLKEhZ46YpIzseX0Y+QVStDUXAdz+zWHg1lRrIIgYNHB2/j9QiycLHTxMDkTDQw08alvY7jYGmDPpafYdzUeg1ysMbGLA1TESniRlYdLj1MgVgJcGhoi4uYzDG/fEGrKRQnJ4oS0lpoyBEHA05Rs5BcKEAGwMtCQSx5G3k7EnD+uY8eFWDQ1L4rrp4g7+CniDgBAVVkJlnrqWHDgJtYdfwCRqKi0xOGbz2Clr4HQf+7BVEcNf16Jw+5LT6X9WulrYPv5J+jqZIoWVvpYGXUPh248g7qKEvQ0VGCuq47vD9yESAS42hjg1P3nyM4vxDifRviimwNikrPw55U47L8Wj0uPU9DAUBNf9nBEJ0dT3HmWjh/+uoXdF5/CzkQLuy49xb5r8cgrkEBVWQmqYiXkFUqkK5I1VcXIyivE+hNFP99PyoSJjhpeZOah8L+svpW+Blr8l4BuYaWHSw8Tsf1cUQK9sak2fhjYEgIETNp2Gd+85yyzsltXXUVmNbtnI8XcOSSi6lO8Ejojh0loovrI3Nxc+t/6+voyx2JiYmBhYYH//e9/+OWXXxAdHY1Fixbhgw8+wGeffYbjx4/j+fPnsLe3x5QpU/DRRx9J+3p9FZevry+cnZ2hr6+PsLAwKCkpYcSIEZg1a5b0Na+X47C1tcWYMWPw5MkTbN26Fbq6upg4cSKmTp0qfc2dO3cQGBiIM2fOwMbGBkuXLsWQIUOwYsUKjBo16o3ek2vXruGLL77AyZMnoaGhgb59+2LZsmXSxPq1a9cwadIknDt3DoIgwN7eHiEhIejUqRPy8/MxefJk7NixA8+fP4epqSmGDRuGGTNmvFEs9VVwcDACAgLg5uYGLy8vrFmzBnFxcRg3bhwAYPr06Th79iyOHDkCAPjwww8xZ84cjBo1CjNnzsSdO3ewcOFCzJ49W7raf9y4cVixYgUmTZqEsWPH4uTJkwgPD8fWrVul583Ly8ONGzcAFNX+TEhIwOXLl6GtrY3GjRtXKLbaTiQSIcjbHp/97xIO33yG7s3My38REdUqN27cwNSpU3Hs2DFoaGigS5cuWLp0qXT+PnfuHGbMmIGLFy8iLy8PLVu2xKJFi+Dh4SHtQyQSYcWKFThy5AgOHjyITz75BNra2tixYwdmzpyJGTNmIDExEV26dMHatWulq4hf/zZR8XzfrVs3/Pjjj8jKysL777+PlStXQlNTEwCQmZmJTz75BLt27YKWlhYmTZqEkydPwtjYuNxvW5mamsLY2Bjm5uaYOXMmfvvtN5w5cwZ9+vQBAGzevBnLli3DrVu3oKGhAR8fH4SEhMDKygoxMTHS1dQmJkXflC7+hpcgCFi0aBF+/vlnxMXFoXHjxpg2bRqGDx9edb+o/zAJTbVWXoEEm04/woOkDOy4EAsVsRLG+dhj7YmHyMgpQMF/iUUtVTHM9dSxIToGJv/Vzl070hU+TUxx8fFLWBtoQKwkwtTfr0o3juvS1BSn7j+HqrISvurZFENcG+DrXddw6EYCfhzYEg0MNeFsoYv1Jx9i+T93se9KPPIKJdBQBs7tvwkAcLbQRYh/a+kd87ScfPwbmwoXWwNpsrjY8g/a4FzMC7jbGcndYZ/s54jJfo4yxwy0VNHI5P/vqH3cwU7m+VfLaohEIlgbaJb5XnZyNEWnqbJ3x56mZOPio5dQVVaCRyMjCALQJ/QElETAVFd1DHuvDS49ToGbrSHOxrxAM0tdJGfkITO3AHoaKkjKyEUra32cefgcrjaGUFVWwoC2VniemYdW1noQiUQQBAHnH71EAwNNmOupI/ZlFtKyC+BsWfQ9d0dzHTiaO2JKd0e5mJ0sdNGvtZX05/UnHuJ6XBp6tzRHh8YmUFVWQkGhBOcfvYSxthoamWhh96Wn2Hmx6G+lfxsr3IxPh42RJhzNdWBtoIk2DfRlVrWXVpPr70neZb6fRFQ3aUtXQucrOBKiumnOn9dxIy7tjV5bWFgIsbjyNVudLXUxu0+zNzpnSaZPn47Fixdj3bp1UFFRQU5ODtq2bYtp06ZBV1cXhw8fxtixY9GwYUN06dKl1H62bNmCiRMn4tSpU7h8+TI+/PBDODs7Y/To0aW+ZunSpZgzZw6mTp2Kv/76C59//jk6dOgADw8PSCQS9O/fH+bm5jh9+jSys7MxadIk5ObKfzuvorKystCjRw+0a9cOZ8+exYsXLxAYGIjRo0dj586dAIoSnq1atcLZs2ehrKyMa9euSVffLl++HLt378a2bdtga2uL2NhY3L59u6xTUgn8/f3x/PlzzJs3D/Hx8WjevDkOHDgAG5ui8hHx8fG4f/++tL2enh4iIiLw6aefwtXVFQYGBpg8eTKCg4Olbezs7HDgwAF88cUXWL16NSwtLbF8+XKZFcxxcXEy9T7v37+Pn3/+GT4+PtLNqMqL7V3Qo5k5GhhqIOzYAyahqd55m3m5LGXN2VU5L8fHx8Pb2xsff/wxFi9ejPz8fMyYMQN9+/bF6dOnoaSkhPT0dAQEBGDZsmXSZHOvXr1w9+5dmZIUc+bMwfz587F48WKIRCJs2LABMTEx2L59O3bv3o3MzEwMHToUM2bMwM8//1xqTMePH4eFhQUOHz6MJ0+eYMiQIWjSpAmmT58OAJg8eTKOHj2K3bt3w9LSEnPnzsXx48fRv3//Co87KysLv/76KwDIfHslLy8Pc+bMQdOmTZGcnIxp06bhgw8+wLFjx9CgQQPs3LkTAwcOlK6oLv6G18yZM7Fjxw6sXLkSjo6OiI6ORmBgIAwMDODtXbW5ESahqdrdjE+Dpb4G9DRUkJqdj2N3kqClJoZPE1NE3krE/mvxcLbQxegOdtIEbXpOPoaGncb1uDRoqymjQ2NjnI15gcWH7sDVxgBudoZoZ2uIe4kZaGdniBZWesjJL4Smqlimdm67VzbvC/+oHWJfZkNZLIKFngZy8guhJBJBVblo1fDq4W2RnlsA3VfKCHzRrQm8Ghvj8M1nMNBUhX3BYzi0aofDN5+hc1NTmYSyrrqKtKbu61TESrVu5ayVvgas9GW/VnpwkjeUxSKcPH4Maspi6crf4v99tcRCA8OixPer42pgqCk9DhQlyF/9HVgbaAIGbxbv6NcS8QCgLFaSWZ08oK01BrS1lmtHRFQRxUnodK6EJqJSTJgwAYMGDZI59upq5KCgIPzzzz/YunVrmUloZ2dnfPfddwCAJk2a4JdffsHRo0fLTEL7+fnhs88+k8axfPlyHDlyBB4eHoiIiMDt27dx6NAhWFkV3cRfunRppWpFvm7Lli3IyMjApk2bpJsShYWFoVOnTrh37x4aN26MR48eYcqUKWjatGi/ieIVsgDw6NEjNGnSBB07doRIJELDhg3h6emJ9PT0N46pvho/fjzGjx9f4nMlrZxr0aIFjh07VmafPj4+uHjxYqnP29raVqiWeVmxvQuUxUr42MsO3/55AxcevYCLDUvhEL0rVq9ejVatWuGHH36QHtu4cSMMDQ1x/vx5uLm5oXPnzjKvCQ0Nxc6dO/H333/LrPT19/fHmDFjZNoWFBQgPDxc+u2foKAgafK3NLq6uli9ejWUlZXh5OSEwYMH48iRI5g+fToyMjKwfv16bNy4Ed26dQMArFu3DtbWFcthFJdUysrKgiAIcHV1lfms8epnCHt7e6xevRpOTk6IjY2FtbW1tNRX8YpqoGhl9pIlS3Do0CF07NgRQNGNyrNnz2LlypVMQtO75eLjlxi8JhotrPTwywhXBKw7g1sJRR88LfTUEZ+aAx01Zey+9BSLD92GWEkEM111tLDSw/W4NKwZ3hY9mlsAAI7dScLB6wmY2dsZGqpFd9U6Nf3/1b1ar9SmLYlIJJJJkL6+SZ9IJJJJQBdzszOEm13R/1mjop7A3kQbQSY1V/enJhW/r0RE9ZGOOmtCE1Wnt1n5VNru7DXN1dVV5ufCwkIsXLgQ27dvx9OnT5Gbm4u8vLwSv2n1qpYtW8r8bGlpiaSkpEq/pnjDuVu3bsHS0lKagAaAdu3aQUnpzTf1vXnzJlq2bCnzvnt6ekJJSQk3btxA48aNERwcjDFjxmDDhg3o0qULBg4cKE1Ijxo1Ct26dUOTJk3g5+eHXr16oWfPnm8cD1F1GdKuAZYevouwYw/wcwCT0FR/VOU3hV5VU3P2hQsXcOzYsRLrMt+/fx9ubm5ITEzErFmzEBkZiWfPnqGwsBDZ2dl4/PixTPvX53cAsLGxkdnX4dV5tzTOzs5QVv7/VKulpSXOnDkjjSk/Px9ubm7S57W0tNC8efMKjTcyMhJ6enq4dOkSpk+fjg0bNsishL548SLmzJmDy5cv48WLF9IbiY8fPy410X3jxg3k5OSgR48eMhs05+fnS5PeVYlJaKpyOfmF2BT9CMfuJuHGfyuZLz9JgceCI1BSEmHN8LZIzc7Hish7mN6zKT7uYIeIG89w8fFLCAKw53Ic/rgSh0Eu1tIENAB4NzGBdxMTBY6MiIjqsuKbmawJTUSl0dKS3Vx38eLF+Omnn7Bs2TK0aNEC2tra+Prrr8u9SH198zeRSASJRPLGrxEEQebisSqU1Wfx8W+//RbDhg3DX3/9hYMHD2LOnDlYs2YNRo8ejbZt2yImJgZ///03/vnnH4wcORKtWrXCrl27qjROorelqaqMgPY2WBl1Dw+SMmBfRxccEdU1EokEvXv3xuLFi+WeMzMzA1BU9/jZs2dYunQpbG1toaamhi5duiAvL0+m/evzO1A9c3XxsTdhZ2cHY2NjNGnSBDk5ORgwYACuXLkCNTU1ZGZmonv37ujatSs2bdoEU1NTJCcno2PHjnJjfVVxbH/++ScaNmxY5liqApPQVGW23szFH4mXYaKthp+PPUBTcx00s9LDVD9HRN1ORFxqDj50a4gW1kV3kvzb/f8feM8WFujZoijhPKRdA/x89AG+7CFfJ5iIiKi6qIiVoKrEldBEVHEnTpxAnz59EBAQAKDoAvPOnTvSjQ1ripOTE54+fYq4uDhYWloCAM6fP1/uxXJZnJ2dsX79epkVbadOnYJEIoGTk5O0nYODAxwcHPD555/jk08+wdq1a6VfCdbR0cHgwYMxePBgjBo1Cu3bt8f9+/fRtm3btxgtUdUb6WmLsGMPsO7EQ3zfv4WiwyGiCmjbti1+++032NjYlJowPXHiBJYvX47evXsDAJ49e4b4+PiaDFOqcePGUFFRwdmzZ2FnV1RuNCsrC//++y8aNWpUqb4CAgLw3XffYeXKlQgODsatW7eQnJyM+fPnS/t+/aavqmpR1YDCwkLpMWdnZ6ipqeHRo0dypUsAVHkJLSahqUqci3mBg48KgEdPIVYSoW8rSyz/4P83sihOPFdEEzMd/DSkVXWESUREVCZ1ZRHSmYQmogpq0qQJtm/fjhMnTsDY2BihoaF4+PChzIZuNaFbt25wdHTEyJEjsXjxYmRnZyM4OBjKysrlrrjKycnB5cuXZY5pampi2LBhmD17NkaMGIHvvvsOL1++xNixYzFgwAA0btwY2dnZmDJlCgYPHgxbW1s8e/YMJ06cgLu7OwBgyZIlsLCwQOvWraGiooL//e9/0NXVlSkZQlRbmOioYUBbK+y4EIsvujWBsbaaokMiov+kpaXJzVP6+vr49NNP8csvv8Df3x/Tpk2DiYkJHjx4gN9++w0//fQTdHR00KRJE2zevBnu7u7IzMzEl19+KU3G1jRtbW2MHj0a06ZNg7GxMSwsLDBv3jxIJJJKr45WUlLCpEmTMHfuXOmGyGpqalixYgU+/fRT3Lx5E7NmzZJ5jY2NDUQiEfbv348+ffpAQ0MDOjo6mDJlCqZMmQJBEODt7Y2MjAzpxo4ffPBBVb4FePMiYfTOKpQIyHzLC2xBEHDx8Ut8+8d1eC44gg9/OQ0DNREam2qjUCJgfKfK3cUhIiKqDTSUWY6DiCpu5syZcHNzQ8+ePeHt7Q0tLS0MGzasxuNQUlLC7t27kZubCzc3N4wcORIzZsyASCSCurp6ma+9f/8+2rRpI/P48MMPoampiYMHDyItLQ1ubm7o168fPDw8sH79egCAWCzGy5cvMXLkSDg6OqJ///7w8PDAkiVLABStgl60aBHc3NzQtm1bXL58GX/99Rc0NTXLCodIYcZ0tEdugQQbox8pOhQiesXx48fl5qkpU6bA0tISJ0+ehJKSEnr06IFmzZrh008/hZqaGtTUim4krV+/HhkZGXBxccHQoUMxevToaql1XFGLFy9Gx44d0bdvX3Tq1AktW7aEq6truXN1SUaPHo2CggIsW7YMJiYm2LBhA/bs2QNnZ2fMmTNHOh8Xs7Kywpw5czBjxgyYmZlJNzueO3cuvv32WyxevBjNmjVDt27dsHPnTumK6qokEiqy5W095urqivPnz79VH1FRUeVuTlJTsvMK8VH4WdxOSMfWoPZoaq4r1yY1Ox8PkjLQpqFBiX1E3k7EN3v/xZMX2VBVVkInRxM0MNBEA0k83N3a4frTNAx0qdjunu+a2vS7rE4cZ91RH8YIvNk4q+Lfd6pdquJ36jv/L9hbGmP9qHZVFFXtVB/+bagPYwRq7zhv3rwpU7LhbdWWjQmrU1WP8cqVK2jdujXOnz8PFxeXKuv3bZU2zrL+Zjhn1z219Tp7zIbzOP/oBU5O6yzdK0LRauu/81WpPowRUOw4q3peLgvn7IrLzc2FjY0Npk6dismTJ1dBZFWrqufs2vGvKtWYGbuv4czDFzDQVMXwtWexYXQ7fLXzGqb1aIoODsYoKJTg4/BzOP/oJQa5WGN2H2e8zMzHwesJMNZRRVZeIeb8cQN2xlpYPLgV/JqZQVe9qPZOVFQimprrlpjYJiIiehdwJTQRvat2794NLS0tODg4ICYmBsHBwWjVqhXrLxNVwvhOjTBg1TNsPfsYYzraKzocIqpjLl26hJs3b8LNzQ3p6en44YcfkJ6eDn9/f0WHViOYhK5HUrLy8OfVOIz0sMUQ1wZ4L/Q4hqyJRmZeIWbuuQZfR1Oci3mB63Fp6N7MDLsuxuLgvwlytTFbWethw2g36Gsqpo4OERFRdWFNaCJ6V6Wnp2PatGl48uQJDAwM4Ovri6VLl1a6ziRRfda2oQE87I0QduwBhre3gbqKWNEhEVEds2TJEty+fRvKyspo3bo1jh07BmvrullN4HWsCV1H/XbuCXqEHEP0/ecAgKy8Avx5JQ75hQIGuVjD2VIXw9xtkJlXiI4Oxoh5noWN0THQUBEjuFsT/Bzgit/HecK7iQmm92yKE9M6Ydd4T+z51At7PvViApqIqB5YtWoV7OzsoK6uDhcXFxw/frzUtt9++y1EIlGJj8TERABFOzT7+fnBxMQEOjo6cHd3xx9//CHTT3h4eIl95OTkVOtYi2koi5CRm18j5yIiqkojRozAnTt3kJ2djbi4OPzvf/+DmZmZosMieud81rkxEtNzseNCrKJDIaI6pk2bNjh//jzS09Px8uVLREZG1qqSWdWtxpPQVX1BCwBHjx6Fi4sL1NXVYW9vjzVr1sj1tXPnTjg7O0NNTQ3Ozs7YvXt3tYyvNniekYu5+2/gzrN0fLj2NAI3nkfLbw9h1t7raGyqjWaWReUyvuzhiLnvN8cvI1zx48CW2PmJJ3Z84onPuzgAAFxsDLByWFuM9WkEawNNtG1ogNYN9LmagoioHti+fTsmTpyIr7/+GpcuXYKnpyd69uyJx48fl9h+ypQpiI+Pl3n4+PjA19cXpqamAIrm686dO2P//v24dOkSevXqhf79+8t9FtDU1JTr600263gTLMdBRERUv3k2MkLrBvpYc/Q+Cgolig6HiKjOqNEkdHVc0D58+BC9evWCp6cnLl26hOnTp2PChAnYuXOntJ/o6Gj4+/tj2LBhuHz5MoYNG4bBgwfjzJkzNTLumlQoEfDN3uvIzivE3k874EO3hoi48QxdnEzRt5Ulpvg1kSaRddRVEPDfV4yGtGtQ6kaERERU/yxZsgSjRo1CYGAgnJycEBoaCgsLC6xevbrE9tra2jA3N5c+8vPzcfz4cQQGBkrbLFu2DF999RXc3NzQuHFjzJ49Gy4uLtizZ49MXyKRSKYvc3Pz6hyqjKKV0AXgvs1Eb4//P6KK4t8K1SYikQifdmqM2JfZ+ONKnKLDIaoy/LeWqsLb/B3VaE3oVy9oASA0NBR///03Vq9ejQULFsi119bWhra2tvTnJ0+e4Pjx49i0aZP02Jo1a2BpaYnQ0FAAgJOTE86cOYPFixdj4MCBAICQkBB06tQJM2bMAADMmDEDkZGRCAkJwdatW6ttvDWpUCJg7r4bOPvwBW7Ep2F6z6ZoYa2HFtYtMNnPEQaaKlzBTEREFZKXl4cLFy5gypQpMsf9/Pxw6tSpCvWxbt066OvrS+fi0qSnp8PAQPYmaHZ2NmxsbFBYWIjWrVtj7ty5aNOmTeUG8YbUlYH8QgG5BRLWgSR6CyoqKsjOzoampqaiQ6F3QH5+PpSVuV0R1R5dmpqiqbkOVkXdx/utraCkxGtperdxXqaq8jZzdo3N9NV1QRsdHQ0/Pz+Zdt27d8eGDRuQn58PFRUVREdHY8KECXJtVqxY8YajqV0SUnOw+fQjhJ+KQesG+pjZ20lmJ19DLdZvJiKiiktOTkZhYaFcLVEzMzMcPny43NdLJBKsX78eI0aMgJqaWqntVq5cidjYWAQEBEiPOTo6Yv369WjVqhXS09OxbNkyeHl54cqVK3BwcJDrIywsDGFhYQCA2NhYREVFVXCUJVMqzAMgwqF/jkFXre5ecGZkZLz1e1Xb1YcxArV3nGKxGJmZmbCysoKqqupbL4YoLCxEenp6FUVXO9WHMQLy45RIJHj27BmSk5Px9OlTBUZG9P+UlEQY36kxPt96CYduJKBHcwtFh0T0VkxNTfH06VNYWVlBQ0ODixTpjRTP2Xp6em/0+hpLQlfXBW1CQgK6du0q12dBQQGSk5NhYWGBhISEEs+bkJBQ4rmq+oK2qi8OTjzNR3YB0M1GBbdeFGLh2aLNmjwsxBjbLB8ofIyoqJJLnFSn2noRVJXqwxgBjrMuqQ9jBOrPOGva6x9OBUGo0AfWv/76C0+ePMGYMWNKbbNz505MnToV27Ztg42NjfS4h4cHPDw8pD97enqidevWCA0NxfLly+X6CQoKQlBQEADA1dUVvr6+5cZXllNxhwHkooWLG+yMtd6qr9osKirqrd+r2q4+jBGo3eNMS0tDYmIi8vPffrPPnJycGqsNryj1YYxAyePU0tJC+/btoaRU41sWEZWqdwsLLDl0Gysi76F7M3Mm7eidpqtbtDdYXFxclczLZakP81l9GCNQ+pxtbGz8Rv3V+HeequOCtqQ+Xz9emfNW9QVtVV8cfLc4CnGp2Zg+tBP+2PsvdNSf4YeBLdG5qalCvzpcmy+Cqkp9GCPAcdYl9WGMQP0ZZ00xNjaGWCyWu1mbmJgod1O3JGFhYfD09ESzZs1KfH7nzp0ICAjAxo0b0bdv3zL7EovFcHV1xd27dys+gLeg+d8no9Ts6v1wTlQf6OrqSi9631ZUVFSNleVRlPowRqD+jJPefWIlET7xbYRpO6/h6J0k+DqaKjokordSlfNyWerDv/P1YYxA1Y+zxm41V9cFrbm5eYl9Kisrw8jIqMw2FTlvbfMyMw8PkjORky/BnktPcfDfBPRuYYFeLSxYu5KIiKqEqqoqXFxcEBERIXM8IiICnp6eZb42Li4O+/fvl9mQ8FW//fYbhg8fjvDwcAwaNKjcWARBwNWrV2FhUTNfg9VWKbpB/TIrr0bOR0RERLVX/zbWsNBTx6rI+4oOhYjonVdjSejquqD18PCQK+cREREBV1dXqKioSNu8yXlro8tPUgAAKmIR5h+4icy8QrzfxkqxQRERUZ0THByM8PBwrF27Fjdv3sTEiRMRFxeHcePGAQCmT5+OLl26yL1u/fr10NLSwpAhQ+Se27ZtG4YNG4aFCxfC29sbCQkJSEhIwIsXL6Rt5syZg4MHD+LBgwe4fPkyPv74Y1y9elV63uqmrVqUhE5hEpqIiKjeU1VWQpC3Pc7GvMDZhy/KfwEREZWqRotuVccF7bhx4xAbG4tJkybh5s2bWLt2LcLDw2U2QJw4cSL++ecfLFiwALdu3cKCBQsQGRmJSZMmVdtYq4ogCLjyJEVaYuTS45dQEgHB3RxhrK2GSV0d4GZrqOAoiYiorvH390dISAjmzZuH1q1b48SJEzhw4IC0fnN8fDzu35ddFSQIAtatW4dhw4aVuPP2mjVrUFBQgEmTJsHCwkL6GDBggLRNSkoKgoKC4OTkBD8/Pzx9+hTHjh2Dm5tb9Q74P8UroVOyWI6DiIiIgKHtGsJYWxWh/9RMaTAiorqqRmtC+/v74/nz55g3bx7i4+PRvHnzt76gtbOzw4EDB/DFF19g9erVsLS0xPLlyzFw4EBpG09PT2zbtg0zZ87E7Nmz0ahRI2zfvh3u7u7VO+AqsP3cE3y16xreb22Ju4kZePwiC03NdfGJbyN84ttI0eEREVEdNn78eIwfP77E58LDw+WOiUQiPHz4sNT+KrJ55NKlS7F06dKKhljlNFUAkQh4ySQ0ERERAdBQFSPI2x7zD9zC+ZgXcOUiMCKiN1LjGxNW9QUtAPj4+ODixYtlthk0aFCFak/WNjsvxkJFLMKey3FoaKgJE2019GllqeiwiIiI6iQlkQi66iosx0FERERSw9vbIOzYAyw9fAdbxrRXdDhERO+kGk9CU8U9eZGFczEvMcWvCVo3MEBbG31oqvJXRkREVJ0MNFW4EpqIiIikNFWVMc6nEebtv4mzD1/AzY6roYmIKqtGa0JTxcWlZCP4t8sQiYD321ihg4MxE9BEREQ1QF9TlSuhiYiISMYwdxsYa6thacQdRYdCRPROYhK6ljl4PQGn7idj1K9ncTM+HUuGtIK1gXwtbCIiIqoeRSuhmYQmIiKi/6ehKsYnvo0Q/eA5Tj94ruhwiIjeOUxC1yJpOfkYv+UiPvzlDO48y8CqYW3Rv421osMiIiKqV4pWQrMcBxEREcka5t4QpjpcDU1E9CaYhK5FTtxNRqFEQI9m5pjZ2wneTUwUHRIREVG9o6+pwiQ0ERERyVFXKVoNfebhC0Tf52poIqLKYBK6Fom8lQg9DRWs+LANxnS0V3Q4RERE9ZKBpioycguQVyBRdChERERUy3zg1hBmumpYevgOBEFQdDhERO8MJqFrCYlEQNSdJHR0MIaymL8WIiIiRTHQVAEApGSzLjQRERHJUlcRY7xvY5zlamgiokphtrOWiE/LQVJ6LtrbGyk6FCIionpNX1MVAFiSg4iIiErk364BzHXVuRqaiKgSmISuJRJSswEAVgYaCo6EiIioftP/byX0y0yuhCYiIiJ56ipijO/UCOdiXuLEvWRFh0NE9E5gErqWSEjNBQCY66orOBIiIqL6zeC/ldAvuRKaiIiISuHfrgGs9DWw6OBtroYmIqoAJqFriYS0HABMQhMRESmaiY4aACApI1fBkRAREVFtpaYsxqSuDrgam4q//01QdDhERLUek9C1REJqNtSUlaRfASYiIiLFMNJShUgEJKUzCU1ERESlG9DWGo1NtbH40G0UFEoUHQ4RUa3GJHQtkZCWC3M9dYhEIkWHQkREVK8pi5VgpKXKJDQRERGVSawkwhQ/R9xPysSui08VHQ4RUa3GJHQt8Sw1B2YsxUFERFQrGGurISk9R9FhEBERUS3XvZkZWjXQR8jhO8jJL1R0OEREtRaT0LVEfFo260ETERHVEiY6alwJTUREROUSiUSY1t0Rcak52Hz6kaLDISKqtZiErgUEQcCz/8pxEBERkeKZ6qgzCU1EREQV4tnYGB0djLEy8h7Sc/IVHQ4RUa3EJHQt8DIrH3kFEq6EJiIiqiVMdNSQlJELQRAUHQoRERG9A6Z2d8TLrHysPf5Q0aEQEdVKTELXAgmpRTUnuRKaiIiodjDRUUN+oYCULK5mIiIiovK1tNZHrxbmWHv8AZ5n8NtURESvYxK6Fkj6b4Iy0VFTcCREREQEAKb/zclJvIgkIiKiCgru5ojs/EKsjLyv6FCIiGodJqFrgReZRRe4RlqqCo6EiIiIgP+/MZyYxiQ0ERERVUxjU20MdmmAzacf4cmLLEWHQ0RUq9R4EnrVqlWws7ODuro6XFxccPz48TLbC4KAkJAQNG3aFGpqarCwsMBXX30lfX7UqFEQiURyDy0tLWmb8PDwEtvk5ORU2zgr43lGHgDASIsroYmIiGoDE+lK6NrxWYGIiIjeDZO6OUAkAhYdvK3oUIiIapUaTUJv374dEydOxNdff41Lly7B09MTPXv2xOPHj0t9zeTJk7Fq1Sr88MMPuHnzJg4cOABvb2/p88uWLUN8fLzMw97eHkOGDJHpR1NTU66dunrtqMH8IjMPykoi6GooKzoUIiIiqcrcOP72229LvOErEomQmJgobXf06FG4uLhAXV0d9vb2WLNmjVxfO3fuhLOzM9TU1ODs7Izdu3dXy/jKYsqV0EREVEtUdiHXtWvX4OPjAw0NDVhZWeG7776T22i3KubjwsJCzJo1SxqbnZ0dZs6ciYKCgrcf9DvMQk8DgR3t8ceVOFx+kqLocIiIao0aTUIvWbIEo0aNQmBgIJycnBAaGgoLCwusXr26xPa3b99GaGgo9u7di379+sHe3h5t2rRBr169pG309PRgbm4ufdy/fx8PHjxAYGCgTF8ikUimnbm5ebWOtTJeZObBQEsVIpFI0aEQEREBqPyN4ylTpsjd7PXx8YGvry9MTU0BAA8fPkSvXr3g6emJS5cuYfr06ZgwYQJ27twp7Sc6Ohr+/v4YNmwYLl++jGHDhmHw4ME4c+ZMjYy7mLaaMlTFSniRmVej5yUiInpVZefjtLQ0dOvWDWZmZjh37hyWL1+ORYsWYcmSJdI2VTUf//DDD1i5ciWWL1+OW7duYdmyZVi5ciUWLFhQfW/IO2KcbyMYa6vi+/035G4AEBHVVzWWhM7Ly8OFCxfg5+cnc9zPzw+nTp0q8TV79+6Fvb09/v77b9jb28PW1hYjR46UWVH1ul9++QXNmjWDp6enzPHs7GzY2NjA2toa7733Hi5duvT2g6oizzPzWA+aiIhqlcreONbW1pa50Zufn4/jx4/L3BRes2YNLC0tERoaCicnJwQGBmLkyJFYvHixtE1ISAg6deqEGTNmwMnJCTNmzICvry9CQkKqe8gyRCIRDLVU8ZxJaCIiUqDKzsdbtmxBVlYWNmzYgObNm2PgwIGYNm0alixZIk2GVtV8fOrUKfTp0wd9+vSBra0t+vbti759+9b4jePaSFtNGV90a4JzMS9x8HqCosMhIqoVaqz+Q3JyMgoLC2FmZiZz3MzMDIcPHy7xNQ8ePMCjR4+wbds2aV3nKVOmoE+fPoiOjoaSkmwOPTU1Fb///jvmz58vc9zR0RHr169Hq1atkJ6ejmXLlsHLywtXrlyBg4OD3HnDwsIQFhYGAIiNjUVUVNRbjBzIyMgos4+HcdlQUcJbn0fRyhtnXVAfxghwnHVJfRgjUH/GWVOKbxxPmTJF5nhZN45ft27dOujr62PgwIHSY9HR0XI3o7t3744NGzYgPz8fKioqiI6OxoQJE+TarFix4g1H8+YMtVS5EpqIiBTmTebj6OhodOzYERoaGtJj3bt3x6xZsxATEwM7O7sqm487dOiAVatW4datW2jatClu3LiBf/75B9OnT3/bodcJ/q4NEH4yBgv/uoXOTc2gqlzjW3IREdUqNV6E+PWSE4IglFqGQiKRIDc3F5s2bUKTJk0AAJs2bYKjoyPOnTsHd3d3mfabN29GYWEhAgICZI57eHjAw8ND+rOnpydat26N0NBQLF++XO68QUFBCAoKAgC4urrC19e30uN8VVRUVJl9zDkfhaaWuvD1bftW51G08sZZF9SHMQIcZ11SH8YI1J9x1pQ3uXH8KolEgvXr12PEiBFQU/v/TXcTEhLQtWtXuT4LCgqQnJwMCwsLJCQklHjehISSVxFV541jUV42YuLr5g2O+nDjpj6MEeA465L6MEag/oyzKrzJfJyQkABra2u59sXP2dnZVdl8PG3aNKSnp8PZ2RlisRgFBQWYMWMGxo8fX2JsNb3YqzZ4r0EBll7IxZzNR9DNVuWN+ngXxvm26sMYAY6zLqkPYwSqfpw1loQ2NjaGWCyWu4hMTEyUm9yKWVhYQFlZWZqABgAHBwcoKyvj8ePHcknoX375BQMHDoShoWGZsYjFYri6uuLu3btvOJqq9Twjl+U4iIio1qnMjeNX/fXXX3jy5AnGjBlToT5fP16Z81bnjePdCZdw6XFKnbzBUR9u3NSHMQIcZ11SH8YI1J9xVqXKzsdvOtdWpM2rx7Zv346NGzfif//7H5o1a4bLly9j4sSJsLOzw8cffywXV00v9qoNfAQB51LPYv/jVHw5xAt6mpVPRL8L43xb9WGMAMdZl9SHMQJVP84a+z6IqqoqXFxcEBERIXM8IiJCrn5zMS8vLxQUFOD+/fvSYw8ePEBBQQFsbGxk2p49exZXrlyR25CwJIIg4OrVq7CwsHiDkVSt/EIJ0nIKYKilVn5jIiKiGvAmN45fFRYWBk9PTzRr1kzmuLm5eYl9Kisrw8jIqMw2FTlvVWM5DiIiUqQ3mY9Lm0eB/18RXVXz8dSpUzFlyhQMHToULVq0QEBAAIKDg7kx4StEIhG+7uWE1Ox8rIy6p+hwiIgUqkaLEgUHByM8PBxr167FzZs3MXHiRMTFxWHcuHEAgOnTp6NLly7S9l27dkXbtm0xevRoXLp0CZcuXcLo0aPh7u4OV1dXmb7DwsLg4OAAHx8fufPOmTMHBw8exIMHD3D58mV8/PHHuHr1qvS8ivTyv4tbQ22uhCYiotrhTW4cF4uLi8P+/ftLvCns4eEh9/XhiIgIuLq6QkVFRdrmTc5bHYy0VJGRW4DcgsIaPzcREdGbzMceHh44fvw4cnJyZNpbWlrC1tZW2qYq5uOsrCyIxWKZNmKxGBKJpHIDreOcLXUxqK01wk/G4MmLLEWHQ0SkMDWahPb390dISAjmzZuH1q1b48SJEzhw4IB0VXN8fLzMqmclJSXs27cPpqam8Pb2Rvfu3WFtbY29e/fKbEqYnp6Obdu2YcyYMSV+LSklJQVBQUFwcnKCn58fnj59imPHjsHNza36B12O5/8loY1ZjoOIiGqRyt44LrZ+/XpoaWlhyJAhcs+NGzcOsbGxmDRpEm7evIm1a9ciPDxcZsOliRMn4p9//sGCBQtw69YtLFiwAJGRkZg0aVK1jbU0xd9S4mpoIiJSlMrOxx9++CE0NTUxatQo/Pvvv9i1axcWLlyI4OBg6bVyVc3Hffr0wcKFC7F//37ExMRg9+7dWLJkCfr3718zb847ZLKfI8RKIiz8+5aiQyEiUpga35hw/PjxpW5UEB4eLnfMwsICv//+e5l96ujoICMjo9Tnly5diqVLl1YqzppSfGFryCQ0ERHVIv7+/nj+/DnmzZuH+Ph4NG/evMwbx0BRuat169Zh2LBh0NTUlOvTzs4OBw4cwBdffIHVq1fD0tISy5cvx8CBA6VtPD09sW3bNsycOROzZ89Go0aNsH37drl9IGqCoVbRarDnGXmw0NOo8fMTERFVdj7W09NDREQEPv30U7i6usLAwACTJ09GcHCwtE1VzcehoaGYNWsWxo8fj8TERFhYWCAwMBDffPNNDbwz7xZzPXUEedtj2ZG7GOnxAm52Ze9jRURUF9V4EppkFa+ENmI5DiIiqmUqe+NYJBLh4cOHZfbp4+ODixcvltlm0KBBGDRoUIXjrC5cCU1ERLVBZefjFi1a4NixY2X2WRXzsY6ODkJCQhASElJmP1RknE8j/H7+CWb/cR37JnSAWKn8zZ6JiOqSGi3HQfIycwsAANpqld8ll4iIiKpP8beUmIQmIiKit6WhKsaM3s64GZ+GrWcfKzocIqIaxyS0ghUUFm3aoCzmXVAiIqLaxOi/JPRzJqGJiIioCvRqYY729oZYfOg2UrL4+YKI6hcmoRWsQCIAAJT5VRwiIqJaRU9DBWIlEV5k5io6FCIiIqoDRCIRZvdphrTsfCyNuKPocIiIahST0ApWUPhfElrMXwUREVFtoqQkgoGmCl5k5is6FCIiIqojnCx0Mby9DTadfoRbCWmKDoeIqMYw86lgXAlNRERUexlqqXIlNBEREVWp4G5NoKuhgm//uA5BEBQdDhFRjWASWsGkNaGZhCYiIqp1ipLQrNlIREREVUdfUxVT/Bxx+sELHLiWoOhwiIhqBJPQCla8ElrMJDQREVGtY6Slxo0JiYiIqMp94NYQTha6mH/gJrLzChUdDhFRtWMSWsEKJBIoK4kgEjEJTUREVNtwJTQRERFVB7GSCHP6NsPTlGysPnpf0eEQEVU7JqEVrKBQgLKYCWgiIqLayFBLFSlZ+dLyWURERERVxc3OEP1aW2JN1H08TM5UdDhERNWKSWgFK5AIUFbir4GIiKg2MtJWBQC8zMpXcCRERERUF83o7QQ1FSXM2vMvNykkojqN2U8FKyiUcCU0ERFRLWWgWZSEZkkOIiIiqg6mOuqY2t0RJ+4l48+r8YoOh4io2jAJrWBFK6GZhCYiIqqNjLSKktDPM3MVHAkRERHVVcPcbdDSWg9z991AWg6/fUVEdROT0ApWUMhyHERERLWVYXE5jkxeEBIREVH1ECuJ8P37LfA8Ixc/Hbyt6HCIiKoFs58Kli9hOQ4iIqLaylCruBwHV0ITERFR9WlhrYeA9jbYePoRrsamKDocIqIqxyS0ghWyHAcREVGtVVwT+jlrQhMREVE1m9zdEcbaapix+18USrhJIRHVLUxCK1hBoQBlMX8NREREtZGKWAl6GircmJCIiIiqna66Cma954xrT1Ox+fQjRYdDRFSlmP1UsAKJhCuhiYioyrz//vvYt28fJBKJokOpM4y0VLkSmoiIiGpEn5YW6OhgjMUHbyMxLUfR4RARVRkmoRWsaCU0k9BERFQ1tLS04O/vD2tra3z99de4e/euokN65xlqqeJFBpPQREREVP1EIhG+69ccuYUSfPvndUWHQ0RUZZiEVrACiQCxEn8NRERUNbZs2YL4+HjMmjULhw8fhqOjI7y9vbFx40ZkZ2crOrx3kr6mClKz8xUdBhEREdUTdsZamNjFAQeuJeB8QoGiwyEiqhI1nv1ctWoV7OzsoK6uDhcXFxw/frzM9oIgICQkBE2bNoWamhosLCzw1VdfSZ+PioqCSCSSe9y6dUumn507d8LZ2RlqampwdnbG7t27q2V8lVUgkUCF5TiIiKgK6erq4pNPPsHZs2dx7do1uLi4YOzYsTA3N8fYsWNx8+ZNRYf4TtFRV0F6LpPQREREVHOCvO3hbKGLTTfzkJrFzyFE9O6r0ST09u3bMXHiRHz99de4dOkSPD090bNnTzx+/LjU10yePBmrVq3CDz/8gJs3b+LAgQPw9vaWa3f9+nXEx8dLHw4ODtLnoqOj4e/vj2HDhuHy5csYNmwYBg8ejDNnzlTLOCsjn+U4iIiomsTFxWHv3r3Yt28flJWVMWjQIDx58gQtW7bE4sWLFR3eO0NHXRlp2VyFRERERDVHRayEHwe1RHqegPkHuICAiN59NZqEXrJkCUaNGoXAwEA4OTkhNDQUFhYWWL16dYntb9++jdDQUOzduxf9+vWDvb092rRpg169esm1NTU1hbm5ufQhFoulz4WEhKBTp06YMWMGnJycMGPGDPj6+iIkJKS6hlphhRIByizHQUREVSQ/Px87duxAr169YGNjgz179uDLL79EfHw81q1bhwMHDmDLli2YN2+eokN9Z+iqqyAjtwCCICg6FCIiIqpHmlvpoYetCraff4KT95IVHQ4R0VupsexnXl4eLly4AD8/P5njfn5+OHXqVImv2bt3L+zt7fH333/D3t4etra2GDlyJBITE+Xaurq6wsLCAl26dEFkZKTMc9HR0XLn7d69e6nnrUkFhRKuhCYioipjYWGBsWPHolGjRrhw4QLOnj2LwMBAaGtrS9t069YNBgYG5fZV1SW0Ro0aVWIJLS0tLWmb8PDwEtvk5Chud3gddWUUSgRk5RUqLAYiIiKqn95vrAI7Yy1M33UNWXn8ZhYRvbuUa+pEycnJKCwshJmZmcxxMzMzHD58uMTXPHjwAI8ePcK2bdukF6VTpkxBnz59EB0dDSUlJelK6nbt2iEvLw+bNm1Cly5dEBUVJS3bkZCQUOJ5ExISSjxvWFgYwsLCAACxsbGIiop6q7FnZGSU2kdKWjZEuaK3PkdtUNY464r6MEaA46xL6sMYgfozzopYunQpBg8eDHV19VLbGBgY4OHDh2X2U1xCa9WqVejQoQNWrVqFnj174saNG2jYsGGJr5k8eTL27duHRYsWoUWLFkhNTUV8fLz0+WXLlmHhwoUyr/Hy8pIrs6WpqYn79+/LHCtrPNVNR10FAJCWkw8ttRr76EREREQEVbEICwa0wNCw01hy6A5mvues6JCIiN5IjV9JiUSyq34FQZA7VkwikSA3NxebNm1CkyZNAACbNm2Co6Mjzp07B3d3dzg6OsLR0VH6Gg8PD8TExGDx4sUyF7WVOW9QUBCCgoIAFK2w9vX1rfQ4XxUVFVVqH+qXjsHcWAu+vi5vdY7aoKxx1hX1YYwAx1mX1IcxAvVnnBUREBAAAMjOzpYmchs1agQNDY1K9fNqCS0ACA0Nxd9//43Vq1djwYIFcu2LS2hdvXoVTk5O0uNt2rSR/reenh709PSkP588eRIPHjzApk2bZPoSiUQwNzevVLzVSUe96ONSek4BLPTKaUxERERUxdrbG2GYe0OsP/kQ77WyROsG+ooOiYio0mqsHIexsTHEYrHc6uPExES5VcrFLCwsoKysLE1AA4CDgwOUlZXL3MzQ3d0dd+/elf5sbm5eqfPWpAKJBGKW4yAioiqSm5uLSZMmwdDQEK1atULLli1haGiIiRMnVrikRXWX0Cr2yy+/oFmzZvD09JQ5np2dDRsbG1hbW+O9997DpUuXKhR3ddHVKFoJnZ7DnemJiIhIMb7q2RSmOuqYtuMq8gokig6HiKjSamwltKqqKlxcXBAREYHBgwdLj0dERGDgwIElvsbLywsFBQW4f/8+GjVqBKCoREdBQQFsbGxKPdfly5dhYWEh/dnDwwMRERGYOnWqzHlfv+hVhAKJABUlJqGJiKhqfPLJJzh06BDWrl0LDw8PAEV7I0yfPh3p6elYv359uX1UVwmtV6WmpuL333/H/PnzZY47Ojpi/fr1aNWqFdLT07Fs2TJ4eXnhypUrcHBwkDtvTZTQupdSVAv6xNmLSH9YN8px1IcSNvVhjADHWZfUhzEC9WecRFVNR10F3/dvjo83nEfoP3cx2c+x/BcREdUiNXolFRwcjICAALi5ucHLywtr1qxBXFwcxo0bBwCYPn06zp49iyNHjgAAunbtirZt22L06NEICQkBAEyaNAnu7u5wdXUFAISEhMDW1hbNmjVDXl4eNm/ejD179mDnzp3S806cOBHe3t5YsGAB+vfvj927dyMyMhInTpyoyeGXqKBQgFipxhakExFRHff7779j165d6Natm/SYvb09TE1NMXDgwAoloYtVdQmtV23evBmFhYXS8iHFPDw8pMlzAPD09ETr1q0RGhqK5cuXy523JkpoWSemY97pY7B1cIJva6u36r+2qA8lbOrDGAGOsy6pD2ME6s84iapDFyczDHKxxqqo++jiZMayHET0TqnR7Ke/vz9CQkIwb948tG7dGidOnMCBAwekq5rj4+NlNiJSUlLCvn37YGpqCm9vb3Tv3h3W1tbYu3evdEVVXl4epkyZgpYtW6Jjx444ceIE9u/fjwEDBkj78fT0xLZt27Bhwwa0bNkSGzduxPbt2+UuiBWhQCKBCstxEBFRFdHS0oKVlXyi1MrKqsJ1oWuihNYvv/yCgQMHwtDQsMxYxGIxXF1dZcps1TRd9eJyHNyRnoiIiBTrmz7OMNNRw+TfLiMnv1DR4RARVViNL8EdP348YmJikJubiwsXLshsHhgeHo6YmBiZ9hYWFvj999+Rnp6OxMREbNmyReYC+Msvv8S9e/eQnZ2NFy9e4Pjx4+jVq5fceQcNGoRbt24hLy8PN2/elElSK1JBoQBlJqGJiKiKTJgwAXPmzEF2drb0WHZ2NubOnYsJEyZUqI9XS2i9qqxSVq+W0CpWWgmts2fP4sqVK9JND8siCAKuXr0qU2arpukwCU1ERES1hK66Cn4c1Ar3kzKx+OBtRYdDRFRhdaOw4TusQCJAmeU4iIioipw+fRpHjx6FlZUVWrZsCQC4du0aCgoKkJmZib59+0rb/vHHH6X2Ux0ltIqFhYXBwcEBPj4+cuedM2cO2rdvDwcHB6SlpWH58uW4evUqVq9e/Vbvy9tQV1GCspIIadyYkIiIiGqBDg7GCGhvg3UnH6Kbsxnc7Y0UHRIRUbmYhFawgkIJlLkxIRERVRFjY2O5DX/t7Owq3Y+/vz+eP3+OefPmIT4+Hs2bN69QCa3PP/8c3t7e0NDQQLdu3bBkyRKZTQnT09Oxbds2fPPNNyXWl05JSUFQUBASEhKgp6eHNm3a4NixY3Bzc6v0GKqKSCSCjroy0pmEJiIiolpieq+mOHY3CVN2XMFfE72hrcb0DhHVbvxXSsEKJALELMdBRERV5Ndff62yvsaPH4/x48eX+Fx4eLjcseISWmXR0dFBRkZGqc8vXboUS5curVScNUFXQ4XlOIiIiKjW0FRVxk+DW2Hwz9GYf+Am5vdvoeiQiIjKVKE6EHv27EFhIQveV4cCiQAVluMgIqIq9uDBA+zbtw/79+/HgwcPFB3OO09HXRlp2VwJTURERLWHq60hgjra439nHuPonSRFh0NEVKYKZT+HDRsGKysrTJs2Dbdvs/B9VREEAYUSAWKW4yAioiqSlpaGwYMHo3Hjxnj//ffRr18/ODg4YMiQIUhPT1d0eO8sHTWuhCYiIqLa54tuTeBgqo0vd1zBy8w8RYdDRFSqCiWhExISMGfOHBw9ehTOzs7o0KEDfv31V2RmZlZ3fHVagUQAAKiwHAcREVWRiRMn4urVq4iMjER2djays7Nx5MgRXL16FZMmTVJ0eO8sXQ1lJqGJiIio1lFXEWOpf2u8yMzD9F3XIAiCokMiIipRhZLQOjo6GDt2LE6fPo1r167B3d0d06dPh4WFBQIDA3H69OnqjrNOKigsmhyUxSzHQUREVeOPP/7A2rVr4ePjAxUVFaioqMDX1xdhYWHYs2ePosN7Z+moqyCNGxMSERFRLdTcSg9Tuzvi7+sJ2H7uiaLDISIqUaWzn87Ozvjiiy8QFBSEvLw8bN++HR07doS7uzuuXr1aHTHWWQUSCQBAmeU4iIioimRnZ8PIyEjuuKGhIXJychQQUd2graaMjFyuhCYiIqLaaUwHe3g1NsKcP2/gflLpm0ATESlKhZPQ+fn5+O2339CjRw/Y2dnhn3/+wZo1a/Ds2TM8evQITZo0gb+/f3XGWudIV0IzCU1ERFXEy8sLs2bNQlZWlvRYZmYmZs+eDU9PTwVG9m7TUBUjJ5+bNBMREVHtpKQkwk+DW0NNRQmTtl1GXoFE0SEREclQrkijCRMmYOvWrRCJRAgICMCSJUvg7OwsfV5DQwPff/89bG1tqyvOOin/v5XQYpbjICKiKrJkyRL07NkTVlZWaNmyJUQiEa5cuQItLS0cPHhQ0eG9szRVxMgvFJBfKIEK520iIiKqhcz11PHDwJYYu+kCfoq4jek9nRQdEhGRVIWuom7cuIEVK1bg6dOncgnoYpaWloiMjKzyAOuywuKNCbkSmoiIqkiLFi1w9+5d/Pjjj3B1dUXbtm2xaNEi3L17F82aNVN0eO8sDVUxACCbq6GJiKiGrVq1CnZ2dlBXV4eLiwuOHz9eZvtr167Bx8cHGhoasLKywnfffSe3Wd3Ro0fh4uICdXV12NvbY82aNXL97Ny5E87OzlBTU4OzszN2794t1yY+Ph4jR46EiYkJ1NXV4ezsjKNHj77dgOmtdG9mjg/cGiLs2AOcupes6HCIiKQqtBL6yJEj5XekrAwfH5+3Dqg+KS7HIWYSmoiIqkB+fj4aNGiAI0eOIDAwUNHh1CnSJHReIXTVVRQcDRER1Rfbt2/HxIkTsWrVKnTo0AGrVq1Cz549cePGDTRs2FCufVpaGrp16wZvb2+cO3cOt2/fxqhRo6ClpYXJkycDAB4+fIhevXph9OjR2Lx5M06cOIHx48fDxMQEAwcOBABER0fD398fc+bMwYABA7Br1y4MHjwYJ0+ehLu7OwAgJSUFXl5e6NChA/bv3w8TExM8ePAApqamNfcGUYlmveeEMw+fI/i3K/hrYkcYaKkqOiQiooqthJ4xY0aJd0bXrFmDWbNmVXlQ9UVB8Upofq2XiIiqgIqKClRUVCAS8eZmVdNQ+f8kNBERUU1ZsmQJRo0ahcDAQDg5OSE0NBQWFhZYvXp1ie23bNmCrKwsbNiwAc2bN8fAgQMxbdo0LFmyRLoaes2aNbC0tERoaCicnJwQGBiIkSNHYvHixdJ+QkJC0KlTJ8yYMQNOTk6YMWMGfH19ERISIm3z448/wsLCAhs3boSbmxvs7OzQpUsXODmxBISiaaoqY/nQNniemYsvd16VWwlPRKQIFcp+btq0CW3atJE77uLigo0bN1Z5UPVFQWFRTWhlMZMFRERUNSZMmIAFCxagoKBA0aHUKcVJ6CwmoYmIqIbk5eXhwoUL8PPzkznu5+eHU6dOlfia6OhodOzYERoaGtJj3bt3R1xcHGJiYqRtXu+ze/fuOH/+PPLz88ts8+p59+zZA3d3d/j7+8PU1BStW7fGihUrmPCsJZpb6WFaj6aIuPEM60/GKDocIqKKleNITEyEiYmJ3HEjIyM8e/asyoOqL4pXQiuzHAcREVWR48eP4+jRo7CyskLz5s2hpaUl8/wff/yhoMjebawJTURENS05ORmFhYUwMzOTOW5mZobDhw+X+JqEhARYW1vLtS9+zs7ODgkJCejatatcm4KCAiQnJ8PCwgIJCQklnjchIUH684MHD7Bq1Sp88cUX+Oqrr3D58mVMmDABAPDZZ5/JxRYWFoawsDAAQGxsLKKioirwLpQuIyPjrft4F7zNOBsJAtqYijF//w2Ikh/AXl9ctcFVEf4u65b6MM76MEag6sdZoSR0w4YNcfz4cdjb28scP3bsmNwERxVXXBNaWYnlOIiIqGoYGxtL6zlS1WE5DiIiUpTXy2wJglBm6a2S2r9+/E3bvHpMIpHA1dUVCxYsAAC0adMGd+/excqVK0tMQgcFBSEoKAgA4OrqCl9f31LHUBFRUVFv3ce74G3H2dY9H72WH8e6W8CBz72gp1n79rbg77JuqQ/jrA9jBKp+nBVKQo8dOxZffPEF8vLy0LlzZwBFmxVOnz4d06ZNq7Jg6pt8SVE5DjHLcRARURX59ddfFR1CnaSpWvSRiSuhiYiophgbG0MsFsusPgaKvqn8+irlYubm5iW2B/5/RXRpbZSVlWFkZFRmm1fPa2FhAWdnZ5k2Tk5OWLZsWUWHSDVAT1MFK4e1xeA1pzBlxxWEBbhw/xAiUogKLcGdPHkyxo4di88//xxNmjRBkyZNMHHiRAQGBuLLL7+s7hjrrMLijQm5EpqIiKpI586dkZKSInc8LS1NeiOZKk9DtWiuzspjrW0iIqoZqqqqcHFxQUREhMzxiIgIeHp6lvgaDw8PHD9+HDk5OTLtLS0tYWtrK23zejmPiIgIuLq6QkVFRdqmvPN6eXnh9u3bMm3u3LkDGxubyg2Uql3rBvr4qqcTIm48w7oTDxUdDhHVUxXOfi5YsADJyck4ffo0oqOjkZSUhIULF1ZnbHVe/n8bE4pZE5qIiKpIVFQU8vLy5I7n5OTg+PHjCoiobtD4byV0DldCExFRDQoODkZ4eDjWrl2LmzdvYuLEiYiLi8O4ceMAANOnT0eXLl2k7T/88ENoampi1KhR+Pfff7Fr1y4sXLgQwcHB0tWv48aNQ2xsLCZNmoSbN29i7dq1CA8Px5QpU6T9TJw4Ef/88w8WLFiAW7duYcGCBYiMjMSkSZOkbb744gucPn0a33//Pe7du4fff/8dy5cvx6efflozbw5VymgvW/g5m2HhX7dw8fFLRYdDRPVQpZbgamlpoV27dnBzc4O2tvYbnXDVqlWws7ODuro6XFxcyr0gFgQBISEhaNq0KdTU1GBhYYGvvvpK+vyuXbvg5+cHExMT6OjowN3dXW7TpfDwcIhEIrnHq3eHFUG6EprlOIiI6C1dvHgRFy9eBABcvXpV+vPFixdx7tw5hIWFwcrKSsFRvruKa0JnsSY0ERHVIH9/f4SEhGDevHlo3bo1Tpw4gQMHDkhXG8fHx+P+/fvS9np6eoiIiEBcXBxcXV3x6aefYvLkyQgODpa2sbOzw4EDB3Ds2DG0bt0a33//PZYvXy6zp4Snpye2bduGDRs2oGXLlti4cSO2b98Od3d3aZt27dphz549+O2339C8eXPMmDEDc+fOxfjx42vgnaHKEolEWDSoFcz11DHhf5eQkiW/aIGIqDpVqCY0AERGRmLr1q14/Pix3Aqrf/75p0J9bN++HRMnTsSqVavQoUMHrFq1Cj179sSNGzfQsGHDEl8zefJk7Nu3D4sWLUKLFi2QmpqK+Ph46fNHjx5F586dMW/ePBgaGmLLli3o378/oqKi0LFjR2k7TU1NmckZANTV1Ss6/Goh3ZhQzHIcRET0dlxdXaU3Wf38/OSe19DQQGhoqAIiqxs0Vf/bmJAroYmIqIaNHz++1MRueHi43LEWLVrg2LFjZfbp4+MjvXldmkGDBmHQoEFltunduzd69+5dZhuqPfQ0VbDyw7YYtOYUJm67jPWj2vGb2URUYyqUhA4PD8e4ceOkyd1+/frhzp07ePjwIYYPH17hky1ZsgSjRo1CYGAgACA0NBR///03Vq9eLd1R91W3b99GaGgorl69CicnJ+nxNm3aSP/79U0PZs+ejf3792PPnj0ySWiRSARzc/MKx1oTCv5bCa3Mf/SJiOgtPXz4EIIgwN7eHmfPnoWJiYn0OVVVVZiamkIsFiswwnebmrISRCIghyuhiYiI6B3WqoE+Zvdphpl7/sWyw3cQ7Oeo6JCIqJ6o0BLcxYsXY8WKFdi6dStUVFSwYMECXLp0CcOHD69wWY68vDxcuHBBbnWWn58fTp06VeJr9u7dC3t7e/z999+wt7eHra0tRo4cKd3dtzTp6ekwMDCQOZadnQ0bGxtYW1vjvffew6VLlyoUd3Uq+K8mtDLLcRAR0VuysbGBra0tJBIJXF1dYWNjI31YWFgwAf2WRCIRNFTELMdBRERE77xh7g0x2MUay/+5h4gbzxQdDhHVExVaCf3gwQN07doVAKCmpoaMjAwAwGeffQZfX98KbVCYnJyMwsJCmJmZyRw3MzOT25n31fM+evQI27Ztk9Z1njJlCvr06YPo6GgoKcnn0FeuXInY2FgEBARIjzk6OmL9+vVo1aoV0tPTsWzZMnh5eeHKlStwcHCoyFtQLfK5EpqIiKrBkydPcPz4cSQmJkIikcg892pNSKocDRUxy3EQERHRO08kEmHu+81x+1k6grdfxt7PvGBv8mb7fhERVVSFktBGRkZIT08HAFhZWeHff/9Fy5Yt8fz5c2RnZ1fqhMU78hYTBEHuWDGJRILc3Fxs2rQJTZo0AQBs2rQJjo6OOHfunMymCACwc+dOTJ06Fdu2bZNu1AAAHh4e8PDwkP7s6emJ1q1bIzQ0FMuXL5c7b1hYGMLCwgAAsbGxiIqKqtQYX5eRkVFiH//GFQAALpw7h1itd78udGnjrEvqwxgBjrMuqQ9jBOrPOCtiy5YtGD16NJSVlWFiYiIzx4pEIiah34KGqhjZXAlNREREdYC6ihirh7ugT+gJjN10AXs+9YKWWoW3DSMiqrQK/QvTsWNHHDp0CC1atMCQIUPw+eefIyIiAkeOHEG3bt0qdCJjY2OIxWIkJCTIHE9MTJRbHV3MwsICysrK0gQ0ADg4OEBZWRmPHz+WSULv3LkTAQEB2LhxI/r27VtmLGKxGK6urrh7926JzwcFBSEoKAhA0UZPvr6+FRliqaKiokrsI/H8E+DqVXh6tEcDQ823OkdtUNo465L6MEaA46xL6sMYgfozzor45ptvMHnyZMydO5clOKoYV0ITERFRXWKlr4HQD9ogYN0ZTN1xBSs/bFvqIkEiordVoeW3K1aswAcffAAAmD59OqZOnYrnz59jyJAhWLt2bYVOpKqqChcXF0RERMgcj4iIgKenZ4mv8fLyQkFBAe7fvy899uDBAxQUFMisdP7tt98wfPhwhIeHl7t7L1C0+vrq1auwsLCoUOzVpfC/chwq4nd/FTQREdUOz549w5gxY6okAb1q1SrY2dlBXV0dLi4uOH78eJntBUFASEgImjZtCjU1NVhYWOCrr76SPh8VFQWRSCT3uHXrlkw/O3fuhLOzM9TU1ODs7Izdu3e/9ViqgoYqa0ITERFR3eLV2BjTejTFgWsJCDv2QNHhEFEdVu5K6IKCAmzbtg3vv/8+AEBJSQnTpk17o5MFBwcjICAAbm5u8PLywpo1axAXF4dx48YBKEpwnz17FkeOHAEAdO3aFW3btsXo0aMREhICAJg0aRLc3d3h6uoKANi2bRsCAgKwePFieHt7S1daq6qqwtDQEAAwZ84ctG/fHg4ODkhLS8Py5ctx9epVrF69+o3GUVW4MSEREVW1Xr164cyZM7C3t3+rfrZv346JEydi1apV6NChA1atWoWePXvixo0baNiwYYmvmTx5Mvbt24dFixahRYsWSE1NRXx8vFy769evS+doADAxMZH+d3R0NPz9/TFnzhwMGDAAu3btwuDBg/+vvTsPi6ps/wD+nZUdZF9EWRQQxAVBCVDEDVOzcnupjPCtRKMF10rtl1mWWaQoqbxuoWZqpmalWbigoLijmFtuaAiI4Aayz5zfH+jkyCIqMDDz/VzXXHrOec45983ROcw9z3ke7N27t8owXI2NPaGJiIhIG0UGuyI98zZmbzsDT3tTBLtbP3onIqLH9MgitFQqxeTJkzFo0KCnPllYWBjy8/Mxc+ZMZGdnw9vbG1u3blX1as7Ozlbr9SwWi/Hbb7/hvffeQ3BwMAwMDNCvXz/MmTNHNSlhfHw8KioqMG7cOIwbN061b8+ePVXjg966dQuRkZHIycmBmZkZfHx8sGfPHnTr1u2pc3oaFZyYkIiI6lm/fv3wwQcf4OTJk+jQoQNkMpna9qFDh9bpOHPmzMGoUaMwevRoAEBcXBy2bduGRYsWYdasWVXanz17FnFxcUhPT4enp6dqvY+PT5W2NjY2sLKyqva8sbGx6NWrF6ZNmwYAmDZtGnbt2oXY2FisWbOmTrE3FAO5BPmFZRqNgYiItMNPP/2ETz75BH/99ZemQyGCSCTCV8M74sL1Qrz9w1H8/HYQ2nCiQiKqZ3UaE/qZZ57BkSNH1IbAeFJRUVGIioqqdltCQkKVdfb29li/fn2Nx6vLRFRz587F3Llz6xpio6lQ3CtCczgOIiKqJ2PGjAEAfPHFF1W2iUQiKBSP7slbVlaGI0eOYNKkSWrrQ0NDsW/fvmr32bx5M1xdXbFt2zYMGjQISqUSPXv2xNdffw0bGxu1tn5+figtLYWXlxc++ugj9OrVS7UtNTUV7777rlr7/v3749tvv31k3A3NUC5BJntCExFRHS1ZsgR//vknZDIZoqOj4e/vj927d2PcuHE4e/YswsPDNR0ikYqRnhRLI/zwwrd78eaKw9gUFYgWhnJNh0VEWqRORejRo0dj0qRJuHLlCnx9fWFkZKS2vUuXLg0SnLYrV94bjoM9oYmIqJ4o791bnkZeXh4UCkWViYNtbW2xffv2ave5ePEiLl++jLVr1yIhIQEikQiTJk3C4MGDkZqaCrFYDHt7eyxatAhdu3ZFWVkZVq1ahT59+iApKQnBwcEAgJycnGrP+/DExvctXrwYixcvBgBkZmbW6cvp2hQWFtZ4jNv5pbh5R/HU52gKastTW+hCjgDz1Ca6kCOgO3nGxMRg6tSp6NixI06fPo3Nmzdj+vTp+Prrr/HOO+/g7bffrvGpICJNcTQ3xP/CffHKkgN4+4ejSPhvN85hRUT1pk5F6FdeeQVA5ZjOD6trryqqSqHgcBxERNR0PTw7uiAINc6YrlQqUVpailWrVsHd3R0AsGrVKnh4eODQoUPw9/eHh4cHPDw8VPsEBAQgIyNDNa/Dk5w3MjISkZGRACp7WIeEhDx2ng9KSkqq8Rjbb53A6ds5T32OpqC2PLWFLuQIME9togs5ArqT57JlyxAfH4/XX38dSUlJ6N27N/7880+cO3cOLVq00HR4RDXyc7bA50O8MfmndHz22yl8+oK3pkMiIi1Rp6+0Ll26VOPr4kXOnvqkyu+NCS1hEZqIiJ5SYGAgbt26pVqeMmUKbty4oVrOy8urcULBh1lZWUEikVTpfZybm1ull/J99vb2kEqlqgI0ALi5uUEqleLKlSs1nsvf3x/nzp1TLdvZ2T3WeRuTgUyCorIKTYdBRETNwOXLl9G3b18AQEhICGQyGT7//HMWoKlZGOHXCpHBrliZehmr9l/WdDhEpCXqVIR2cnKq9UVPRqFUQioW1di7i4iIqK7279+PsrJ/J81bsGCBWlFaoVDg6tWrdTqWXC6Hr68vEhMT1dYnJiYiMDCw2n2CgoJQUVGhNsHwxYsXUVFRUevvCseOHYO9vb1qOSAg4LHO25gM5FKUlCuhvPclMhERUU1KSkqgr6+vWpbL5bC2ttZgRESP54Nn26F3Oxt88stJ7Dufp+lwiEgL1Gk4jo0bN9a6fejQofUSjK6pUAiQSliAJiKi+icIT1conTBhAsLDw9GtWzcEBQUhPj4eWVlZGDt2LIDKntYHDx7Ejh07AAB9+/ZFly5d8PrrryM2NhYAMG7cOPj7+8PPzw8AEBsbC2dnZ7Rv3x5lZWX4/vvv8fPPP2PDhg2q80ZHRyM4OBizZs3CkCFDsGnTJuzatQspKSlPlU99MJBJAAAlFQoYyuv0KxQREemw+Ph4GBsbAwAqKiqwbNkyWFpaqrWpbshLoqZAIhZh3kudMWzRPry1+ig2vBWItjbGmg6LiJqxOn2CGj58eLXr7/fg5ZjQT6ZCKUAq5iD/RETU9ISFhSE/Px8zZ85EdnY2vL29sXXrVlWv5uzsbLVez2KxGL/99hvee+89BAcHw8DAAP369cOcOXMgvnevKysrw6RJk3D16lUYGBigffv22LJlCwYOHKg6TmBgINauXYuPPvoI06dPR5s2bbBu3Tr4+/s37g+gGkZ6lUXowtIKFqGJiKhWrVu3xnfffadatrOzww8//KDWRiQSsQhNTZqJvgzLIrpiyMK9GPXdQWyKCoK1iZ6mwyKiZqpOn6CUSqXackVFBdLS0jB58mR8/vnnDRKYLqhQKNkTmoiI6oVIVHV4p6cd7ikqKgpRUVHVbktISKiyzt7eHuvXr6/xeO+//z7ef//9R553+PDhNX4BrklmBjIAwO2ictiY6D+iNRER6bKMjIxHbq/LPZFI01pZGGJZRFe8tHg/3lxxCGsin+GX8UT0RJ7onUMqlaJr16744osv8NZbb+H48eP1HZdOKFcKkHJSQiIiqgeCIODVV1+Fnl5l75SSkhKMHj0ahoaGAIDS0lJNhqcVzA3lAICbReUajoSIiJq727dvqw1HRdSUdWrVAvNf9sGYVYfx3po0/C/cDxLWMojoMT3V11ctWrRQexSXHo9CweE4iIiofkRERKgtv/rqq1XavPbaa40Vjlb6twhd9oiWRERERNqln5ctPnm+PT7efBIzfj2JGc+3f+qn7ohIt9SpCH306FG1ZUEQkJ2djdmzZ8PHx6dBAtMF5Uolvz0kIqJ68eC4k9QwWhhWDsdxi0VoIiIi0kGvBTgj82YxFu+5iFbmhhgd7KrpkIioGalTEdrPzw8ikQiCIKitf+aZZ/ih9ykolAJkHBOaiIioWTA34nAcREREpNs+fLYdrt4sxudbT8OhhQEGdbTXdEhE1EzUqQh96dIltWWxWAxra2vo63NSnqdRoRAglXA4DiIioubASC6BTCLicBxERPRIzz//fK3b79y500iRENUvsViEb/7TCdfulGD8umMwN5QhsK2VpsMiomagTkVoJyenho5DJ5UrlJyYkIiIqJkQiURoYSjHrbvsCU1ERLWztLR85HYXF5dGioaofunLJFgW0RX/+V8qRq88jDWRz6CjYwtNh0VETVyditDTpk1Dq1atMHbsWLX18fHxuHr1Kj777LMGCU7bKZQCpByOg4iIqNkwN5SxJzQRET0Sh60kbWdmKMPKN7ph2KJ9GPXdIawfG4A21saaDouImrA6jQWxatWqaicg9PX1xcqVK+s9KF1RrhQgEXM4DiIiouaihaEctzgmNBERERFsTfWx6g1/iEXAa8sOIud2iaZDIqImrE4V0NzcXFhbW1dZb2lpiWvXrtV7ULpCoVRCxuE4iIioHu3evRsHDhxQLSckJKB79+4YM2YMCgsLNRiZdjA3lOFWMXtCExEREQGAi5UREv7bDbeLyxG+7ABu8YkxIqpBnYrQrVu3RnJycpX1e/bsgaOjY70HpSvKFQIkLEITEVE9GjduHHJycgAAZ8+exZgxY9CxY0ekpqZi8uTJGo6u+TM3lOMme0ITERERqXi3NMOS1/xw+UYR/ptwCEVlFZoOiYiaoDoVoceMGYPx48djyZIluHDhAi5cuIDFixdj4sSJiIyMbOgYtZZCKUAm4XAcRERUfy5cuIAOHToAADZs2IB+/fph4cKFWLJkCX799VcNR9f8VQ7HUQZBEDQdChEREVGTEdDGEnEv++D4P7cQufIISsoVmg6JiJqYOk1MOHHiROTl5eG9995DWVnloxVyuRzR0dF4//33GzRAbVahUEKqX6dLQEREVCcikQgKReUv/Tt27MCQIUMAAHZ2dsjPz9dkaFrB3FCGcoWAu2UKGOvxHk5ERER0X//2dvh6eCdMXH8cUauPIv5VX8il7HhHRJXq/G4wa9Ys5OXlYf/+/UhNTcX169fx5ZdfNmRsWq9cIUDK4TiIiKgede3aFZ999hlWrVqF5ORkDBgwAACQkZEBOzs7DUfX/JkbygEAN+9yvEMiIiKihw3zdcTnQ7yx80wuotemoUKh1HRIRNRE1KkInZOTg8zMTBgZGaFr167o1q0bjI2NkZmZ+dgTEy5cuBAuLi7Q19eHr69vtWNNP0gQBMTGxqJdu3bQ09ODvb09PvzwQ7U2u3fvhq+vL/T19eHq6or4+Pgqx9mwYQO8vLygp6cHLy8vbNq06bHibggKpQCpmN8KEhFR/YmNjcWxY8fwzjvvYNq0aWjTpg0AYP369QgMDNRwdM1fC0MZAOAmJ90hIiIiqtZIfyd8/JwXfv8rBxPXH4dCyWHMiKiORejw8HD8/vvvVdb/8ccfCA8Pr/PJ1q1bh+joaEydOhVpaWkIDAzEgAEDcOXKlRr3mThxIhYuXIjZs2fj9OnT2Lp1K4KDg1XbL126hIEDByIwMBBpaWmYMmUK3n33XWzYsEHVJjU1FWFhYRg5ciSOHTuGkSNHYsSIEThw4ECdY28I5UolJBL2hCYiovrj7e2N9PR03L59G9OnT1etj4mJQUJCguYC0xIOLQwAAJk3izUcCREREVHT9Xp3F7z/rAc2H8vClI3pULIQTaTz6lSEPnTokFrh974ePXrg8OHDdT7ZnDlzMGrUKIwePRqenp6Ii4uDvb09Fi1aVG37s2fPIi4uDps3b8YLL7wAV1dX+Pj4YODAgao28fHxcHBwQFxcHDw9PTF69GhEREQgJiZG1SY2Nha9evXCtGnT4OnpiWnTpiEkJASxsbF1jr0hKJQCZByOg4iI6pFSqYRS+e9jjzk5OVi6dCmOHj0KmUymwci0g6u1EQDgQm6hhiMhIiIiatqiQtrivT5u+PFwJqb/cpITOxPpuDoVoSsqKlBaWlplfUlJSbXrq1NWVoYjR44gNDRUbX1oaCj27dtX7T6bN2+Gq6srtm3bBldXVzg7OyMiIgK5ubmqNqmpqVWO2b9/fxw+fBjl5eW1tqnpvI2lQiFAwuE4iIioHg0aNAhxcXEAgMLCQvj5+WHy5Mno2bMnVq5cqeHomj9DuRQtWxjgwnUWoYmIiIgeZXxfN4wJdsWq/Zcx49dTLEQT6bA6Tevu7++PRYsWVemxvGDBAnTt2rVOJ8rLy4NCoYCtra3aeltbW2zfvr3afS5evIjLly9j7dq1SEhIgEgkwqRJkzB48GCkpqZCLBYjJycHffv2rXLMiooK5OXlwd7eHjk5OdWeNycnp9rzLl68GIsXLwYAZGZmIikpqU451qSwsLDaY9wtLsH13BwkJd18quM3FTXlqU10IUeAeWoTXcgR0J086+LIkSP46quvAAAbN26EqakpLl26hNWrVyMmJgavvfaahiNs/lytjXDh+l1Nh0FERETU5IlEInw4oB2UgoAlyZdQoVTi0+e9IeZT4UQ6p05F6M8//xy9e/fG8ePH0adPHwDAzp07cfToUezYseOxTigSqb/RCIJQZd19SqUSpaWlWLVqFdzd3QEAq1atgoeHBw4dOgR/f/8aj/nw+sc5b2RkJCIjIwEAfn5+CAkJqWN21UtKSqr2GJLkRLR2tENISIenOn5TUVOe2kQXcgSYpzbRhRwB3cmzLgoKCtCiRQsAwJ9//okhQ4ZAJpOhd+/eePvttzUbnJZoY22MHw//U+vvEkRERERUSSQSYepAT4jFIvxv90UolMDnL7IQTaRr6jQWxDPPPIPU1FS4uLhg48aN2LBhA1xdXZGamoqioqI6ncjKygoSiaRK7+Pc3NwqvZTvs7e3h1QqVRWgAcDNzQ1SqVQ1maGdnV21x5RKpbC0tKy1TU3nbSzlCiWkHI6DiIjqUevWrbF3717cvXsXf/zxB/r16wcAuHHjBgwNDTUcnXZoY2OMojIFcu6UaDoUIiIiomZBJBLhw2fb4e1ebbDm4BV8yMkKiXROnSugnTp1wurVq3Hy5En8+eefcHd3x5AhQ9C/f/867S+Xy+Hr64vExES19YmJiQgMDKx2n6CgIFRUVODChQuqdRcvXkRFRQWcnJwAAAEBAVWG80hMTISfn59qAqaAgIDHOm9jUSgFSPnNHxER1aMJEyYgPDwcjo6OaNmypWpi4T179qBDB+148kbT2qgmJ+SQHERERER1JRKJMCnUQzVZ4eSf0qFgIZpIZ9S5CK1QKLBp0yYMGjQILi4u+Pnnn/HWW2/h/PnzdT7ZhAkTkJCQgKVLl+L06dOIjo5GVlYWxo4dCwCYMmWKargPAOjbty+6dOmC119/HWlpaUhLS8Prr78Of39/+Pn5AQDGjh2LzMxMjBs3DqdPn8bSpUuRkJCASZMmqY4THR2NnTt3YtasWThz5gxmzZqFXbt2Ydy4cXWOvSGUKwVIJCxCExFR/RkzZgxSU1OxfPlypKSkQHzviZs2bdrgs88+03B02qGtjTEA4Oy1Ag1HQkRERNS8iEQiTOjnjvF93bHhaCYmrT/OQjSRjnhkEfrs2bOYPHkyHBwcMHHiRPj4+EAQBKxatQrvv/8+XFxc6nyysLAwxMbGYubMmejcuTNSUlKwdetWVa/m7OxstV7PYrEYv/32G2xsbBAcHIz+/fvD0dERmzdvVn2odnFxwdatW7Fnzx507twZn3/+OebPn49hw4apjhMYGIi1a9dixYoV6NixI1auXIl169apxpTWFIVSgIzDcRARUT3z8/PDkCFDYGxsrFo3aNAgBAUFPdZxFi5cCBcXF+jr68PX1xfJycm1thcEAbGxsWjXrh309PRgb2+PDz/8ULV948aNCA0NhbW1NUxMTODv749ffvlF7Rj3JyJ++FVS0nSGvrA21oOVsRyns+9oOhQiIiKiZim6rxsm9/fAprSrWHCsFKUVCk2HREQNrNaJCXv06IG//voLw4cPx48//oiePXsCAGbPnv3EJ4yKikJUVFS12xISEqqss7e3x/r162s9Zs+ePXH06NFa2wwfPhzDhw+vc5wNTRAEKJQCJByOg4iI6tmWLVswe/ZsnDp1CiKRCF5eXvjggw8wcODAOh9j3bp1iI6OxsKFC9G9e3csXLgQAwYMwKlTp9C6detq95k4cSJ+++03fP311+jQoQNu376N7Oxs1fbdu3ejd+/emDlzJiwsLLB69WoMGTIESUlJ6NGjh6qdoaGh2pfSAKCvr/+YP4WGIxKJ4OVgxiI0ERER0VN4u1dbGMolmPHrKbyRcBj/C/eFkV6tZSoiasZq/d+dmpqKt99+G6NHj4a3t3djxaQTKu49biLjcBxERFSPli5diqioKIwcORIREREAgOTkZAwZMgSLFi3C66+/XqfjzJkzB6NGjcLo0aMBAHFxcdi2bRsWLVqEWbNmVWl/9uxZxMXFIT09HZ6enqr1Pj4+qr/PmzdPbZ/p06djy5Yt+Pnnn9WK0CKRCHZ2dnVPWgO87E2xPOUSyiqUkEv5VBMRERHRk/hvkAuuZpzH8r/y8OqyA0gY1Q1mhjJNh0VEDaDWT02HDx9GRUUFevToAR8fH8ydOxc5OTmNFZtWq1BUFqGlEn5wJSKi+jN79mzMmTMH3333Hd544w288cYbSEhIQExMDL788ss6HaOsrAxHjhxBaGio2vrQ0FDs27ev2n02b94MV1dXbNu2Da6urnB2dkZERARyc3NrPVdBQQHMzc3V1hUXF8PJyQmOjo547rnnkJaWVqe4G5OXgynKFEpcuF6o6VCIiEjLPe7wWCdOnEDPnj1hYGCAli1b4tNPP4UgqI+5u3v3bvj6+kJfXx+urq6Ij4+vcpwNGzbAy8sLenp68PLywqZNm2o85xdffAGRSIR33nnnyZIknda9pQwLR3bByat3ELY4FbkFTWcYNiKqP7X2hO7cuTMWLFiAb775BuvXr8eyZcvw/vvvQ6lUYsuWLbC3t6/ywZHqplypBABIORwHERHVoytXruDZZ5+tsn7AgAFqk/bWJi8vDwqFAra2tmrrbW1tsX379mr3uXjxIi5fvoy1a9eqxnWeNGkSBg8ejNTUVNVcDg9asGABMjMzER4erlrn4eGB5cuXo1OnTigoKMC8efMQFBSE48ePw83NrcoxFi9ejMWLFwMAMjMzkZSUVKcca1JYWFinYxQWVt7HN+48gKCWza+3Tl3zbM50IUeAeWoTXcgR0J0868vjDo91584d9OvXD8HBwTh06BDOnj2LUaNGwcjICBMnTgQAXLp0CQMHDsTrr7+O77//HikpKYiKioK1tbVqbqXU1FSEhYVhxowZGDp0KDZu3IgRI0Zg7969VeZW2r9/P5YsWYKOHTs2/A+EtNaz3vZYNkqKyJVH8J/4VHz/pj8czQ01HRYR1aM6Dbajr6+P8PBwhIeH4/z581i6dCnmzp2Ljz76CL1798bvv//e0HFqHcX9ntAsQhMRUT1q3bo1EhMT0bZtW7X1f/75p2oi4LoSidTvUYIgVFl3n1KpRGlpKVatWgV3d3cAwKpVq+Dh4YFDhw5V+cC6YcMGTJ48GWvXrlWLKyAgAAEBAarlwMBAdO7cGXFxcZg/f36V80ZGRiIyMhJA5YSMISEhj5Xjw5KSkup0DIVSwMyDf6DM2B4hIc1vyLK65tmc6UKOAPPUJrqQI6A7edaXxx0ea/Xq1SgqKsKKFStgYGAAb29vnD59GnPmzMGECRMgEokQHx8PBwcHxMXFAQA8PT1x4MABxMTEqIrQsbGx6NWrF6ZNmwYAmDZtGnbt2oXY2FisWbNGdb7bt29j5MiRWLZsGT799NOG/nGQluvhZo3v3+yG/353CMMW7cOK17uhnZ2ppsMionry2GNBtG3bFl9++SX++ecf/Pjjj5DL5Q0Rl9a73xNawuE4iIioHk2aNAnR0dEYPXo0vvvuOyQkJODNN9/E+PHj69wT2srKChKJpMoQXLm5uVV6R99nb28PqVSqKkADgJubG6RSKa5cuaLWdsOGDQgPD8fKlSvx/PPP1xqLRCKBn58fzp07V6fYG4tELIJP6xY4lHFT06EQEZGWepLhsVJTU9GjRw8YGBio1vXv3x9ZWVnIyMhQtXn4mP3798fhw4dRXl5ea5uHzxsZGYnhw4ejd+/eT5Qj0cN8nSywbkxlh4QRi1KReiFfwxERUX154mlHJRIJXnjhBbzwwgv1GY/OUNyfmJA9oYmIqB6NGTMGNjY2+Oabb7Bx40YAlT2cfvzxxzrfs+VyOXx9fZGYmIgRI0ao1icmJqp6SD0sKCgIFRUVuHDhAtq0aQOgcoiOiooKtZ7OP/74IyIiIrBixQoMHz78kbEIgoD09HR06tSpTrE3pq7OFpi34xzulJTDVL/5DclBRERN25MMj5WTkwNHR8cq7e9vc3FxQU5ODvr27VulTUVFBfLy8mBvb4+cnJxqz/vgF9RLlizB+fPnsWrVqjrlo6khtJo7Xcizuhzf9xHjm8NlCF+6H6M76sHf/onLV02GLlxLQDfy1IUcgfrPs/n/L26m7k9MKGERmoiI6kl5eTmmTZuGt99+GykpKU91rAkTJiA8PBzdunVDUFAQ4uPjkZWVhbFjxwIApkyZgoMHD2LHjh0AgL59+6JLly54/fXXERsbCwAYN24c/P394efnBwBYu3YtwsPDERMTg+DgYNUHWblcDgsLCwDAjBkz8Mwzz8DNzQ137tzB/PnzkZ6ejkWLFj1VPg2hm7MFBAE4knETvdrZaDocIiLSUo8zPFZN7R9e/6Rt7q87e/Yspk6diuTk5Do/Ha2pIbSaO13Is6Yc+/Qsw5srDmPR8ZuwatUGb3R3afzg6pEuXEtAN/LUhRyB+s+TY0FoSLmicjgOGYfjICKieiKTybBw4ULVB8mnERYWhtjYWMycOROdO3dGSkoKtm7dqurVnJ2djQsXLqjai8Vi/Pbbb7CxsUFwcDD69+8PR0dHbN68WTUpYXx8PCoqKjBu3DjY29urXkOHDlUd59atW4iMjISnpydCQ0Nx9epV7NmzB926dXvqnOqbT2tzSMUiHMy4oelQiIhICz3J8Fh2dnbVtgf+7RFdUxupVApLS8ta29w/RmpqKvLy8uDt7Q2pVAqpVIrdu3dj4cKFkEqlKC0tfcKsif7VwlCO79/0x7Pt7fDZb6fw+ZZTUCqf/vdcItIMVkA15P5wHOwJTURE9al///7YuXNnvRwrKioKGRkZKC0txZEjRxAcHKzalpCQoBpb8j57e3usX78eBQUFyM3NxerVq9U+JCclJUEQhCqvBx/xmjt3Li5fvozS0lLk5ubijz/+UJuosCkxkEvQxckcf/yVUy+FfyIiogc9ODzWgxITExEYGFjtPgEBAUhOTkZJSYlaewcHBzg7O6vaPDycR2JiIvz8/CCTyVRtajvviy++iBMnTuDYsWOql5+fH1566SUcO3aMc0dRvdGXSbBgZBe8FuCEJcmX8O7aNJSUKzQdFhE9AQ7HoSHl94bjkElYhCYiovrTp08fTJ06Fenp6fD19YWRkZHa9gd7HdPTC/NrhYnrjyP1Yj4C21hpOhwiItIyjzs81iuvvIIZM2Zg1KhR+Oijj/D333/jyy+/xPTp01VDaYwdOxbffvstxo0bhzFjxmDv3r1ISEjAmjVrVOeNjo5GcHAwZs2ahSFDhmDTpk3YtWuXarivFi1aoEWLFmqxGhkZwcLCAt7e3o3wkyFdIhGLMOP59mjZwgBfbjuDzJvFWPKaL2xM9DUdGhE9BhahNeR+T2ipmJ3RiYio/rzzzjsAgPnz51fZJhKJoFCw50h9GtTRHp9tOYXV+6+wCE1ERPUuLCwM+fn5mDlzJrKzs+Ht7V3r8FhmZmZITEzE22+/DT8/P5ibm2PixImYMGGCqo2Liwu2bt2K8ePHY9GiRXBwcMD8+fPVJh8ODAzE2rVr8dFHH2H69Olo06YN1q1bB39//8ZLnugBIpEIY3q2gbOVEcatPYYXv92LpRFd4eVgqunQiKiOWITWkHJl5ZjQEvaEJiKieqS8d3+hxqEvk2CojyO+338Zt4vKYWYo03RIRESkZaKiohAVFVXttoSEhCrrOnTogD179tR6zJ49e+Lo0aO1thk+fDiGDx9e5zgfHF6LqKH0b2+H9WMD8OaKwxgRvw/zX/ZBH8/qx0gnoqaF3XA15H5PaBl7QhMRETVrQ7u0RJlCid9OZGk6FCIiIiKt593SDJvfCYKrtTHeXHkYS5Mvcn4OomaAFVANKVfc6wnNiQmJiKge/P7773B2dsbt27erbLt9+zacnZ3x559/aiAy7dfewRRuNsbYdPSqpkMhIiIi0gm2pvr4cUwA+nvZYeaW05i66S9VnYWImiYWoTWkghMTEhFRPfr2228xefJkmJmZVdlmZmaGDz74APPmzdNAZNpPJBJhmK8jDl++ibM5BZoOh4iIiEgnGMglWDiyC6JC2mDNwSsYufQArheUajosIqoBi9Aacn84DvaEJiKi+pCeno6+ffvWuL137944fvx4I0akW8L8WkFfJsZ3ey9pOhQiIiIinSEWi/D+s+0QG9YZ6Zm3MDguBcf+uaXpsIioGixCa8j9x0RkEl4CIiJ6etevX4e4lnkGRCIR8vPzGzEi3WJuJMfQLo7YmHYV+YXsgUNERETUmF70aYkNbwVCKhHhP/GpWHfoiqZDIqKHsAKqIfd7Qks5HAcREdUDR0dHpKen17g9PT0dLVu2bMSIdM9/A51RVqHEmoP80ENERETU2No7mOHXd7qjm4sFPthwAtM2nUBZBceJJmoqWITWkPL7RWgOx0FERPVg0KBB+L//+z8UFxdX2VZUVISPP/4YgwYN0kBkusPN1gTB7tZYmXqZH3iIiIiINMDcSI4Vr3fD2J5tsPrAFby8ZD+u3SnRdFhEBBahNUahrPxwKq3l0WkiIqK6mjZtGm7fvg03NzfMnj0bmzdvxubNm/Hll1/C3d0dt2/fxtSpUzUdptZ7PcgZuQWl2HIiS9OhEBEREekkiViEDwe0w7ev+OB09h08F5eCAxc5LB2RpjV6BXThwoVwcXGBvr4+fH19kZycXGPbjIwMiESiKq9t27ap2owaNaraNkZGRqo2CQkJ1bYpKdHct2HlCk5MSERE9cfGxgb79u1Dx44dMXXqVAwZMgRDhgzBtGnT0LFjR+zduxe2traaDlPrBbtZo421EZalXIIgCJoOh4iIiEhnPdfRAZuigmCsJ8XLS/Zjwa7zUCr5+xmRpkgb82Tr1q1DdHQ0Fi5ciO7du2PhwoUYMGAATp06hdatW9e437Zt29CpUyfVsoWFherv8+bNw5dffqnWPigoCMHBwWrrDA0NceHCBbV1+vr6T5POU6m4V4TmxIRERFRfnJycsHXrVty8eRPnz5+HIAhwc3ODubm5pkPTGWKxCP8NcsFHP/+FQxk30c3F4tE7EREREVGD8LAzwS/vBGHqpr/w9R9nsf9iPmLDOsPSWE/ToRHpnEatgM6ZMwejRo3C6NGj4enpibi4ONjb22PRokW17mdpaQk7OzvVSy6Xq7aZmZmpbbtw4QIuXryI0aNHqx1DJBKptbOzs2uQHOvq/nAc7AlNRET1zdzcHF27dkW3bt1YgNaAoV1aooWhDEuSL2o6FCIiIiKdZ6Ivw/yXOuOLIR1w4NINDJyfzOE5iDSg0YrQZWVlOHLkCEJDQ9XWh4aGYt++fbXuO3ToUNjY2CAoKAg//fRTrW2XLFmC9u3bIzAwUG19cXExnJyc4OjoiOeeew5paWlPlkg9KVf1hGYRmoiISJsYyqV47RknbD99DReuF2o6HCIiIiKdJxKJ8Ip/a/wcFQQjeeXwHN/uPMfhOYgaUaMNx5GXlweFQlFlPEpbW1ts37692n2MjY0RExODoKAgSKVS/PLLLwgLC8OKFSvw6quvVml/+/ZtrF+/Hl988YXaeg8PDyxfvhydOnVCQUEB5s2bh6CgIBw/fhxubm5VjrN48WIsXrwYAJCZmYmkpKQnzLpSYWFhlWOcvVQOAEjdtxcGUu0oRFeXp7bRhRwB5qlNdCFHQHfypObjtUBn/G/PRSzcdQHf/KfTo3cgIiIiogbn5WCKX97tjqkbTyDmz79x4NINfPOfTrAx0dxwrUS6olHHhAYqv316kCAIVdbdZ2VlhYkTJ6qW/fz8kJeXh6+++qraIvT3338PhUKB8PBwtfUBAQEICAhQLQcGBqJz586Ii4vD/PnzqxwnMjISkZGRqnOGhITUOb/qJCUlVTnGKZwHzp5Fr57B0JdJnur4TUV1eWobXcgRYJ7aRBdyBHQnT2o+rIz1EBHojCXJF/FGdxd4OZhqOiQiIiIiAmCsJ8W8lzojoI0lPvnlJAbEJmP2sI7o68VJvIkaUqMNx2FlZQWJRIKcnBy19bm5uVV6R9fG398f586dq3bbkiVLMGzYMLWJC6sjkUjg5+dX43Eag+LecBxSjglNRESkld4OaQszAxk+++0UBIGPehIRERE1FSKRCC93a43f3u0OW1N9vLnyMKZuOoGisgpNh0aktRqtCC2Xy+Hr64vExES19YmJiVXGb67NsWPHYG9vX2X9wYMHcfz48SoTElZHEASkp6dXe5zGUn5v3CFOTEhERKSdzAxlmNzfA6kX87H+SKamwyEiIiKih7jZmuDnt4Mwpqcr1hy8gkHzU3D8n1uaDotIKzVaERoAJkyYgISEBCxduhSnT59GdHQ0srKyMHbsWADAlClT0KdPH1X7FStW4IcffsDp06dx9uxZxMTEYMGCBXj33XerHHvx4sVwc3NDz549q2ybMWMG/vjjD1y8eBHHjh3DG2+8gfT0dNV5NaFCoYRULKpxKBIiIiJq/l7u2hrdnC0wa+tpFJayZw0RERFRUyOXijFlgCd+ePMZlJYrMGzRPny78xwUnLSQqF416pjQYWFhyM/Px8yZM5GdnQ1vb29s3boVTk5OAIDs7GxcuHBBbZ+ZM2fi8uXLkEgkcHd3x/Lly6uMB11QUIC1a9fi448/rraoe+vWLURGRiInJwdmZmbw8fHBnj170K1bt4ZL9hEUSoG9oImIiLScWCzCtEGeeGHBXqzYl4G3e7XVdEhEREREVI2ANpb4PToYH23+CzF//o2ks9cRM6ITnK2MNB0akVZo9IkJo6KiEBUVVe22hIQEteWIiAhEREQ88pgmJiYoLCyscfvcuXMxd+7cx4qzoZUrBMgkjdoRnYiIiDSgU6sW6NPOBov3XER4gBNM9WWaDomIiIiIqmFmKEPcyz7o084G/7f5Lzw7bw/e798OowKdIWZHQqKnwiqohiiUSkglfAMjIqKma+HChXBxcYG+vj58fX2RnJxca3tBEBAbG4t27dpBT08P9vb2+PDDD9Xa7N69G76+vtDX14erqyvi4+OrHGfDhg3w8vKCnp4evLy8sGnTpnrNSxPG9XXH7eJyJOzN0HQoRERERPQIL/q0ROL4nghsY4VPfzuFsMWpuJR3V9NhETVrLEJrSLlSgJTfohERURO1bt06REdHY+rUqUhLS0NgYCAGDBiAK1eu1LjPxIkTsXDhQsyePRunT5/G1q1bERwcrNp+6dIlDBw4EIGBgUhLS8OUKVPw7rvvYsOGDao2qampCAsLw8iRI3Hs2DGMHDkSI0aMwIEDBxo034bWwdEM/bxssST5Im4XlWs6HCIiIiJ6BDszfSyL8MM3IzrhbE4Bno3dg6XJFzlWNNETYhFaQxQKAVIxf/xERNQ0zZkzB6NGjcLo0aPh6emJuLg42NvbY9GiRdW2P3v2LOLi4rB582a88MILcHV1hY+PDwYOHKhqEx8fDwcHB8TFxcHT0xOjR49GREQEYmJiVG1iY2PRq1cvTJs2DZ6enpg2bRpCQkIQGxvb0Ck3uAn93FFUpsCX285oOhQiIiIiqgORSIRhvo5InNAT3dtaYeaW0/jP/1Jx8XrNQ8ISUfVYBdWQcqWSExMSEVGTVFZWhiNHjiA0NFRtfWhoKPbt21ftPps3b4arqyu2bdsGV1dXODs7IyIiArm5uao2qampVY7Zv39/HD58GOXl5bW2qem8zYmnvSleD3LGmoNXsO9CnqbDISIiIqI6sjXVx9IIP8wN64TzuYUYMC8ZC3adR1mFUtOhETUbjT4xIVWqUAiQcUxoIiJqgvLy8qBQKGBra6u23tbWFtu3b692n4sXL+Ly5ctYu3YtEhISIBKJMGnSJAwePBipqakQi8XIyclB3759qxyzoqICeXl5sLe3R05OTrXnzcnJqfa8ixcvxuLFiwEAmZmZSEpKesKsKxUWFj71MWrjpyfgNyMRxqw4gE8CDGBpoJn+AA2dZ1OgCzkCzFOb6EKOgO7kSUTaRyQSYYiPI4LaWGHGr6fw9R9n8XPaVXwxtAO6OltoOjyiJo9FaA1RKAX2hCYioiZNJFK/TwmCUGXdfUqlEqWlpVi1ahXc3d0BAKtWrYKHhwcOHToEf3//Go/58PrHOW9kZCQiIyMBAH5+fggJCaljdtVLSkp66mM8SttOhXjx27347rwMP40NhL5M0qDnq05j5KlpupAjwDy1iS7kCOhOnkSkvWxM9bFgZBcMO3MN//fzSYyIT8XL3Vrjw2fbwcxQpunwiJosDsehIeUKJWQS/viJiKjpsbKygkQiqdL7ODc3t0ov5fvs7e0hlUpVBWgAcHNzg1QqVU1maGdnV+0xpVIpLC0ta21T03mbozbWxpj3cmeczLqDKRtPqArxRERERNR89G5ni8QJwYgMdsWPh/9BnzlJ2HzsKn+3I6oBq6AaUlKhhJ4Gej4RERE9ilwuh6+vLxITE9XWJyYmIjAwsNp9goKCUFFRgQsXLqjWXbx4ERUVFXBycgIABAQEVBnOIzExEX5+fpDJZKo2j3Pe5qp3O1tM7OeOTWlXsSzlkqbDISIiIqInYCiXYupAT/zyThBatjBA9NpjeG35QVzgxIVEVbAIrSGFJeUw0eNoKERE1DRNmDABCQkJWLp0KU6fPo3o6GhkZWVh7NixAIApU6agT58+qvZ9+/ZFly5d8PrrryMtLQ1paWl4/fXX4e/vDz8/PwDA2LFjkZmZiXHjxuH06dNYunQpEhISMGnSJNVxoqOjsXPnTsyaNQtnzpzBrFmzsGvXLowbN65R828Mb/dqiwHedvhi62mknONEhURERETNVXsHM2yMCsKM59vj2D+30H/uHnyx9TQKSso1HRpRk8EitIYUllbAmEVoIiJqosLCwhAbG4uZM2eic+fOSElJwdatW1W9mrOzs9V6PYvFYvz222+wsbFBcHAw+vfvD0dHR2zevBliceWvGy4uLti6dSv27NmDzp074/PPP8f8+fMxbNgw1XECAwOxdu1arFixAh07dsTKlSuxbt061ZjS2kQkEiFmRCe42ZjgnTVH8c+NIk2HRERERERPSCIWISLQGbsmhWBol5ZYvOcien+zGxuPZkKp5BAdRKyCasjdUgWMWIQmIqImLCoqClFRUdVuS0hIqLLO3t4e69evr/WYPXv2xNGjR2ttM3z4cAwfPrzOcTZnRnpSLH7NF4PjUjB65WH89FYgv6QmIiIiasasjPXw1fBOeMXfCdM3/4UJPx7H9/sv4/mWCk2HRqRR7AmtIQUl5TDR54dMIiIiXedkaYRvX+mCc7mFiFp9FOUKpaZDIiIiIqKn1LlVC2yKCsJXwzricn4RZqSWYMrGdOQWlGg6NCKNYBFaAwRBwN0yBYz0ODEhERERAcHu1vhiiDf2/H0db68+irIKFqKJiIiImjuxWIT/dG2FnZNC0M9JivWHM9Hr6yTE7TiH4jL2jCbdwiK0BpSUK6FQCjDWk2k6FCIiImoiwrq2xieDvfDnqWuIWn0UpRX8YEJERESkDcwMZHjFUw+JE3qih5s1vkn8GyExu7D+8D9QcLxo0hEsQmtAQWnl7KjGHI6DiIiIHjAqyAWfvdAe209fw7s/pKGCQ3MQERERaQ0XKyPEh/ti/dgA2JkZYPJP6XguLgUp5/I0HRpRg2MRWgPullb2bDLmcBxERET0kPAAZ0y/1yN64vrjHJqDiIiISMt0dbbAz1GBiHvZBwUl5Xh12QG8tvwgTmTe1nRoRA2GXXE1oLCkAgA4HAcRERFV679BLigqU+DrP84i53YJ/hfuixaGck2HRURERET1RCQSYXAnB4S2t8XKfZexIOk8Bn+bgoEd7DChnzva2phoOkSiesWe0BqgGo5Dj98BEBERUfXe7tUWsWGdkXblFp7/di+2/ZWj6ZCIiIiIqJ7pSSUYHeyKPe/3QnQfN+w+ex2hc/dg4o/H8c+NIk2HR1RvWITWgH+H42ARmoiIiGr2ok9L/DDaH3KpGGO/P4IFu85rOiQiIiIiagCm+jKM7+eO5A96443uLvgtPQu9v0nC//38F67dKdF0eERPjUVoDSjkxIRERERUR37OFtgW3QMvdHbA13+cxUc/n0BxmULTYRERERFRA7AwkmPaIC/sntwL//FrhTUHr6DHV7swffNfyLpVrOnwiJ5YoxehFy5cCBcXF+jr68PX1xfJyck1ts3IyIBIJKry2rZtm6pNUlJStW3OnDmjdqwNGzbAy8sLenp68PLywqZNmxosx0cpvNcT2ogTExIREVEdSCVifDOiE0b3cMHqA1cQtjgV1wtKNR0WERERETUQOzN9fD6kA3ZODMFQn5ZYfeAKen69C1M2nuAwHdQsNWoRet26dYiOjsbUqVORlpaGwMBADBgwAFeuXKl1v23btiE7O1v16t27d5U2J0+eVGvj5uam2paamoqwsDCMHDkSx44dw8iRIzFixAgcOHCg3nOsi/sTE5pwYkIiIiKqI6lEjGmDvLAk3A/nrhVi4Pxk7Pn7uqbDIiIiIqIG1NrSEF8O64ikySEI69oKG45koldMEiavP46MvLuaDo+ozhq1CD1nzhyMGjUKo0ePhqenJ+Li4mBvb49FixbVup+lpSXs7OxUL7m86uzwNjY2am0kkn97GcfGxqJXr16YNm0aPD09MW3aNISEhCA2Nra+U6yTwtJySMQi6Ms4GgoRERE9nr5ettgYFQhzQxleW34Qn/12CiXlHJ6DiEhbPc7TxABw4sQJ9OzZEwYGBmjZsiU+/fRTCIKg1mb37t3w9fWFvr4+XF1dER8fX+U4j3qaeNasWejatStMTU1hbW2NwYMH46+//nr6hImoWo7mhpj5Ygfseb8XXn3GCb8crxwzetzaNJy7VqDp8IgeqdGqoGVlZThy5AhCQ0PV1oeGhmLfvn217jt06FDY2NggKCgIP/30U7Vt/Pz8YG9vjz59+mDXrl1q21JTU6uct3///o88b0O5W6qAkVwCkUikkfMTERFR8+Zpb4pf3umOiAAnLEu5hBcX7MXf/PBBRKR1Hvdp4jt37qBfv36wtbXFoUOHMH/+fHz99deYM2eOqs2lS5cwcOBABAYGIi0tDVOmTMG7776LDRs2qNrU5WnipKQkREVFYd++fdi5cyekUin69u2LGzduNNwPhIhgZ6aPT55vj+QPeuHNHq744+Q19Ju7B28kHMKBi/lVvnQiaioabWa8vLw8KBQK2Nraqq23tbXF9u3bq93H2NgYMTExCAoKglQqxS+//IKwsDCsWLECr776KgCoelJ37doVZWVlWLVqFfr06YOkpCQEBwcDAHJycqo9b05OTrXnXbx4MRYvXgwAyMzMRFJS0tOkjsLCQrVjnMsohQyKpz5uU/NwntpIF3IEmKc20YUcAd3Jk+hB+jIJZrzgjRAPG0z+6TgGx6Vg2iBPhD/jxC+6iYi0xINPEwNAXFwctm3bhkWLFmHWrFlV2q9evRpFRUVYsWIFDAwM4O3tjdOnT2POnDmYMGECRCIR4uPj4eDggLi4OACAp6cnDhw4gJiYGAwbNgyA+tPEADBt2jTs2rULsbGxWLNmDQDgjz/+UDv3qlWrYGZmhr1792Lw4MEN9jMhoko2JvqYOtATY3u2wcrUDKxMvYywxfvRqVULjAl2Rf/2dpCI+TshNR2NVoS+7+EPRYIg1PhBycrKChMnTlQt+/n5IS8vD1999ZWqCO3h4QEPDw9Vm4CAAGRkZCAmJkZVhH7c80ZGRiIyMlJ1zpCQkLonWI2kpCS1Y6z55zCsFEUICQmueadm6OE8tZEu5AgwT22iCzkCupMnUXV6tbPB79HBeP+n4/h480kknb2Or4Z3hJWxnqZDIyKip3D/aeJJkyapra/taeLU1FT06NEDBgYGqnX9+/fH//3f/yEjIwMuLi41Pim8YsUKlJeXQyaTITU1Fe+++26VNt9++22N8RYUFECpVMLc3PxxUyWip2BhJMe4vu4YE9wGPx3NxNLki4hafRROloZ4s7sLhvu2goFc8ugDETWwRitCW1lZQSKRVOl9nJubW6WXcm38/f3x3XffPbLN2rVrVct2dnZPfd76dLdUASM9vgEQERFR/bA20cPyUV2xMvUyPt96Gs/G7sHXIzqhl4eNpkMjIqIn9CRPE+fk5MDR0bFK+/vbXFxckJOTg759+1ZpU1FRgby8PNjb2z/208QAEB0djc6dOyMgIKDa7Q39xLG20oU8dSFHoHHybAVguh9w5Joefr9Ugv/bfBKzt55E79Yy9Golhbl+w4/KqwvXUxdyBOo/z0YrQsvlcvj6+iIxMREjRoxQrU9MTFQ98lMXx44dg729/WO1CQgIQGJiIiZPnqx23sDAwMfIoP4UlFbAzECmkXMTERGRdhKJRIgIdMYzrpaIXpuG/353CKMCnfHhgHbQl/HLbyKi5upxnuqtqf3D65+0TU3nnTBhAlJSUpCSkgKJpPp7TkM/caytdCFPXcgRaNw8ewOYJAg4lHETi/dcwK9ncrH1UgWe9bbDf4Oc0aW1eYMN36YL11MXcgTqP89GHY5jwoQJCA8PR7du3RAUFIT4+HhkZWVh7NixAIApU6bg4MGD2LFjBwBgxYoVkMlk8PHxgVgsxq+//ooFCxZg9uzZqmPGxsbC2dkZ7du3R1lZGb7//nv8/PPPapMqREdHIzg4GLNmzcKQIUOwadMm7Nq1CykpKY2ZvkpBSTkcWxg8uiERERHRY/KwM8HPbwfhq21nsXzvJez++zpeC3DCSH8nyKWNNic1ERE9pSd5mrimp4CBf3tE19RGKpXC0tKy1jbVnXf8+PFYu3Ytdu3aBVdX18fIkIgakkgkQjcXC3RzsUBG3l2s2n8ZPx7+B7+lZ8O7pSleC3DG850c2FmBGk2jfhIJCwtDbGwsZs6cic6dOyMlJQVbt26Fk5MTACA7OxsXLlxQ22fmzJnw8/ND165dsXbtWixfvhzjx49XbS8rK8OkSZPQsWNH9OjRAykpKdiyZQuGDh2qahMYGIi1a9dixYoV6NixI1auXIl169bB39+/cRJ/SF5BKayM5Ro5NxEREWk/fZkEHw/2wsrXu8HMQIYZv57CsEX7cD63UNOhERFRHT34NPGDanuqNyAgAMnJySgpKVFr7+DgAGdnZ1Wbh4fzSExMhJ+fH2QymapNXc4bHR2NH374ATt37kS7du2eKE8ianjOVkb4v+e8sH9KH8x80Rul5Uq8/1M6AmbtwOxtZ3D1VrGmQyQd0OgTE0ZFRSEqKqrabQkJCWrLERERiIiIqPV477//Pt5///1Hnnf48OEYPnx4neNsKCXlCtwpqYC1CScLIiIiooYV7G6NYHdr/HEyBx9uSMdzccmYNtATjvceuyYioqbtcZ8mfuWVVzBjxgyMGjUKH330Ef7++298+eWXmD59uurR+7Fjx+Lbb7/FuHHjMGbMGOzduxcJCQlYs2aN6rx1eZr47bffxqpVq/Dzzz/D3Nxc1XPa2NgYxsbGjfUjIqLHYKQnxavPOGGkf2ukXshHwr4M/G/3Bfxv9wWEeNjgpa6t0LudDaQSPj1H9a/Ri9C67npBKQDAxkRfw5EQERGRrujf3g4+rVpg8k/p+L/NJ9HRSoL2viWwMeXvI0RETVlYWBjy8/Mxc+ZMZGdnw9vbu9anic3MzJCYmIi3334bfn5+MDc3x8SJEzFhwgRVGxcXF2zduhXjx4/HokWL4ODggPnz56vN1XT/aeKPPvoI06dPR5s2bao8Tbxw4UIAQJ8+fdRinj59Oj755JOG+HEQUT0RiUQIbGuFwLZWyLxZhHWH/sG6Q/8g8kwubE318B+/VviPXyu0sjDUdKikRViEbmS594rQ7AlNREREjcnGVB8J/+2K7/dfxqe/nkTfObsxrq87XurWCoZy/kpIRNRUPc7TxADQoUMH7Nmzp9Zj9uzZE0ePHq21zaOeJhb4VA2RVnA0N8TEUA9E93HDzjO5WHvoHyzYdR7f7jqPHm7WeKVbK/TxtIWMvaPpKfFfUCO7ziI0ERE1EwsXLoSLiwv09fXh6+uL5OTkGttmZGRAJBJVeW3btk3VZtSoUdW2MTIyUrVJSEiots2DY1vSkxOJRAgPcMZnQQbo4GiGT387hcAvd+LrP87gdlG5psMjIiIiIg2RSsQIbW+H5aO6IuWD3oju44Zz1wow9vujCJi1A5/9dgqnsu5oOkxqxtjtpZFdL6j8EG1jyiI0ERE1XevWrUN0dDQWLlyI7t27Y+HChRgwYABOnTqF1q1b17jftm3b0KlTJ9WyhYWF6u/z5s3Dl19+qdY+KCgIwcHBausMDQ2rTFSsr89hI+qTnZEY37/hjyOXb2Jp8iUsTLqA1Qeu4OVurfFagBPszQw0HSIRERERaYhDCwOM6+uOd3u7YfffufjxUCZWpmZgWcoltLMzwXBfR7zQuSU7WNJjYRG6kV0vKIVYBFga8T8qERE1XXPmzMGoUaMwevRoAEBcXBy2bduGRYsWYdasWTXuZ2lpCTs7u2q3mZmZwczMTLW8d+9eXLx4EatWrVJrJxKJajwG1R+RSAQ/Zwv4OVvgVNYdzEn8G//bfQHLUi5hWBdHjPRvDe+WZo8+EBERERFpJYlYhN7tbNG7nS1u3i3Dr+lZ2HD0KmZuOY1Zv59BsJsVhvk6oq+nLfRlEk2HS00ci9CNLLegFJbGepCIRZoOhYiIqFplZWU4cuQIJk2apLY+NDQU+/btq3XfoUOHoqSkBG5ubhg/fnytY0kuWbIE7du3R2BgoNr64uJiODk5QaFQoHPnzvjss8/g4+Pz5AnRI3k5mGJphB8ybxZhwa7z2JSWiTUHr6CjoxlGBTpjUEd76En5wYKIiIhIV5kbyfFagDNeC3DG+dwCbDh6FZuOXsU7P6TBRF+K/u3tMLiTAyqUHC+eqscidCPLLSiFtTF7QRMRUdOVl5cHhUIBW1tbtfW2trbYvn17tfsYGxsjJiYGQUFBkEql+OWXXxAWFoYVK1bg1VdfrdL+9u3bWL9+Pb744gu19R4eHli+fDk6deqEgoICzJs3D0FBQTh+/Djc3NyqHGfx4sVYvHgxACAzMxNJSUlPmHWlwsLCpz5Gc1Bbnv0tgO7B+kjNqsDOK3cw4cfj+OTndPRqJUWv1lK00GseU4rwWmoXXchTF3IEdCdPIiJt1tbGBB882w6TQj2QeiEfm9Ku4o+/cvDTkUyYyIDnb5/A4E4O6OpswU6YpMIidCO7XlDK8aCJiKhZEInUf2EUBKHKuvusrKwwceJE1bKfnx/y8vLw1VdfVVuE/v7776FQKBAeHq62PiAgAAEBAarlwMBAdO7cGXFxcZg/f36V40RGRiIyMlJ1zpCQkDrnV52kpKSnPkZzUJc8B6Hymqecz8N3ezOw+UwutmZU4LmODvhvkDM6OrZojFCfGK+ldtGFPHUhR0B38iQi0gUSsQjd3azQ3c0KJeXe2PP3dSxLPIaNR69i9YErsDHRw6CO9hjcyQE+rVrU+FmCdAOL0I0st6AE7exMNB0GERFRjaysrCCRSJCTk6O2Pjc3t0rv6Nr4+/vju+++q3bbkiVLMGzYMLWJC6sjkUjg5+eHc+fO1fm8VH9EIhF6uFmjh5s1LuXdxYp9GfjpSCY2pV1Fl9YtEBHojP7t7TgGIBEREZGO05dJENreDvLr+ugW2B07Tufi1+NZWL3/Cr7bm4GWLQzwrLcd+re3g6+TOXtI6yAWoRuRQikgr7CMPaGJiKhJk8vl8PX1RWJiIkaMGKFan5iYiGHDhtX5OMeOHYO9vX2V9QcPHsTx48cRGxv7yGMIgoD09HR06tSpzuelhuFiZYRPnm+PiaHu+OlIJlbsy0D02mMw1pPiWW87vNi5JQLaWPIDBREREZGOM5RLMbiTAwZ3csCdknL8efIatqRnYVXqZSxLuQQrYzn6edkitL0dAttYcu4RHcEidCO6XlAKhVKAvZmBpkMhIiKq1YQJExAeHo5u3bohKCgI8fHxyMrKwtixYwEAU6ZMwcGDB7Fjxw4AwIoVKyCTyeDj4wOxWIxff/0VCxYswOzZs6sce/HixXBzc0PPnj2rbJsxYwaeeeYZuLm54c6dO5g/fz7S09OxaNGihk2Y6sxEX4b/BrkgIsAZ+y/m4+djV/H7icoxAG1M9PB8Jwf0ameDdnYmsOQ8GEREREQ6zVRfhuG+jhju64iCknIknb2ObSdz8MuxLKw5+A9M9KTo1c4G/dvbIcTDGkZ6LFVqK17ZRpR1uxgA4NBCX8OREBER1S4sLAz5+fmYOXMmsrOz4e3tja1bt8LJyQkAkJ2djQsXLqjtM3PmTFy+fBkSiQTu7u5Yvnx5lfGgCwoKsHbtWnz88cfVjgl369YtREZGIicnB2ZmZvDx8cGePXvQrVu3hkuWnohYLEJgWysEtrXCpy94Y+eZXGxKu4oVqRlYmnIJYhHQ090aw31boYe7FUz1ZZoOmYiIiIg0yERfpuohXVKuwL4Lefjjr2vYfvoafjmeBblUjABXS/RuZ4Pe7WzQysJQ0yFTPWIRuhFl3bpfhGZPaGp+lEol8vLycOvWLSgUCk2HUy/MzMxw+vRpTYfRoHQhR6D6PPX19eHo6AiZjIWvJxUVFYWoqKhqtyUkJKgtR0REICIi4pHHNDExQWFhYY3b586di7lz5z5WnKR5+jIJBnawx8AO9rhVVIa/rt7Bvgt52Hj0Kt7+4SjEIqBDSzMEtLFCYBtLdHW2gIGcj10SERER6Sp9mQS929midztbKJQCDmfcwB8nr2HX2VxM/+Ukpv9yEm1tjNG7nQ16edjAz9kcMolY02HTU2ARuhFl3yoBAA7HQc1SZmYmRCIRnJ2dIZPJtGJW24KCApiYaPdEobqQI1A1T0EQkJ+fj8zMTLi4uGgwMiLd08JQrpolfWKoBw5euoHUC3nYdyEfS5MvIn73BcglYnRwNIOThSFaWxqie1sr+LTmBDVEREREukgiFsHf1RL+rpb4eLAXLuXdxc4zudh1Jhff7b2ExXsuwkRfimA3a4R4WKOnhzVsTDjKQHPDInQjunqrGMZ6Upjq88dOzc/du3fh4eEBsZjfPFLTJxKJYGlpievXr2s6FCKdJhGLENDGEgFtLDEBwN3SChzKuIG95/NwPPM29l/Mx6ZjVxG7/RwsjOTo5myB9g6maN/SFN4OZrAx5YcLIiIiIl3jYmWEN7q74I3uLigsrcDe83nYdSYXu87mYsuJbABAOzsTdG9b2fGhm4sFDOWstTV1vEKNKPt2MezN9LWiBynpJhagqTnhey1R02OkJ0WIhw1CPGxU6+6UlGP32evYcfoa0v65hW0nc1TbrIz1KovSDqZo72AG75amaG1hyP/fRERERDrCWE+K/u3t0L+9HQRBwMmsO0g+l4eU89excv9lLE25BLlEjC5OLdDDzRrd21rBu6UZn7BrgliEbkRZt0o4HjQRERHRA0wfmKAGqCxKn866g5Oq123sPZ+HCqUAADDRk8LzgcK0h60J2tgYsfcLERERkZYTiUTwbmkG75ZmeCukDUrKFTh46QZSzuch+Vwevv7jLL7+4yzMDGQIbGOJoLZWeMbVEm2sjdiJoQngb+uNKPt2Mbxbmmo6DCIiIqImy1RfphoT8L6ScgX+vlagKkqfzLqDNQevoKRcqWrjaG4AR3MDOJgZwNPeFOX5CnS8WwYLI7km0iAiIiKiBqYvkyDY3RrB7tYAgLzCUuw9n4eUc3lIOZ+H3/+qfMLOylgP/i4W6OZiAX9XC7jbmEDMntKNjkXoRlJSrkBeYRkcOCkhUbM3atQo5OXl4bfffqvzPiEhIfD29sa3337bgJEREWknfZkEHR1boKNjC9U6hVLApby7OJ9bgHPXCnEutxDZt4ux90IeNqZdBQB8dSgRFkZytLE2gquVMTzsTNC5dQt42ZtCXybRUDZERERE1BCsjPXwQueWeKFzSwiCgIz8Ihy4mI8Dl27gwMV81XjS5oYydHW2qOz44GIBT3tTDt/RCFiEbiRXbxUDAIfjIGpEj3rc5pVXXsHq1asf+7jz5s2DIAiPtc/GjRshk8ke+1xPKjc3F61bt4a1tTUuX77M8byJSOtIxCK0tTFGWxtjPOutvi2/sBRrt6VAbuOCC9cLcfH6XWw/fQ3rDv+jamMkl6C1pRFcrYzgal35crEyhoulEUwNpHxkk4iIiKgZE4lEcLEygouVEV7q1hqCICDzZjH23y9KX8rHn6euAQBM9KXo0tocvk7m6NLaHJ1amcFEv/E+v+uKRi9CL1y4EF9//TWys7PRvn17xMbGokePHtW2zcjIgIuLS5X1v//+O5599lkAlYWd+Ph4pKWloaSkBF5eXpg2bRqef/55VfuEhAT897//rXKc4uJi6Os3zqzrp7PvAAA87Ewa5XxEBGRnZ6v+/ttvv2H06NFq6yoqKtTal5eX16lQbGZm9tixWFhYPPY+TyMhIQGDBw9GWloa/vjjDwwYMKBRz/+wsrIyyOV8JJ6IGoelsR7aW0kQEuyqtj7ndgmO/XMLf18rwM2iMmTk3cXJrNvYdjIHCuW/Xy7qy8SwM9WHQwsD1atliweWzQxgIGdPaiIiIqLmQiQSoZWFIVpZGGKEXysAQNatYhy8V5A+evkW5m7/G4IAiEWAu62Jqijt62QOJ0tOjv20GrVr3Lp16xAdHY2pU6ciLS0NgYGBGDBgAK5cuVLrftu2bUN2drbq1bt3b9W23bt3o3fv3tiyZQvS0tIwcOBADBkyBMnJyWrHMDQ0VDtGdnZ2oxWgAeBk1h1IxSK42Ro32jmJdJ2dnZ3q1aJFC7V1JSUlaNWqFdasWYPevXvDwMAA//vf/5Cfn4+XX34Zjo6OMDAwQPv27fHdd9+pHXfUqFF47rnnVMshISGIiorC1KlTYWVlBRsbG0yaNAlKpVKtzTvvvKNadnZ2xsyZMzFmzBiYmprC0dERX3/9tdp5/v77b/Ts2RP6+vrw8PDA1q1bYWxsjISEhEfmvnz5crz22mt46aWXsGzZsirbz5w5g+effx5mZmYwNjZGQEAATpw4odq+YsUKdOjQAXp6erC1tcWoUaNU20QiEX766Se14zk7OyMmJkatzYIFCzB06FAYGRlh6tSpUCgUeOONN+Di4gIDAwO4ubnhq6++Uvs51Xbu119/Xe3nDgBKpRKtW7fmMCdEVCd2Zvp41tsO7/Vxw/TB7fHdf7shaXIvnP70WWyfEIzF4b74aJAnXvV3QvuWZigpVyDlXB7idp7DBxtOIHzZQfT5Zjc8P96GLp8l4rm4ZESuPIxPfjmJJXsuYkt6No5euYl/bhShqKzi0QERERERkcY4tDDAiz4tMWtoR/wxPhjHp4di5evd8G5vN1ib6OGXY1mYuP44QmKS4DtzO95ccQgLdp3HX3kVuFVUpunwm51G7Qk9Z84cjBo1CqNHjwYAxMXFYdu2bVi0aBFmzZpV436Wlpaws7Ordtu8efPUlqdPn44tW7bg559/VuthLRKJajxGYziZdQdutibQk7LXDGmPGb+exKmsO416Ti8HU0wf3L7ejjdlyhTExMRg2bJlkMlkKCkpQZcuXfDBBx/A1NQU27dvx5gxY9C6dWv06dOnxuOsXr0a0dHR2LdvH44dO4ZXXnkFvr6+ePnll2vcZ+7cuZgxYwYmT56M33//He+99x66d++OgIAAKJVKDBkyBHZ2dti/fz+Ki4sxbtw4lJaWPjKn5ORk5Ofn49lnn4WzszP8/Pxw/fp1WFtXTtaQlZWF7t27IygoCImJiWjRogUOHjwIhUIBAPjf//6H6OhofPHFFxg0aBAKCwuxc+fOx/zJAjNmzMAXX3yBmJgYiEQiKJVKtGzZEj/++COsra1x8OBBREZGwtLSEm+88cYjzz169Gj06NED2dnZsLe3BwAkJiYiJycHL7300mPHR0R0n1wqRlsbE7S1qf6JtXKFEjm3S5B1qxhZt4uRdasEV28VI+tWMTLy72Lv+TzcLVNU2c9AJoGViRyWRnqwMtaDlbEclsZyWBnrwfLespWxHiyN5DA3lHOCHCIiIiINMtWXqU10qFAKOJ9biKNXbuLI5Zs4euUmtp/OBQDEHE5EawtDdHA0Q8eWZujo2ALeLU05jEctGq0IXVZWhiNHjmDSpElq60NDQ7Fv375a9x06dChKSkrg5uaG8ePHY/jw4bW2LygogLm5udq64uJiODk5QaFQoHPnzvjss8/g4+PzZMk8JkEQcCrrNkI8bBrlfERUd++++26V95TJkyer/h4ZGYmdO3dizZo1tRahvby88OmnnwIA3N3dsWTJEuzYsaPWInRoaKiqd/S7776L+fPnY8eOHQgICEBiYiLOnj2LP//8Ey1btgRQWbQOCgp6ZE5Lly5FWFgYZDIZnJ2d4e/vj5UrV2LixIkAgAULFsDIyAjr169XDZHh7u6u2v+zzz7DuHHjMGHCBNU6X1/fR573YWFhYXjzzTfV1t3/GQGVvaePHj2KNWvWqIrQtZ07ICAA7dq1w4oVK/Dhhx8CqOzx/fzzz8PKyuqx4yMiqiuZRKx6fLM6giDgTkkFsm8XI/tWCfIKS5FXWIb8wlLkFZYi/24Zrt4qxvHMW7hxt0xt6I/7xCLAwuiBwvSDfxrpqYrZ99dzYkUiIiKihiURi+BhZwIPOxO83K01AOB2cTlWb90DkaUzTly9heP/3MKW9H+H/XS1NlIVpTs4msHT3hTGepySD2jEInReXh4UCgVsbW3V1tva2mL79u3V7mNsbIyYmBgEBQVBKpXil19+QVhYGFasWIFXX3212n0WLFiAzMxMhIeHq9Z5eHhg+fLl6NSpEwoKCjBv3jwEBQXh+PHjcHNzq3KMxYsXY/HixQCAzMxMJCUlPWHWla7euIu8QhH07uY+9bGassLCQq3OD9CNHIHq8zQzM0NBQYHaugkhrRsxqn89HEddFBcXq+1bWFgIoLJ4/ODxFAoF5syZg40bNyIrKwtlZWUoKytD9+7dVe3Ky8tRUVGhWlYoFPD09FQ7jrW1NbKystTalJWVqZYFQYCHh4faPra2tsjMzERBQQGOHTsGe3t7mJqaqtq0a9cOYrEYJSUlNf4M7ty5g59++gm//vorCgoKoFAoMGLECCxYsACRkZEAgEOHDsHf3x+lpaVVelZfv34dV69eRUBAQK0/5+LiYrXtgiCgtLRUbV379u2rHGPZsmVYuXIlrly5gpKSEpSXl6NVq1YoKCio07nDw8OxdOlSvP3227hx4wY2b96M1atXQ6FQVLtPSUmJTvyfJSLNEolEMDOQwcxAhnZ2prW2VSoF3Couv1egLqssUt8rVOc9sO7KlSLkF5ZW28MaAIz1pLAylkOqKMHqK4dhZiBDi3sxmBnK0MJQDgtDOVoYymBxr6c1x7EmIiIiejpmBjJ4WUoQEtJGte7G3TKkZ97CiczbSL96G6kX8/HzsSzVdidLQ3jamcLLwRSe9qbwtDdByxYGOjfGdKOX4h/+AQuCUOMP3crKStVzDwD8/PyQl5eHr776qtoi9IYNGzB58mSsXbsWTk5OqvUBAQEICAhQLQcGBqJz586Ii4vD/PnzqxwnMjJSVazx8/NDSEjIY+X4sNgftwMoxQs9fdHNpXEnJ2tMSUlJT/2zaup0IUeg+jxPnz4NE5PmO7GmgYEBAKhyMDauHJ/d2tpaLa/Zs2fj22+/xbx589ChQwcYGxtj6tSpyM3NVbWTyWSQSqWqZYlEAkNDQ7XjyOVyiMVitTZyuVy1LBKJYGxsrLaPVCpVHVdPT09tf6Cy+A0A+vr6NV6L1atXo6ioCKGhoWrrFQoF0tPTERQUBIlEAplMVu0xioqKAKBKPg8SiURVYqioqICenp7aOisrK7XldevW4cMPP0RMTAwCAwNhamqKBQsWYNOmTTAxManTuUePHo3p06fj+PHjSEtLg5WVFV588UUUFRVVu4++vn6jPfVCRFQXYrEIFkZyWBjJ4Wb76PZFZRXIVxWry5B/98HidRnO/ZODf24U4a/ictwuLkdRDUVroHLCRQtDOSyM5bAw0oOFoQwW93pXWxjJYaIvhbGeFCb6MpjqS2GsL4WZgQwGMonOfUgiIiIiqisLIzlCPGzURkC4dqcEJzJv43T2HZzOuYNTWXfwx6kcCPceiDPVl94rSJvCy76yQN3Wxlirn3ZrtCK0lZUVJBIJcnJy1Nbn5uZW6R1dG39//yqThAGVBejw8HCsXLkSzz//fK3HkEgk8PPzw7lz5+p83qdxpaBy0i1P++ZbwCPSFSkpKRg8eLDqaQpBEPD333+rJjZsLJ6enrh69SqysrLg4OAAADh8+HCVSfwetmzZMrzzzjsYM2YMAODu3bswMjLChx9+iGXLliEoKAhdunTB999/j7KyMtVwHPfZ2tqiZcuW2LFjB/r161ftOaytrZGd/e/jRteuXVNbrklKSgr8/f3VJmi8cOHCY53bwsICQ4cOxfLly5GWloZRo0ZBItHemzQRkaFcCkMLaY1DgVR+cRysWi6rUOJ2cTluFZXhZlE5btwtw62iMtwoKsPNu2W4cbccN+6W4sbdMly8Xoibd8tq7G19n55UrOpNbWpQWaQ20ZfC9F6xWrVsIFMVso3uv+QSGOlJIZM06nzoRERERBpla6oPWy999PX6t+Z5t7QCZ3IKcDr7Dk5l38Hp7DtYd+gfFJdX/i4mFgFOlkZwszGGm60x3G1N0NbGGG2staM43WhFaLlcDl9fXyQmJmLEiBGq9YmJiRg2bFidj3P/EfUH/fjjj4iIiMCKFSseOV40UFlUSk9PR6dOneqewFO4fEcJZ0tDDk5O1Ay4u7tj3bp1SElJgZWVFeLi4nDp0qVG703br18/eHh4ICIiAjExMSguLsaECRMglUpr7I2Wnp6Ow4cPY9myZfD29gZQOfyIiYkJwsPD8cYbb2DevHmIiopCfHw8/vOf/2DatGkwNzfHoUOH4Onpic6dO2PatGkYP348bG1tMWjQIBQVFWHHjh2qJ1N69+6NBQsWIDAwEBKJBFOnToW+vv4jc3J3d0dCQgJ+//13tG3bFmvXrsXu3bvVxvB/1LmByt7Qzz77LMrLy/HTTz89zY+ZiEjryKViWJvowdpEr877lJQrcLOoDAUlFSgoKcedkgoUllSgoKRCVdC+cbcMN4vKcKe4Av/cKEJBSQXulJSjsLRC1aOnNgYyCUwNKgvXJvpSGOvLYCiTwEB+7yWTwFAugf69Pw3ubTOUS2Egk+D8TQVssu5UbntgHxa3iYiIqLkw0pPC18kcvk7/fgZWKAVczr+L09kFOHutAOeuFeBcbiF2nMlVzSMiFgGtLQzhZmsCd1tjuNmYwM22+RWnG3U4jgkTJiA8PBzdunVDUFAQ4uPjkZWVhbFjxwIApkyZgoMHD2LHjh0AgBUrVkAmk8HHxwdisRi//vorFixYgNmzZ6uOuXbtWoSHhyMmJgbBwcGqntZyuRwWFpVDX8yYMQPPPPMM3NzccOfOHcyfPx/p6elYtGhRo+R95Y4S3dqaNcq5iOjpfPTRR7h06RIGDBgAAwMDjBo1CiNHjsSpU6caNQ6xWIxNmzbhzTffRLdu3eDs7IxvvvkGQ4cOrbHgu3TpUri5uaFjx45Vtj333HNQKpVYs2YNIiMjsWfPHkyePBm9evWCSCRChw4dVGPhv/XWW5DL5fjmm2/wwQcfwMLCAgMHDlQd65tvvsEbb7yBkJAQ2Nra4quvvsLp06cfmdOYMWNw7NgxvPLKKxAEAcOGDcPEiROxfPlyVZtHnRsAQkJC4OjoCCcnJ7Rp0+bh0xAR0WPSl0lgb2YA+yf4dVWpFHC3rEJVlC4oqUBhaQXullagqFSh+vudknLcKb73Z0k5bheVIadcgaIyBUru/Vlcrqi9oH0gucoqmUT0UOFaCgOZuLJ4XUtxu7LA/eA+kn8L3A/soycVcygSIiIiajASsQiu1sZwtTbGIPzb6basQomM/Lv4+1oB/r5WiPO5lX/uOpOLigeK0y3NDeBiZQxXKyO4WhvBxary5WBmALG4af0O06hF6LCwMOTn52PmzJnIzs6Gt7c3tm7dqhq/OTs7W+3RbACYOXMmLl++DIlEAnd3dyxfvlxtPOj4+HhUVFRg3LhxGDdunGp9z549VZNR3bp1C5GRkcjJyYGZmRl8fHywZ88edOvWrcFzvl1cjuvFArwcap+khoga1vDhwyE88MnW2dkZd+7cqTKOsLm5OTZu3FjrsRISEtSWq5v47lFtMjIyquzzcBt3d3fs2bNHtXz8+HGUl5ejbdu21cZV3Rj39xkZGanGXAYqJw3cunVrje3feOMNvPHGG9Vuc3BwwO+//6627uEnWoRqqghyuRzLli3DsmXL1NZ//PHHdT43UDnZ4M2bN/Hpp5/W2IaIiBqHWCy6NxyHDA4weKpjCYKA0golissUKCpXoLjs3qtcgf2Hj8Lds72qWF1cplD7u9o+5RUoKqtAXmGpWoG7uEyh+tBW5/xElb249WQSyCQiyCRiyCViyCRiyKSVy/+uu7csfWhZIoZc+tDy/e3Sf5f/zqlA2cmcB/b/dx+59N9luUQM6YPbJOIm9yGTiIiIno5cKoa7rQncbdVrFveL0+euFeLvawW4lHcXF/MKcSTjhtoQa3pSMZwt1QvTlX83hrmhTCNfsjf6xIRRUVGIioqqdtvDRZuIiAhERETUerzqij8Pmzt3LubOnVvXEOvVqaw7AID2LEIT0WPatGkTjIyM4ObmhoyMDEyYMAGdOnVCly5dNB2aRiiVSly7dg1z586FgYGB2tBORETU/IlElb2a9WUSmD+0reiyFCHe9tXu9zjKFUq13tdFZRX/FqprKHAXlSlQplCgQiGgTKFEuUJAeYUS5QrlvWUlissVuFOiRNm99eUK4d6f99dVLj+yCH7syBPlJRGLaiyS11bQrr195Tq1ZYnogf3/PYZELIJULLr3Z+WyRLUsQisLQ0hYKCciInpqDxanH+w5LQgCrheU4mLeXVy697p4vRBnrxUg8dQ1td9BTPSkaG1pCCdLQ7S2MIKTpSGcLAzR2tKwQXtQN3oRWteczLoNAGjvwOE4iOjxFBQU4IMPPsA///wDc3NzhISEYO7cuTr7WPCVK1fg4uICR0dHfPfdd1UmVSQiInoUmUQMMwMxzAw0M1eLUimgXFldIVvAvtQD6NTFV62IXaZQ3msnqBW9769TLd/b598i+APbKyqL3/cL4ndLK6o53kPLCkE1DmV9OPp//WBhxPs2ERFRQxGJRLAx1YeNqT6ecbVU21ahUCLzZvG9XtN3cSX/Li7fKMKZ7MoCdbni33v+iU9CG2xOOxahG1gfT1tkXb7wWJPDEBEBwGuvvYbXXntN02E0Gc7OztUO80FERNRciMUi6Ikl0JMCeOjjwWUTMbxbNp2OKwqloFbQ/rdXd9UiuUKoLFpXKAUoFPf+VAqoUCqhFAQY6TWfSZOIiIi0jVQihrOVEZytjNDroW0KpYDs28W4kl+Eq7eKG6wADbAI3eBcrIwQ7KiZnhZERERERERPonI4jcrhUYiIiEg7ScQiOJobwtHcsMHPJW7wMxCR1mAvVGpO+O+ViIiIiIiIqGlgEZqI6kQmk6G4uFjTYRDVWXl5OaRSPvDzNBYuXAgXFxfo6+vD19cXycnJNbbNyMiASCSq8tq2bZuqTVJSUrVtzpw5o3asDRs2wMvLC3p6evDy8sKmTZsaLEciIiIiIiJqeCxCE1Gd2NjY4OrVqygqKmIPU2rylEolrl27BjOzpjO2ZnOzbt06REdHY+rUqUhLS0NgYCAGDBiAK1eu1Lrftm3bkJ2drXr17t27SpuTJ0+qtXFzc1NtS01NRVhYGEaOHIljx45h5MiRGDFiBA4cOFDvORIREREREVHjYBcxIqoTU1NTAEBWVhbKy8s1HE39KCkpgb6+vqbDaFC6kCNQfZ5GRkawsrLSUETN35w5czBq1CiMHj0aABAXF4dt27Zh0aJFmDVrVo37WVpaws7OrtZj29jY1HhtYmNj0atXL0ybNg0AMG3aNOzatQuxsbFYs2bNE2ZDREREREREmsQiNBHVmampqaoYrQ2SkpLg4+Oj6TAalC7kCOhOno2lrKwMR44cwaRJk9TWh4aGYt++fbXuO3ToUJSUlMDNzQ3jx4/H8OHDq7Tx8/NDaWkpvLy88NFHH6FXr3/naE5NTcW7776r1r5///749ttvnyIjIiIiIiIi0iQWoYmIiEhNXl4eFAoFbG1t1dbb2tpi+/bt1e5jbGyMmJgYBAUFQSqV4pdffkFYWBhWrFiBV199FQBgb2+PRYsWoWvXrigrK8OqVavQp08fJCUlITg4GACQk5NT7XlzcnKqPe/ixYuxePFiAEBmZiaSkpKeJnUUFhY+9TGaA13IUxdyBJinNtGFHAHdyZOIiIjUsQhNRERE1RKJRGrLgiBUWXeflZUVJk6cqFr28/NDXl4evvrqK1UR2sPDAx4eHqo2AQEByMjIQExMjKoI/bjnjYyMRGRkpOqcISEhdU+wGklJSU99jOZAF/LUhRwB5qlNdCFHQHfyJCIiInWcmJCIiIjUWFlZQSKRVOl9nJubW6WXcm38/f1x7ty5x2pjZ2f31OclIiIiIiKipoVFaCIiIlIjl8vh6+uLxMREtfWJiYkIDAys83GOHTsGe3v7x2oTEBDw1OclIiIiIiKipoXDcRAREVEVEyZMQHh4OLp164agoCDEx8cjKysLY8eOBQBMmTIFBw8exI4dOwAAK1asgEwmg4+PD8RiMX799VcsWLAAs2fPVh0zNjYWzs7OaN++PcrKyvD999/j559/xoYNG1RtoqOjERwcjFmzZmHIkCHYtGkTdu3ahZSUlMb9ARAREREREVG9YRH6ETIyMuDn5/dUx7h+/Tqsra3rKaKmSxfy1IUcAeapTXQhR+DJ8szIyGiYYLREWFgY8vPzMXPmTGRnZ8Pb2xtbt26Fk5MTACA7OxsXLlxQ22fmzJm4fPkyJBIJ3N3dsXz5ctV40ABQVlaGSZMm4erVqzAwMED79u2xZcsWDBw4UNUmMDAQa9euxUcffYTp06ejTZs2WLduHfz9/R8ZM+/ZdacLeepCjgDz1Ca6kCPAezZV4j277nQhT13IEWCe2kQXcgTq/54tEgRBeMqY6BH8/Pxw+PBhTYfR4HQhT13IEWCe2kQXcgR0J09qeLryb0kX8tSFHAHmqU10IUdAd/Kkhqcr/5Z0IU9dyBFgntpEF3IE6j9PjglNRERERERERERERA2GRWgiIiIiIiIiIiIiajAsQjeCyMhITYfQKHQhT13IEWCe2kQXcgR0J09qeLryb0kX8tSFHAHmqU10IUdAd/Kkhqcr/5Z0IU9dyBFgntpEF3IE6j9PjglNRERERERERERERA2GPaGJiIiIiIiIiIiIqMGwCE1EREREREREREREDYZF6Aa2cOFCuLi4QF9fH76+vkhOTtZ0SE/sk08+gUgkUnvZ2dmptguCgE8++QQODg4wMDBASEgITp48qcGI62bPnj14/vnn0bJlS4hEIiQkJKhtr0tepaWlePfdd2FlZQUjIyM8//zzyMzMbMQsaveoHEeNGlXl2j7zzDNqbZp6jrNmzULXrl1hamoKa2trDB48GH/99ZdaG224lnXJUxuu54IFC9CxY0eYmprC1NQUAQEB2LJli2q7NlxLanp4z+Y9uyngPbuSNlxL3rMracO1pKaH92zes5sC3rMracO11IV7dlO4X7MI3YDWrVuH6OhoTJ06FWlpaQgMDMSAAQNw5coVTYf2xDw8PJCdna16nThxQrXtq6++wjfffIO4uDgcOnQINjY26NevHwoKCjQY8aMVFhbC29sb8+bNg4GBQZXtdclr3Lhx2LBhA9asWYPk5GTcuXMHzz33HBQKRWOmUqNH5QgAffv2Vbu2W7duVdve1HNMSkpCVFQU9u3bh507d0IqlaJv3764ceOGqo02XMu65Ak0/+vp6OiI2bNn4+jRozh8+DB69+6NF198Eenp6QC041pS08J7Nu/ZTeW9gffsStpwLXnP5j2bGgbv2bxnN5X3Bt6zK2nDtdSFe3aTuF8L1GC6desmvPnmm2rr2rZtK3z44YcaiujpTJ8+XWjfvn2125RKpWBnZyfMnDlTta6oqEgwNjYW4uPjGyvEp2ZkZCR89913quW65HXr1i1BJpMJ33//varNlStXBJFIJGzbtq3RYq+rh3MUBEGIiIgQBg0aVOM+zS1HQRCEgoICQSwWC7/88osgCNp5LQWhap6CoJ3XUxAEwdzcXIiPj9faa0maxXs279lN8b2B92ztuZaCwHv2fdpwLUmzeM/mPbspvjfwnq0911IQdOee3dj3a/aEbiBlZWU4cuQIQkND1daHhoZi3759Gorq6V28eBEtW7aEi4sLXnrpJVy8eBEAcOnSJeTk5Kjla2BggODg4Gadb13yOnLkCMrLy9XatGrVCp6ens0q95SUFNjY2MDd3R2jR49Gbm6ualtzzLGgoABKpRLm5uYAtPdaPpznfdp0PRUKBdauXYvCwkIEBgZq7bUkzeE9m/fs5vbeoE3v8QDv2dp0PXnPpobGezbv2c3tvUGb3uMB3rO15Xpq6n7NInQDycvLg0KhgK2trdp6W1tb5OTkaCiqp+Pv74+EhAT8/vvvWLJkCXJychAYGIj8/HxVTtqUL4A65ZWTkwOJRAIrK6sa2zR1zz77LFauXIkdO3bgm2++wcGDB9G7d2+UlpYCaJ45RkdHo3PnzggICACgvdfy4TwB7bmeJ06cgLGxMfT09DB27Fhs2rQJHTp00NprSZrDezZUy801X0B73+cfpi3v8Q/iPbv5X0/es6mx8J4N1XJzzRfQ3vf5h2nLe/yDeM9u3tdT0/draT3kQLUQiURqy4IgVFnXXAwYMEBt+ZlnnoGrqytWrFihGoxdm/J90JPk1Zxyf+mll1R/79ChA3x9feHk5IQtW7Zg6NChNe7XVHOcMGECUlJSkJKSAolEorZNm65lTXlqy/X08PDAsWPHcOvWLWzYsAERERFISkpSbdema0lNgzbdw3jP/pe2vTdoy3v8fbxna8f15D2bGps23cN4z/6Xtr03aMt7/H28Zzf/66np+zV7QjcQKysrSCSSKt8G5ObmVvlmobkyNjZG+/btce7cOdXsvdqWb13ysrOzg0KhQF5eXo1tmhsHBwc4Ojri3LlzAJpXjuPHj8eaNWuwc+dOuLq6qtZr27WsKc/qNNfrKZfL0bZtW/j5+WHWrFno3Lkz5s6dq3XXkjSP9+xKzT1fXX1vaK7v8QDv2dVprteT92xqLLxnV2ru+erqe0NzfY8HeM+uTnO8npq+X7MI3UDkcjl8fX2RmJiotj4xMRGBgYEaiqp+lZSU4MyZM7C3t4eLiwvs7OzU8i0pKUFycnKzzrcuefn6+kImk6m1yczMxOnTp5tt7nl5ebh69Srs7e0BNJ8co6Oj8cMPP2Dnzp1o166d2jZtupa15Vmd5no9H6ZUKlFaWqpV15KaBt6zec9uzu8NzfU9nvfs6jXX6/kw3rOpofCezXt2c35vaK7v8bxnV6+5Xs8HNfr9+nFnTqS6W7t2rSCTyYQlS5YIp06dEt577z3ByMhIyMjI0HRoT2TixIlCUlKScPHiRWH//v3CoEGDBBMTE1U+X375pWBiYiJs2LBBOHHihBAWFibY29sLd+7c0XDktSsoKBDS0tKEtLQ0wcDAQJgxY4aQlpYmXL58WRCEuuU1duxYwcHBQUhMTBSOHj0qhISECJ06dRIqKio0lZaa2nIsKCgQJk6cKOzbt0+4dOmSsGvXLuGZZ54RWrZs2axyjIqKEkxMTIQdO3YI2dnZqldBQYGqjTZcy0flqS3X84MPPhD27NkjXLp0SUhPTxc+/PBDQSQSCVu3bhUEQTuuJTUtvGfznt1U3ht4z66kDdeS92zes6lh8J7Ne3ZTeW/gPbuSNlxLXbhnN4X7NYvQDWzBggWCk5OTIJfLhS5dugi7d+/WdEhP7P4/QJlMJjg4OAhDhw4VTp48qdquVCqF6dOnC3Z2doKenp4QHBwsnDhxQoMR182uXbsEAFVeERERgiDULa/i4mLhnXfeESwsLAQDAwPhueeeE65cuaKBbKpXW45FRUVCaGioYG1tLchkMqF169ZCRERElfibeo7V5QdAmD59uqqNNlzLR+WpLdczIiJCaN26tSCXywVra2uhT58+wrZt21TbteFaUtPDezbv2U0B79mVtOFa8p5dSRuuJTU9vGfznt0U8J5dSRuupS7cs5vC/VokCIJQtz7TRERERERERERERESPh2NCExEREREREREREVGDYRGaiIiIiIiIiIiIiBoMi9BERERERERERERE1GBYhCYiIiIiIiIiIiKiBsMiNBERERERERERERE1GBahiYiIiIiIiIiIiKjBsAhNRERERKQDMjIyIBKJcPjwYU2HQkRERLXgPZu0EYvQRERERERERERERNRgWIQmIiIiIiIiIiIiogbDIjQRERERUSMQBAFfffUV2rRpAwMDA3To0AHff/89gH8fu/3hhx/QvXt36Ovro127dvjzzz/VjrFnzx74+/tDX18ftra2GD9+PMrKytTO8c0338DNzQ16enpwdHTElClT1I5x+fJl9OvXD4aGhvDy8kJiYmLDJ09ERNSM8J5NVP9YhCYiIiIiagQfffQRli1bhgULFuDUqVOYMmUKxowZgy1btqjavP/++3jvvfdw7Ngx9OvXDy+88AKuXr0KALh69SoGDBgAHx8fpKWlYdmyZVizZo3aB9apU6fis88+w5QpU3Dy5EmsX78erVq1Uotj2rRpeO+993D8+HF07doVL730EgoLCxvnh0BERNQM8J5NVP9EgiAImg6CiIiIiEib3b17F1ZWVvjzzz/Ro0cP1fpx48bh77//xsKFC+Hi4oKZM2di2rRpAAClUol27drhP//5j2r9unXr8Pfff0MsruxLkpCQgDFjxuDmzZtQKpWwsrJCbGwsxo4dWyWGjIwMuLi4ID4+HmPGjAFQ+SHZ0dERycnJ6N69eyP8JIiIiJo23rOJGoZU0wEQEREREWm7U6dOoaSkBM8++yxEIpFqfXl5OZydnVXLAQEBqr+LxWL4+/vj1KlTAIDTp08jICBA9WEWALp3746ysjKcP38eJSUlKC0tRZ8+fWqNpWPHjqq/Ozg4AAByc3OfKj8iIiJtwXs2UcNgEZqIiIiIqIEplUoAwK+//orWrVurbZPJZKjLw4mCIKh9GH6QSCSq0zHun+/B/R6Mj4iISNfxnk3UMDgmNBERERFRA/Py8oKenh4uX76Mtm3bqr2cnJxU7fbv36/6uyAIOHjwIDw9PVXHSE1NVfvwmZKSArlcjjZt2qjOsWPHjsZLjIiISMvwnk3UMNgTmoiIiIiogZmYmGDSpEmYNGkSBEFAcHAwCgsLsX//fojFYoSGhgIAFi1aBHd3d3To0AELFy7E5cuX8dZbbwEAoqKiEBsbi6ioKERHR+PixYv48MMP8c4778DQ0BAAEB0djSlTpkBPTw/BwcHIz8/HkSNHVMcgIiKi2vGeTdQwWIQmIiIiImoEn332GWxtbRETE4O33noLpqam6Ny5M95//31Vmy+//BJz5szB0aNH4eTkhE2bNsHR0REA0LJlS/z++++YPHkyOnfujBYtWuCVV17BF198odp/1qxZMDc3x2effYbMzEzY2tritddea/RciYiImjPes4nqn0io60A0RERERETUIDIyMuDi4oJDhw7Bz89P0+EQERFRDXjPJnoyHBOaiIiIiIiIiIiIiBoMi9BERERERERERERE1GA4HAcRERERERERERERNRj2hCYiIiIiIiIiIiKiBsMiNBERERERERERERE1GBahiYiIiIiIiIiIiKjBsAhNRERERERERERERA2GRWgiIiIiIiIiIiIiajAsQhMRERERERERERFRg/l/49VFlq4bXf8AAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 1512x432 with 3 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA6kAAAFqCAYAAAD4PByAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAACn6klEQVR4nOzde1zOd/8H8NdVV+eodLyEDoScKaImzSHDnOa0zZIZMbvJiA3bzGY3bm4iS3dziGwyc9qcMyLkfGhzGoWkk3IodLq6vr8/Wtdvl+uqrlJdV/V6Ph497vX5fr6f7/sTt2/v63MSCYIggIiIiIiIiEgL6Gg6ACIiIiIiIqISTFKJiIiIiIhIazBJJSIiIiIiIq3BJJWIiIiIiIi0BpNUIiIiIiIi0hpMUomIiIiIiEhrMEklIiIiIiIircEklYiIiIiIiLQGk1QiIiIiIiLSGkxSiYiIiIiISGswSSUiIiIiIiKtwSSViIiIiIiItAaTVCIiIiIiItIaTFKJiIiIiIhIazBJJSIiIiIiIq3BJJWIiIiIiIi0BpNUIiIiIiIi0hpMUomIiIiIiEhrMEklIiIiIiIircEklYiIiIiIiLQGk1QiIiIiIiLSGkxSiYiIiIiISGswSSUiIiIiIiKtwSSViIiIiIiItAaTVCIiIiIiItIaTFKJiIiIiIhIazBJJSIiIiIiIq3BJJWIiIiIiIi0BpNUqnIikUitr4iIiCp53po1ayrd1ptvvgmRSIRvv/22SmKp7woLC/HVV1+hWbNmMDQ0RIcOHfDTTz+pde/XX39d5t+XH3/8sdR7Fy1aBJFIhNatW6u8HhUVBQ8PD5ibm6NRo0bw9PTEzz//rLJuTk4OPvvsMzg7O8PQ0BD29vYYOXIkXr58Ka9z8+ZNzJ07F126dIGZmRlsbGzQu3dvREdHK7UXHR2Nt99+G02bNoWhoSHs7Ozw1ltv4cSJE68Vq6Ojo8qf0wcffFDqz4mIqDza/g738fEp9d/62uLChQvo3bs3TE1NYWlpiXHjxiEjI0Ote8ePH6/yz6NJkyZKdSvynvj3v/+NYcOGoXHjxhCJRJgyZYrK5x89ehQTJ05E69atYWxsDAcHB4wZMwZ//fWXyvphYWFo164dDAwMYGdnh8mTJ+Px48dK9XJzc/Hvf/8bbdq0gbGxMRo3boyhQ4fiwoULSnUTExPx7rvvwtLSEkZGRujatSt279792rGSdhEJgiBoOgiqW7Zs2aLwfXh4OM6cOYMNGzYolHt6esLZ2fm1n9e6dWvY2dkhJiamQvclJyfDwcEBzZo1g76+Pm7duvXasdR3H374ITZv3oxPPvkE7du3x+7du7F//35s2rQJ48aNK/Pe+Ph4xMfHK5UvXrwYt27dQnJyMuzs7JSuP3jwAK1bt5a/pG/evKlwfeXKlZg5cyZ8fX0xdOhQFBYWYsuWLbhw4QLWrl2r8CJ+9uwZevXqheTkZAQEBKBFixZ49OgRYmNjERkZCQsLCwBAUFAQ1q9fjxEjRsDd3R15eXmIjIzEpUuXEBYWhsmTJ8vbXL16NY4fPw53d3fY2Njg8ePH+PHHH/HHH39g9+7dGDx4cKVidXR0hJmZGWbPnq3QX2dnZ3h6epb5syYiKo22v8N9fHyQlpam9G99bXH9+nV069YNjo6O+Pjjj/H06VP897//RePGjXH+/HkYGRmVef/48ePx008/Kf15mJiYYPjw4QplFXlPiEQi2NjYoGvXrti3bx8mT56MsLAwpee7u7vj8ePHGDlyJFq1aoWUlBR8//33yMnJwcmTJ9G5c2d53Xnz5mHx4sUYMmQI3nrrLdy7dw8hISFwdXXF6dOnYWBgIK87dOhQ7Nu3DxMmTEDXrl2Rnp6OtWvXIisrC2fPnkXHjh0BFP/u5ubmBplMhmnTpqFRo0aIiorCqVOnsG3bNowePbpSsZIWEoiqmb+/v2BgYFBt7bdq1Uro1atXhe9bsmSJ0LBhQ2H//v0CAOHcuXNVH1wVefHihaZDKNfFixcFAMI333wjL5PJZIKPj49gY2Mj5OXlVbjNJ0+eCAYGBkL//v1LrTN69GihT58+Qq9evYRWrVopXXdychLc3NwEmUwmL3v58qUgkUiEbt26KdT9+OOPBQsLC+Hu3btlxnX+/HkhJydHoSw/P1/o0KGDYGVlJRQVFZV5/4sXLwQ7OzuhT58+lY7VwcGhzJ8LEVFV0LZ3eGn/1tcWQ4YMEaytrYWsrCx52bFjxwQAwsqVK8u9vyJ/HhV5TyQmJsr/G4AwefJklfWOHz+u9I5LSEgQjIyMhOHDh8vLUlJSBLFYLIwePVqh7u7duwUAwpo1a+Rl9+/fFwAIn376qULdK1euCACEOXPmyMumTp0q6OrqCn/88Ye8TCqVCm5uboJEIhEKCgoqHCtpJ073JY0pmdZobGwMMzMzDB48GNevX1eok56ejokTJ6Jp06YwMDBA48aN8fbbb+OPP/4AUPwp4a1bt3D8+HH5NBZHR0e1nr9lyxYMGzYM/fv3R+PGjZU+PS7x119/4b333oONjQ0MDQ3h4uKCGTNmKNRJTU3F5MmT0aRJExgYGMDR0RGTJk1CTk4OgP+fyvqqmJgYiEQihU+QS6YyxcfHo3fv3jAxMcHUqVMBALGxsRg9ejQcHBzkP4/Jkyfj6dOnSm2XFdPt27chEomwcuVKpfuuX78OkUiENWvWoLCwEDdv3kRqamq5P8+ff/4ZOjo6+OSTT+RlIpEI//rXv5CRkVHhkW4A2L59O/Lz80udwnr8+HHs2LFDZT9KZGdnw87OTuHnb2RkBAsLCxgbG8vLnj59io0bNyIgIACOjo4oKChAfn6+yjbd3d1hamqqUKavr4+3334bmZmZ5U7bMjY2RqNGjfDs2bNKxfpPhYWFePHiRZnPIyKqapp+h5dn/fr16NChAwwNDWFjY4Nx48YhJSWlQvEBwKVLlzBw4EBYW1vDyMgIzs7OGDdunMK/u6mpqbh58yYKCwvLjCknJwcHDhzA+++/j0aNGsnLfXx80K5dO2zbtk3t/slkMmRnZ0NQY0KkOu8JJycntZ7r7e0NHR3F9MHZ2RmdO3dW+POPi4uDVCrF+++/r1B36NChMDU1VVgKlJ2dDQBo3LixQt2S7//5/ouNjUX79u3Rrl07eZmuri7effddpKamKvyuoW6spJ2YpJJGLF26FO+99x6aNGmCZcuWYd68eYiPj4eXlxfu3r0rrzdy5Ej88ssv8Pf3R2hoKKZPnw6ZTCafmhscHAyJRILWrVsjMjISkZGRCA4OLvf5V65cwZ9//ol3330XOjo6GDNmDKKioiCVShXqXbt2Dd26dcOBAwfw4YcfYvXq1Rg1ahR+++03eZ20tDR069YNmzZtwvDhw7F69WqMHz8e586dQ1ZWVqV+Pk+fPoWvry9at26NlStXYuDAgQCKE8HHjx9j4sSJWLNmDd555x1s2rQJgwYNUri/vJhcXFzg6emJyMhIpWdHRkZCT08P7777Lh4+fAhXV1fMnTu33JgvXbqE5s2bK7x4AcDDw0N+vaK2bNmicgoTABQVFWHatGmYNGkS2rdvX2obb775Jg4cOIDg4GDcvXsXt2/fxmeffYbbt29jzpw58nonT55EXl4emjdvjuHDh8PIyAhGRkZ44403VE5DViUlJQVisRhmZmZK1549e4bMzExcv34dQUFBuH79Onx9fSsVa4njx4/D2NgYpqamaNq0Kf7zn/9AJpOpFSsRUWVp+h1eniVLlmDixImwsLDAsmXL4O/vj+3bt8PLy0vhQ93y4nv06BH69euHhIQEzJkzByEhIfDz88Mff/yB58+fy9uZO3cuXF1d8fDhwzLj+uOPP1BYWIhu3bopXfPw8MCVK1fU+je8oKAADRs2hJmZGSwsLBAQEKDyw2qg5t4TqampsLKyUogRgMoPWI2MjHD58mV5HC1btkTjxo2xbNky7N69G8nJybh06RL8/f1ha2uLiRMnKrSrqs2SsosXL1Y4VtJSmh7Kpbrv1akp9+/fF8RisbBgwQKFeikpKYKZmZkwYcIEQRAE4enTpwIAYdmyZWW2X5npvrNmzRIsLS2FwsJCQRAE4dy5cwIAYf/+/Qr1evXqJRgZGQl//fWXQvk/p4/4+/sLIpFIOHHihNJzSqZtLliwQFD1f7eSKT7Hjh1TeCYAYdWqVUr1VU37jYyMFAAIJ0+erFBM//vf/wQAwrVr1xSuNWvWTBg8eLAgCIJw9+5dAYDg7++v1M6r2rZtK3h7eyuVFxUVCQCEf/3rX+W28U9JSUmCSCQSPvjgA5XXQ0JCBHNzc+HRo0eCIJQ+BSwtLU3o3bu3AED+VTLN+59WrFghABAsLS2F7t27Cz/99JOwdu1awc7OTrC0tBRSUlLKjPfOnTuCoaGh8M4776i87uXlJX++oaGhMHXqVCE/P79SsQqCIAwePFhYunSpsHv3bmH9+vXyvzdTp04tM04ioorQtnd4edN9Hz16JBgYGAg+Pj7yd7wg/P800/nz56sdX8k958+fLzMmf39/AUC5S0W2b98uABCOHj2qdO3LL78UAAiZmZlltvH5558Ln332mRAVFSVERUUJH374oSASiYQuXbooLaup7HsCZUz3VeXHH38UAAirV6+Wl126dEkAIHz55ZcKda9fvy5/v/2zr3FxcULz5s0V3n+tW7cW7ty5o3D/kCFDhAYNGghPnjxRKB89erRav2uoipW0E5NUqnavvuBWrlwpABBu3LghPHr0SOHL19dXcHR0FARBEPLy8gQ9PT1h0KBBCms3XlXRF1xRUZHQuHFjISAgQKG8RYsWwvvvvy//PiMjQwAgfPzxx2W21bBhQ2HAgAFlPrOiSapYLBZyc3NLbU8mkwnPnj0THj16JCQmJiokterG9PTpU8HQ0FD4/PPPleL5+eefy7xXFWdnZ6Ffv34qr+np6QkfffRRhdpbvHixAEA4ePCg0rVHjx4JFhYWwooVK+Rlpf3ikp2dLQQEBAjvvvuuEBUVJURGRgq9evUSTE1NhdjYWHm9b775RgAgWFtbC8+fP5eXl3yAMXfu3FJjffHihdClSxfB3NxcuH//vso658+fFw4dOiT88MMPQo8ePQR/f38hOzu7UrGqIpPJhEGDBgkikUi4detWmXWJiNSlbe/w8pLUrVu3CgCEPXv2qHxWp06d1I7v6NGjAgBhwYIFCmsdK2vz5s0CAOHUqVNK17777jsBgPDgwYMKt7t06VIBgPDDDz+UWU/d90RFktSbN28KZmZmQrdu3RQ+FBAEQfD09BSMjIyEsLAw4e7du0JMTIzQvn17QU9PT6mvN27cEIYMGSLMnDlT2LVrl/D9998LDg4OQqtWrYS0tDR5vUOHDgkAhD59+gjnzp0T7ty5I3zzzTeCvr6+AKDM3zXKipW0D5NUqnavvuA+/vhjhU/KXv0yNjaW1/3vf/8r6OrqCmKxWPDy8hK+++47pSSgoi+4w4cPCwCEzZs3C3fv3pV/ffzxx4KxsbF8Q5wzZ84IAITQ0NBS20pLS1Na1K9KRZPUZs2aqWwnKSlJGDNmjNCgQQOln9vChQsrFJMgCMKYMWOEZs2ayUdXP/roI8HMzKzMBLk0VT2S2q5dO8HOzk6QSqVK1wICAoSWLVsq/NJQ2i8u/fr1E3x9fRXKCgsLhTZt2gjt2rWTly1btkwAIB8F+CdnZ2ehZ8+eKuMsKCgQBg4cKBgYGAi///67Wn3Lzc0VWrVqJYwYMaJSsZam5BeqtWvXqhUHEVF5tO0dXl6SWvIBp6okbNiwYYK5ubna8clkMuGdd94RAAgNGjQQ3n77beF///uf0sZ56qqKkVRV8vPzBT09PWHMmDHl1lXnPaFukvrw4UPB0dFRcHBwEB4+fKh0PSUlRT56C0AQiUTCuHHjhOHDhwsAhKdPnwqCULxJorW1tfDvf/9b4f7ExETBwMBA6feHsLAwhd+DJBKJsHbtWgGAMGPGjErFStqHa1KpxpWsQThw4ACio6OVvvbu3SuvO3PmTNy+fRvLli2DmZkZvv32W7Rp0wa///57pZ9fskHSuHHj4OTkJP9au3YtXr58iV27dgGAfDMCVRselVCnTlnXi4qKVJar2oJeJpPB19cXR44cwdy5c7Fr1y4cPnwYBw8elF+vSEwA4O/vj6SkJJw4cQL5+fn45ZdfMGrUKBgaGpZ776skEonKDZZKNqp4dUOEsvxzzbCurq7Ctb/++gvr1q3DJ598gvv37+POnTu4c+cOcnNzUVhYiDt37uDRo0cAis9Si46OxrBhwxTaEIvFGDRoEP7880/5Op6S+GxsbJTisbGxwZMnT5TKZTIZxo0bh0OHDuHHH39E79691eqfoaEhhgwZgp07dyI3N7fCsZbGwcEBAFSeQUdEVBU0/Q5/HcIrmwyVF59IJMKOHTtw9uxZzJgxA5mZmZg8eTLatWuH9PT0Cj9fIpEAQKnvSkNDQ/lRZxWhr68POzs7tf7tr6r3RFZWFvr164eXL1/i8OHDKt/xEokEMTExSEhIwPHjx3H//n1s2rQJqampsLGxke/fsHPnTjx69Ejp/efk5IQOHTogNjZWoXzy5MlIT0/HmTNncObMGdy7d0++8VPLli0rFStpH7GmA6D6p3nz5gCAZs2aoU2bNuXWd3JywowZMzBjxgw8ePAAnTt3xpIlS9CnTx8A6iVjJUqS0JEjR2Ls2LFK1+fPn48tW7bAz88PLVq0AACFXf5eZWNjg4YNG5ZZB4D8pfP06VOYm5vLy+/du6d27PHx8bh58yYiIiLg7+8vL799+3alYgIAX19fSCQSREZGIiMjA8+ePYOfn5/aMf2Tm5sbjh49isePHytsnnT27FkAQJcuXdRu68cffwQAlbGkpKRAJpMhMDAQgYGBStddXFzk57uV/BLx6oZY/ywr+V83NzcAULnxxcOHD+V/H/5pypQpiIqKwg8//IARI0ao2z0AxQeXC4KAnJwcGBkZVSjW0iQmJgIArK2tKxQLEZG6NPkOV0fJ7sA3b95USlhu3ryptHtwefEBQLdu3dCtWzd88803OHDgAAYOHIh169Zh/vz5FYqtffv20NPTw7lz55R2vT179iw6deqktButOvLy8pCamoqePXuWW7cq3hPZ2dno378/kpOTERMTozIx/CdnZ2f5mbqPHz/GxYsXFc4zLe/9p6rcyMhIvjEjABw+fBgA0Ldv39eKlbSIRsdxqV54dapQYmKiIBaLhZEjR6o8TzIjI0MQhOJ1fi9fvlS67urqKri5ucm/d3NzEzp06KBWLCUL5o8cOaLy+ldffSXo6uoKqampgiAUTysyNjZWWrj/z3MsSzYpUrXGpKTevn37BADCzp075dcKCwsFd3d3ldN9VU1lio+PFwAIGzduVCgPCAiQr5mpSEwlgoKCBDMzM6F///6Co6OjwvWCggLhxo0b5W4aJAiCcOHCBQGA8O233yo8y8fHR7C2tlbY0OHRo0fCjRs3VG4EVVRUJNjb2wuurq4qn5ORkSFs375d6atNmzZC48aNhe3btwuXLl2SP0dHR0fw9PRU+Lv24sULwdHRUWladceOHQUzMzOF9UnR0dECAKVpSLNmzRIACEuXLi3z55Kenq5UlpWVJdjb2wtNmzZV+JmoG+uTJ0+U/hwLCwuF3r17C7q6ugrn3RERvQ5teocLgvobJ/Xu3Vthucivv/6qsHGSOvE9fvxY6d/akiU1s2bNkpelpKQIN27cUGvd6ttvvy1YW1sLjx8/lpeVLP3573//q1D3xo0bCtOP8/LyVL43S6YKb968WV72Ou8JlDHd9+XLl0LPnj0FQ0NDISYmpuzOqjBx4kRBR0dHuHDhgrxsx44dAgCFPTIEQRCuXr0qiMViYdy4cWW2efPmTcHU1FQYOnRolcZKmsWRVKpxTk5O+M9//oOZM2eie/fueOedd9CoUSPcv38f+/fvh4eHB8LCwvDXX3+hd+/eGDVqFNq2bQsDAwPs378fN27cwLJly+Ttubu7Izw8HAsXLkTLli1hamqKwYMHq3z2li1bYGZmBm9vb5XXBw8ejG+++QZbt27Fp59+ipCQELzxxhtwd3fH5MmT0bx5cyQlJSEqKko+grl48WJER0ejT58+CAgIQNu2bZGeno6dO3di165dcHR0hK+vLxwdHTFx4kTcvHkTRkZG+Omnn9Q636xE69at4eLiglmzZiE5ORmNGjXCgQMHkJycrFRXnZhK+Pv7Y/ny5Th06BC++OILhU+1S46g8ff3R0RERJnxubm5wc/PDwsWLMCjR4/Qvn177N69GzExMdiwYQMMDAzkddesWYOFCxfi2LFj8PHxUWjn2LFjePjwofxs2FdZW1tj5MiRSuVr1qxBUVGRwjUrKytMmjQJ//vf/+Dt7Y3Ro0ejsLAQGzZswL1797BhwwaFNlauXIl+/frBy8sLAQEByM7OxooVK9CiRQuF819Xr16N//73v+jcubPKM3aHDx8OExMTAICXlxc6duwId3d3WFlZyZ+bnp6ucCZeRWLdvXs3/vvf/2LQoEFwcnLCkydPEBUVhatXr2LevHlqn3dHRFRRmnyHl8jKysKiRYuUyu3s7DBx4kR8/fXXmDt3Lvr27Yt33nkHDx48QEhICBwdHREUFAQAasW3adMmfP/99xg+fDiaN2+O3NxcbNy4Ebq6ugrvmrlz52LTpk24e/duuee8Ll68GB4eHujZsyc+/vhjPHv2DMuXL4erqyumTJmiUNfV1RW9evWSn/2ZmpqKHj164J133kHLli0hEolw5MgR/Pbbb+jVqxfee+89+b0VfU9ERkbi/v378u8vXbok/xn7+fnJpwmPHTsWsbGxeP/99/HgwQOF95+pqanClN3p06cjNzcXnTp1AgDs2LEDx44dw9KlS+Wzl4Di373atWuHJUuWICkpCT179kRKSgrWrFkDfX19zJ49W173/v37GDlyJIYMGQJ7e3v89ddfCAsLg42NDdauXavQp4rESlpI01ky1X2vfgpbYu/evYKPj4/QoEEDwcjISGjRooUwfvx44dy5c4IgCEJmZqbwr3/9S3B1dRVMTU2FBg0aCG5ubsL69esV2klNTRUGDx4sNGzYUAAgODg4qIwjPT1dEIvFwrvvvltqrDKZTGjcuLHQpUsXedn169eFESNGCBYWFoKhoaHg4uIifPrppwr3PXjwQBg/frxgY2Mj6OvrC46OjkJAQIDC5gpXrlwRvLy8BH19fUEikQhffPGFfJROnZFUQSj+tLB///5Cw4YNBQsLC+G9996Tf6r76nEA6sRUokuXLgIA4ebNmwrlFTmCRhCKN2/44osvhCZNmgj6+vpCu3bthMjISKV6JRtJ/bPfJUq20793755azyxR2s9NKpUKYWFhQpcuXQQzMzPByMhI8PDwKHUH4+joaKF79+6CoaGhYGFhIYwdO1ZpJLnkuIHSvv55DMF//vMfoUePHoKlpaUgFosFGxsbYejQoSqPB1I31osXLwpDhgyR/5xNTU2FHj16CFu2bKnQz4yIqDza8g4v8c+NeF796tixo7zeDz/8ILRr107Q19cXLC0tBT8/PyE5OVl+XZ34Ll26JLz//vuCg4ODYGBgIFhbWwu+vr7C8ePHlX5Gr/7bX5azZ88KPj4+grGxsfw9UzKD658AKGwq9eTJE8HPz09wcXERTExMBAMDA8HV1VVYuHCh0oaHFX1PlPVz/ee72sHBodR6r/7ZRURECJ06dRJMTEwEU1NToWfPnip3XS7p25w5c4TWrVsLhoaGgrm5ufD222/LZ0aVePz4sTBs2DBBIpEIenp6QtOmTYVp06ap3HCqIrGS9hEJQgWGcoioTurRowdkMpl8/SgRERERkaZwd1+ieu7PP//EmTNnFDZjIiIiIiLSFI6kEtVTf/75Jy5evIhVq1bhwYMHuHv3LkxNTTUdFhERERHVcxxJJaqnfvnlF3z44Yd48eIFtm7dygSViIiIiLQCR1KJiIiIiIhIa3AklYiIiIiIiLQGz0kth5WVVblnXpXnxYsX8jMT67r60lf2s25hP+uWyvbz3r17yMzMrIaIqKL47lUf+1n31Je+sp91S1W/e5mklsPR0REXLlx4rTZiYmLg4+NTNQFpufrSV/azbmE/65bK9tPd3b3qg6FK4btXfexn3VNf+sp+1i1V/e7ldF8iIiIiIiLSGkxSiYiIiIiISGswSSUiIiIiIiKtwSSViIiIiIiItAaTVCIiIiIiItIa3N2XiIiIiIhqFZlMhszMTDx9+hRFRUWaDqdUZmZmuHHjhqbDqHaq+qmrqwtzc3NYWVlBR6diY6NMUomIiIiIqFZJTk6GSCSCo6Mj9PT0IBKJNB2SSjk5OWjQoIGmw6h2r/ZTEAQUFhYiPT0dycnJaNasWYXa43RfIiIiIiKqVV68eAF7e3vo6+trbYJan4lEIujr68Pe3h4vXryo8P1MUomIiAihoaFwcnKCoaEh3NzcEBsbW2Z9QRAQHByM1q1bw8DAABKJBJ9//rlCnZ9++gmdOnWCsbEx7Ozs8MEHHyAtLa06u6EQHxHVbRWdQko1r7J/RjX+J1uRl+DXX38NkUik8isjIwMAEBMTo/L6zZs3FdrasWMH2rRpAwMDA7Rp0wa7du2q1n5S3fHb1RT0X3kC2XmFmg6FiKhabNu2DYGBgZg3bx4uX74MT09PDBgwAElJSaXeM2vWLISGhmLp0qW4ceMG9u/fD29vb/n1U6dOwc/PD/7+/rh27Rp2796N69evY+zYsdXen0mbL2DJubxqfw4REVWPGk1SK/oSDAoKQmpqqsJXr1694OPjAxsbG4W6165dU6jn4uIivxYXF4cxY8Zg7NixuHLlCsaOHYtRo0bh7Nmz1dpfqv0Ki2RYevAmbqXnIDLuvqbDISKqFitWrMD48eMxadIkuLq6IiQkBBKJBGvXrlVZ/9atWwgJCcGePXswdOhQODs7o3Pnzhg4cKC8TlxcHJo0aYJPP/0UTk5O6N69O6ZNm1Yj715DPV08zedIKhFRbVWjGyf98yUIACEhITh48CDWrl2LxYsXK9U3NTWFqamp/PsHDx4gNjYWkZGRSnVtbGxgZWWl8rnBwcF48803MX/+fADA/PnzcezYMQQHB2Pr1q1V0TWqxa6nZCPh0XMM7thY6dqeKylIfpKLxmaGWBebiPGejjAxeL3/25xNzMKBP9PgYGmMD72cVNZJz87DDycSIZX9/y9Zwzrbo1NTcwDAywIpQo7eQW6B+rvZtZE0xOiuTV8rdiKqewoKCnDx4kUEBQUplPv6+uL06dMq79mzZw+cnZ1x8OBBDBo0CDKZDL169cKyZcvkHyJ7eXlh3rx5+O233/D2228jKysLUVFRColsdbFpYICn+QIEQeBaNSKqc77++mv88ssv+PPPPzUdSrWpsSS1Mi/BV61fvx7m5uYYMWKE0jV3d3fk5+ejTZs2+OKLL/Dmm2/Kr8XFxWHatGkK9fv37481a9ZUoidU16yIvoXjfz1Cvza2MNTTlZcXyQSEHrsDV0lDLBrWDiPWnsZPZ5Mwydv5tZ63+MBNXE1+CkEAOjQxg5tDI6U6yw/dwo5LyWhgqAcAeJEvRWLmC2ye0A0AsPHUPayNSYCZkZ5azywskiG3sAhujhZobm1a/g1EVG9kZmaiqKgItra2CuW2trY4cuSIynsSExNx//59REVFISIiAiKRCEFBQRg8eDDi4uKgo6ODHj16YOvWrRg7dixyc3MhlUrRr18/bNq0SWWb4eHhCA8PB1C8a2dMTEyl+5TzqAD5RcDB32NgJK7bSerz589f62dVW9SXfgL1p6+v208zMzPk5ORUXUDVpKioSB7n6NGjkZeXh19//VWp3q1bt9C1a1fs3r0bvXv3LrPN/Px8yGSyMvvfsGFDbN68GcOGDXut+NX1z36+Ki8vr8J/1jWWpFbmJfhPMpkMGzZswLhx42BgYCAvL5mO1LVrVxQUFCAyMhJ9+vRBTEyMfG1MWlqayueWtnlDVb4ogfrzjw1Q+/oqEwScvv0ShUXAxl9j4Gqpi+x8AQ30gbNpRUjMzMcnnQyQc/cq2lrqIOTITeg/vYu83FzkHzkGgwr88pNTIECsA/yR/BJ9m4lxJkWKhdvPYaa7IXIKBJjoAToiER69lGHnpVz0birGB230AQCbrwk4nfAIh38/htQXMoSdz0MHK13MdNdX69nZ+QKCjr/E3B9PYmRLfdgYqzfTv7b9eVZWZfsplQlIfVHxKYVWRiIY6AKpLwTIamhGooWBCCh4gZiYGDx6KUN+ESAxEUFXR/Hv8KOXMuRp73FzpTLUBaz//ntdX/7eVrVXRxzLGoWUyWTIz89HZGQkWrZsCQCIjIxEq1atcP78eXh4eOD69euYPn06vvzyS/Tv3x+pqamYPXs2Jk+ejM2bNyu1GRAQgICAAADFHzz7+PhUui9PzJLx862raNmxa53/YC4mJua1fla1RX3pJ1B/+vq6/bxx40atONrln0ezTJkyBcOHD0dWVhYcHR0V6kVFRcHBwQGDBw8ud7MhAwMD6OjolNt/IyOjGvsZlXXUjqGhITp37lyh9mr8nNSKvAT/6cCBA3jw4AEmTpyoUN6qVSu0atVK/n2PHj1w7949LF++XGEDh4o8typflED9+ccGqH19vZGajZeHijfvKjBrBntXO0xaHYu5A1xxNC0JLWz0MGu0N3R0RDBqloUx4Wew4HQeABE8mxvhp0nd1XpORk4eei8/jpa2pigSXmJs787olJKNZYduocC6NeZEXcGknk6Y6dsK83f9AR2dB/h2rDckZkYAgGyLFBzdehlrb+njctJTAMCCUd1UjsKW5mrhdaw/eRfn0nIR+VE39HSxLvee2vbnWVmV7efXv15DxOl7Fb6vbeOGGNbJHt+drLnDvZs2MsICdxOYN++ED0NPQRCAyd7OmDvQVV7nwr3HGB8WV2MxVSXfNrYIH+cOoP78va0qVlZW0NXVVfrgNiMjQ+kD3hISiQRisVieoAKAi4sLxGIxkpKS4OHhgcWLF6Nbt26YPXs2AKBDhw4wMTFBz5498d1336Fp0+pbfmDTwLC4D9n5dT5JJaLaY9CgQbC1tcXGjRuxcOFCeXlhYSEiIyPxySefQBAEfPTRRzh69CjS0tLQpEkTTJo0CUFBQVW2m7FMJsN3332H8PBwZGRkoGXLlli0aBGGDh0qr/PNN99g/fr1SEtLg4WFBXx9feUfMJ44cQJz5szBn3/+CV1dXbRu3RqrV6+Gh4dHlcQH1GCSWpmX4D+Fh4fD09MTbdu2Lbeuh4cHoqKi5N/b2dlV+rlUt527+xhA8fqlc/eycDfzOQqLBCw5cBMFRTIEj+kEnb9HmjycLREV0B1PXxZgR2w8ohOycO7uY3RzKj9RXBd7F8/zpbiU9BQ6IsDNwQJuDhb43/EE/OunyygokmHDqXsY1KExtl9Ixki3pvIEFQA8/n7G5aSnGNRBAv8ejhVKUAEgyLcVPJwaYcGv17DqyG280cKKa7VeQ0Z2Hn46lwTfNrZ4p4u92vf9+TAba47dwe3053B3sMDEnqrXJVele1kvseTATZxO0cf9pNswM9KDWzMLbI67jwBvZ1iaFs9OWX30DixN9LFoWDvUtr8a1n8nJVRx+vr6cHNzQ3R0NEaNGiUvj46OVrm8BihebyqVSpGQkIDmzZsDKJ4CLJVK4eDgAAB4+fIldHV1Fe4r+b66j4exaVD8dzojhzv8EtUnC3+7husp2TX6zDaNG2LB4PLzEwAQi8Xw9/dHREQEFixYIE86f/vtN2RmZuLDDz+ETCaDvb09fv75Z1hbW+PcuXMICAiApaUlPvrooyqJedWqVVi2bBnCwsLg7u6OLVu24J133sHFixfRqVMn7NixA8uXL8fWrVvRvn17ZGRk4MyZMwAAqVSKoUOH4qOPPsKPP/6IwsJCXLp0Senf+9dVY0lqZV6CJVJSUrBv3z6sW7dOrWdduXIFEolE/n2PHj0QHR0t/zS35Lmenp4V7AXVFYIgYN6uPxB9PR325kbo18YWP569jyKZgG5OjXDu7mM4Whrj7Q4Shfu6O1sCAETpN3E5Swef/HQJjc3K/+X4RloOujpa4ML9J2hnbyZfa/qhlxNW/X4b3Rwb4dy9xxgVdhpFgoCpPs0V7rdtaAhHS2M8fJqL+QNd0djcSNVjymSkrwvftnZIfZaHBb9ew9shJyHWKTsTyc7Jxco/T1b4WbVNZfr5+GUBimQC5g9yhYOlidr39XW1xa9XU5D0+CVm928Fj7//TlUnQRCw/49UbL35DLnSDMzq1xID2kvQb+VxDA89DQtjPcgE4I+Hz/DZW60xoL2k/EapTpk5cyb8/PzQrVs3eHl5ISwsDCkpKZgyZQoAYO7cuTh37hx+//13AEDfvn3RpUsXTJgwAcHBwQCAGTNmwMPDA+7uxSPagwcPxqRJk7B27Vr5dN8ZM2agS5cuaNasWbX2x6Zh8b/Lj3Lyq/U5REQV9dFHH2Hp0qU4cuQIfH19ARTvu+Pr6yufYfLNN9/I6zs6OuLSpUvYunVrlSWpy5cvR1BQEN5//335806cOIHly5djy5YtuH//PiQSCXx9faGnp4dmzZrJ/23Pzs7G06dPMXjwYPmHlK1bt67y9cE1Ot23oi/BEhs2bICJiQlGjx6t1GZwcDAcHR3Rtm1bFBQUYMuWLdi9ezd27NghrxMYGAhvb28sXrwYw4cPx65du3Ds2DGcPFn3f/km1U7eycTWcw/Qqak53u/WDO2bmCH5yUvoi3Xw7dB22HDqLno4W0Gsq3pahYGuCN8ObYdtFx6o9bxeLa3x5aA2OHQtDU0bGcvLJ7zhhLRneZje1wU7LybjYtITvNHCSqFOiRl9WyInX1qpBPWfxnRtiqvJT/H4RUG5dYU8ESxM1Fv3WptVpp8WJvoY192xQgkqAIh1dfDd8HY4m/i4RhJUoHi5w4LBbfDNL+fQrLEtxns5ooGhHub0b42zd7Pk9YZ2aoxxPRxqJCbSLmPGjEFWVhYWLVqE1NRUtGvXDvv375ePiqampiIhIUFeX0dHB3v37sX06dPh7e0NIyMj9OvXDytWrJCPDIwfPx45OTlYs2YNZs2aBTMzM7z55pv4z3/+U+39aWgohp4OkMEklaheUXdEU5NcXFzg7e2NDRs2wNfXFykpKTh06BC2bdsmrxMWFoZ169bh/v37yM3NRWFhofzf49eVnZ2NlJQUeHl5KZS/8cYb2L9/PwBg1KhRWLVqFZycnNC/f3+89dZbGDJkCAwMDNCoUSOMHz8e/fv3R58+fdCnTx+MGjUK5ubmVRJfiRpNUiv6EgSKRwDWr1+PsWPHwthY+Rf3goICBAUF4eHDhzAyMkLbtm2xb98+hS3uPT09ERUVhS+++AILFixA8+bNsW3btiqdN02v7+qDp7iWko22jRui499HrZTn2K0MpD6t+HSureeSYNfQENsmd4eBuHh6wjr/rvLrs/u3LreNAe0lFR5xenVnYDMjPSwd2QEAMK2Pi6pb5IZ1Vn9KaVkM9XSxYnQnteoWr+3rViXP1WY13c+eLtZqrQmuSm4OjfCpmyF8fP5/44KPfZrj41dG7an+mjp1KqZOnaryWkREhFKZRCLB9u3by2xz2rRpSrvr1wSRSARzAxEysjndl4i0z8SJEzFp0iQ8fvwYERERaNSoEYYMGQIA2LZtG2bMmIHly5fD09MTDRs2xPfff49du3ZVaQyqlnyVlDVt2hS3bt3C77//jiNHjmDWrFlYuHAhzp49CxMTE2zcuBEzZszAwYMH8euvv2L+/Pn46aefMHz48CqLr8Y3TqroS1AkEuHu3bultjdnzhzMmTOn3OeOHDkSI0eOVDtOqlnZeYX4YP1Z5ORJ0dBQjFOf95ZPiS1NenYePtx4vtLP/HZYO3mCSkREdYuZgYgjqUSklUaOHIlp06Zhy5Yt8tNL9PSKf+89efIkPDw88K9//Ute/9VBvNfRsGFDNG7cGCdPnlQ46ubkyZNo06aN/HtDQ0MMGjQIgwYNwueffw47OzucOnVKPkW5Y8eO6NixIz777DMMGDCg9iepRCVkMgEiUfEHEZtP30NOnhTfDmuHL3f/ic1x9zHVp7nKT3lK7jv796ZHmyZ0Q2u7im2vrasjgmU9mMZKRFRfmRuIkM6RVCLSQkZGRnj//ffx9ddf48mTJwprTVu2bImIiAgcOHAALVq0QFRUFI4fPw4LC4sKP+fevXu4cuWKQpmzszNmz56Nr776Ci4uLnBzc8OWLVsQGxuLixcvAigeOJRKpfDw8ICpqSm2bdsGPT09uLi44O7du/jf//6HIUOGwN7eHomJiYiPj8eECRNe62fyKiapVKM+3nIRjUz00dquAb7ccw2mBmJEBXTH+pN30bu1Dfy6O+DI9XQsO3QLYTEJ2De9J5pZ/v807/ATCfj3/ptoaCiGm4MFTA3E8GpuWeraUSIiqp/MDES4lcGRVCLSThMnTsTatWvh6ekJV9f/Pw5u8uTJuHLlCt5//30IgoARI0Zg1qxZ2LBhQ4Wf8c9NY0v89ttvmD59OnJycjBnzhykp6ejVatW2LFjBzp16gQAMDc3x9KlSxEUFITCwkK0adMGO3fuhJOTE9LT0/HXX39h1KhRyMzMhK2tLcaOHYtPP/200j8LVZikUo15kS9F9PV0yAQBDQz10LZxQyQ8eo5xG87hyctCTOvdAgCwaFg77Lr8EGuO3UFozB0sGVG8ZjMnrxBrjt5BxyZmuJ6ajWO3HqFXS2smqEREpMTcQIScvELkFRbBUI9LO4hIu3Tp0kXlcVz6+vpYv3491q9fr1D+1Vdfyf/766+/xtdff11m++Ud9fXll1/iyy+/VHlt2LBhGDZsmMprtra22Llzp1J5rd7dl+quwiIZQo7egYNUJi/7Kz0H62PvwkhfF3PeaoXLSU8hlRX/H+ZZbiF+GOeOQ9fSsP7kXfR0sULnZsXTGJo2Msb0Pi7Iep6Pn84lQSoTIAKQ/CQX2XlSLBrWHj+dS8LWc0lqnVFKRET1j7lB8XKRjOx8hRk5RESk/ZikUpXYdekhVv9+Gz0kuhgxoLjsm9+u49y9xyiQyiAxM8SLfCl0dUT4xKc5Up7loZtTIzhaGuNS0hME+bZSanOKT3PEJWbh9J1Medl73ZqifRMzfGLSHDfTsjGgnV1NdZGIiGoRs5IkNSePSSoRUS3DJLWOkckE/JnyDIVFMohEIrRrbAZ9sQ7ypUV4+rIQtn8fcF5VCotk+PPhM4TG3IFIBJxJLcLvN9LxPF+Kk3cyMW9ga8TezsQPsYlobG6Edo0bYuY/ElKbhobYNdVLZdsSMyMc/rSXymtNLIxLvY+IiMjCsHgpCHf4JSKqfZik1jG/Xk3BjG1X5N9P6dUcnw9ojQV7ruHQtTScm98XelW4hnPVkdtYc+wOAODfw9vj6z1/4KNNFwAAjUz0MdbDAZ2bWWBUWBwynxdgSi+eyUhERNVPPpLKHX6JiGodJql1zMk7mWhkoo/gMZ2wOe4eNsfdw6D2Emy/mIwimYBrKdno1NS8Sp717GUhIk7fw5utrPGv3i3QpZkF8OgOmrRsDwBwtDSBiYEYXR0bYc8nXsjJk6KLQ9U8m4iIqCymeoBYh2elEtVlgiCoPK6QtEd5GziVhklqHfDVnj/RwsYU43o44uzdLHRzbATvltawMzOE78oTGBMeBx0RUATgbGIWWts1wEebziM9Ox9TejXHSLcmlXruxtN38TxfijlvtYarpCEAoLGpDrxbWivV7VhFiTEREZE6dEQiWDcwQHo2k1SiukhPTw+5ubkwNuaac22Wm5sLPT29Ct/HJLWWu3j/CTbH3YeJvi66OjbCg8e5+NDTCQDQ0rYB5g90xZUHT/GGixV+iE3EubuPYSDWwak7WTA31sPWc0mVSlJz8gqx8dQ99GtjK09QiYiItIlNAwNk5HC6L1FdZGNjg4cPH8Le3h5GRkYcUdUygiAgNzcXDx8+hK2tbYXvZ5JaiyQ8eo5nuYXF02r/tubobTQwECMnX4rpWy8DgMKxLJO8neX/HZ/8FHuvpuJaSja6OTZCFwcLrD+ZiNyCIuRLi7Dr8kMUyf5/SL5fm+K/UNHX02HdwABDOjbG7isPkfW8AH88fIZnuf9/tikREZG2sW5giOQnLzUdBhFVg4YNiwdJUlJSUFhYqOFoSpeXlwdDw6rduFQbqeqnnp4ebG1t5X9WFcEktRb5bt8NnLv7GCc/exPmxvp4lJOPY7ceIbCPC+5mvsCvV1Ngb25U6shmX1dbbD33AC8KpFgxpiPypTKEHU/A5aQn2P9nKracSVKof/DPNAgoHq0FgBupOQg7niC/3q+NLTo0Ma+u7hIREb0Wm4YGuJT0RNNhEFE1adiwYaUSoJoUExODzp07azqMalfV/WSSWov8lZ6D5/lSbDx1D5/2a4nz9x4DAHxaWWNGXxd8N7wdDPV0oaujerpDH1db3PjmLYhEgKGeLrLzCqEjAvZcScGuyw8xxr0pvnjbFQDw84VkfLv3OgBg7oDWWH/yLsKOJ6CxmSH2B/aEro4IJvr860NERNrLpoEBHr8oQIFUBn1x1e1sT0RE1Yv/YtcSLwukSH6SC10dETaeuoucvEKcu/sYxvq6aGdvBpFIhAaGeuUeL2OkrwtDPV0AQENDPbRtbIZtFx6gSBDwyZst0MBQDw0M9TDWoxmsGxjApoEB/D0dEfD3tOEpPs1hbqyPBoZ60CklGSYiItIGJWeDZz7n5klERLUJh8JqicRHLwAAk72dERqTgM1x93EmMQtuDhavde7pkhHtEZeQhebWpmhm+f+7oxnq6WLj+K7y/x7XwxHWDQwwsL3k9TpCRERUQ2waGAAAMnLy0djcSMPREBGRupik1hK3M3IAAO90scf11Gz873gCcvKlGPSaSWPbxmZo29hM5bV29v9fri/WwdBO9q/1LCIioppk06B4JDUjmzv8EhHVJpzuW0vcyXgOsY4IDpYmCPJtBXsLY7SRNMSA9naaDo2IiEgr2TQsHklNz+F0XyKi2oQjqbXE7fTncLQygZ6uDtrZm+FAYE9Nh0RERKTVLE30IRIBjziSSkRUq3AktRbIKyzCpaSnaGXXQNOhEBER1RpiXR1YmhgggyOpRES1CpPUWmD7hQfIfJ6PsR7NNB0KERFRrWLTgEkqEVFtw+m+WiwjOw/jNpzD3cwXcHOwQA9nS02HREREVKvYNDRARg6n+xIR1SY1PpIaGhoKJycnGBoaws3NDbGxsaXW/frrryESiVR+ZWRkAAB27twJX19fWFtbo0GDBvDw8MCvv/6q0E5ERITKNvLytPulFX4iEbcznmNop8b4ZmhbiEQ8l5SIiKgibBsYIiObI6lERLVJjSap27ZtQ2BgIObNm4fLly/D09MTAwYMQFJSksr6QUFBSE1NVfjq1asXfHx8YGNjAwA4fvw4evfujX379uHy5csYOHAghg8frpT8GhsbK7VlaGhY7X2urKzn+fjxbBKGdmyM/4zsWOoxMURERFQ6m4YGyHyejyKZoOlQiIhITTU63XfFihUYP348Jk2aBAAICQnBwYMHsXbtWixevFipvqmpKUxNTeXfP3jwALGxsYiMjJSXrVq1SuGeBQsWYN++fdi9ezd69vz/HXBFIhHs7GrPcS2xtzORW1iED72cNB0KERFRrWXTwAAyAch6kS8/N5WIiLRbjY2kFhQU4OLFi/D19VUo9/X1xenTp9VqY/369TA3N8eIESPKrJeTkwMLCwuFstzcXDg4OKBJkyZ4++23cfny5Yp1oIYlP3kJAGhhY1pOTSIiIiqN9d+JKaf8EhHVHjU2kpqZmYmioiLY2toqlNva2uLIkSPl3i+TybBhwwaMGzcOBgYGpdb7/vvvkZycDD8/P3lZq1atsGHDBnTs2BE5OTlYtWoVvLy8cPXqVbi4uCi1ER4ejvDwcABAcnIyYmJi1Oylas+fP69wG+ev56OBPnD2dOlrdrVRZfpaG7GfdQv7WbfUl36SemwbFv/OkJ6dh3b2XDpDRFQb1Pjuvq9u/iMIglobAh04cAAPHjzAxIkTS62zY8cOzJ49G1FRUXBwcJCX9+jRAz169JB/7+npiU6dOiEkJASrV69WaicgIAABAQEAAHd3d/j4+JQbX1liYmIq3Mb6hLNwsimEj88br/XsmlaZvtZG7Gfdwn7WLfWln1UtNDQUy5YtQ2pqKtq2bYvg4GCFZTOvEgQBq1atQlhYGO7evYtGjRrB398fS5YskdcpKCjAokWLEBkZiZSUFNja2iIoKAjTp0+viS4BACRmRgCAtGzt3iyRiIj+X40lqVZWVtDV1UVaWppCeUZGhtLoqirh4eHw9PRE27ZtVV7fsWMH/Pz8sHnzZgwZMqTMtnR1deHu7o7bt2+r34Ea9vBpLlrZNtB0GEREVA+UbGwYGhqKN954A6GhoRgwYACuX7+OZs1Un9E9a9Ys7N27F8uWLUP79u3x7NkzpKamKtR577338ODBA4SHh8PFxQXp6enIzc2tiS7JWTcwgK6OCGnPmKQSEdUWNZak6uvrw83NDdHR0Rg1apS8PDo6utw1pikpKdi3bx/WrVun8vrPP/8Mf39/bNq0CSNHjiw3FkEQEB8fj44dO1asEzVEEAQ8fJKL3q1sNB0KERHVAxXd2PDWrVsICQlBfHw8XF1d5eWdO3eW//fhw4dx5MgRJCQkwMrKCgDg6OhYvR1RQVdHBJsGBkh5yiSViKi2qNEjaGbOnImIiAisW7cON27cQGBgIFJSUjBlyhQAwNy5c9GnTx+l+zZs2AATExOMHj1a6VpUVBTGjh2LJUuWwNvbG2lpaUhLS8Pjx4/ldRYuXIhDhw4hMTERV65cwUcffYT4+Hj5c7VN5vMC5EtlaGJhpOlQiIiojqvMxoZ79uyBs7MzDh48CGdnZzg6OsLf319+hjkA7N69G127dsWKFSvQpEkTuLi4YPr06Xj+/Hm19kcVOzNDpGXX7AguERFVXo2uSR0zZgyysrKwaNEipKamol27dti/f798/WhqaioSEhIU7hEEAevXr8fYsWNhbGys1GZYWBikUilmzJiBGTNmyMt79eol3zjj6dOnCAgIQFpaGszMzNC5c2ecOHEC3bp1q7a+vo6HT4tfpPYWyv0lIiKqSpXZ2DAxMRH3799HVFQUIiIiIBKJEBQUhMGDByMuLg46OjpITEzEyZMnYWBggB07duDp06eYNm0aUlJS8Msvvyi1WZ2bFooL8pCQJauTG2rVl43C6ks/gfrTV/azbqnqftb4xklTp07F1KlTVV6LiIhQKhOJRLh7926p7anzw1i5ciVWrlypboga9/DJ30mqOUdSiYioZlRkY0OZTIb8/HxERkaiZcuWAIDIyEi0atUK58+fh4eHB2QyGUQiEX766SeYmRXvqrtmzRr0798f6enpSklxdW5aGPv8Oq6dS0KvXr3U2qyxNqkvG4XVl34C9aev7GfdUtX9rNHpvqSeh0+Lz0i153RfIiKqZpXZ2FAikUAsFssTVABwcXGBWCxGUlKSvI69vb08QQUgX79aUqemSMwM8bKgCNl50hp9LhERVQ6TVC2U+OgFGpnow8xIT9OhEBFRHffPjQ3/KTo6Gp6enirv8fLyglQqVViik5iYCKlUKl/C4+XlhZSUFIU1qH/99RcAKBwTVxPszAwBgDv8EhHVEkxStdDtjOdoYWOq6TCIiKieqOjGhn379kWXLl0wYcIEXL58GZcvX8aECRPg4eEBd3d3AMD7778PS0tLfPjhh7h27RpOnTqFwMBAjBw5EjY2Nbt7veTvJDXlGTdPIiKqDZikahlBEHCHSSoREdWgMWPGIDg4GIsWLUKnTp1w8uTJMjc21NHRwd69e2FjYwNvb2/0798fTZo0wZ49e6CjU/yrhampKY4cOYJnz56ha9euGD16NHr16oUNGzbUeP8kZsXLZ1J5DA0RUa1Q4xsnUdkePc/Hs9xCuDBJJSKiGlTRjQ0lEgm2b99eZputWrXC4cOHqyK812JlagAAyHyer+FIiIhIHRxJ1TJ3MorX7rjYNNBwJERERHWDvlgHDQzFePyiQNOhEBGRGpikapmSJJXTfYmIiKqOpYk+spikEhHVCkxStcydjOdoYCCGbUMDTYdCRERUZ1iaGiCL032JiGoFJqla5n7WSzhamdS5w8aJiIg0qZGJPqf7EhHVEkxStczDp7mwNzfSdBhERER1Cqf7EhHVHkxStYggCHj4JBf2FkxSiYiIqlLJSKpMJmg6FCIiKgeTVC3y+EUBcguLOJJKRERUxSxNDVAkE5CdV6jpUIiIqBxMUrXIw6e5AMCRVCIioipmaaIPAJzyS0RUCzBJ1SIPnxQnqU2YpBIREVWpRiVJ6nMmqURE2o5JqhYpGUltYm6s4UiIiIjqFkvT4iT18QseQ0NEpO2YpGqR5Ce5MDUQo6GRWNOhEBER1SmWJsXnj3O6LxGR9mOSqkVKjp/hGalERERVy8JEDwCn+xIR1QZMUrVIytNcNDY31HQYREREdY6BWBcNDMR4zJFUIiKtxyRVizx9WYhGf09HIiIioqrV0EiPR9AQEdUCTFK1yNOXBTA31tN0GERERHWSkb4ucguKNB0GERGVg0mqligskuFFQRHMjZikEhERVQdjfV3kFjJJJSLSdkxStcSz3OLpR2YcSSUiIqoWRnq6eMmRVCIirVfjSWpoaCicnJxgaGgINzc3xMbGllr366+/hkgkUvmVkZEhr3f8+HG4ubnB0NAQzs7OCAsLU2prx44daNOmDQwMDNCmTRvs2rWrWvpXWU9f/p2kciSViIioWnC6LxFR7VCjSeq2bdsQGBiIefPm4fLly/D09MSAAQOQlJSksn5QUBBSU1MVvnr16gUfHx/Y2NgAAO7evYuBAwfC09MTly9fxty5czFt2jTs2LFD3k5cXBzGjBmDsWPH4sqVKxg7dixGjRqFs2fP1ki/1fEst3i3QXNjfQ1HQkREVDcZ6+viZYFU02EQEVE5ajRJXbFiBcaPH49JkybB1dUVISEhkEgkWLt2rcr6pqamsLOzk38VFhYiNjYWkyZNktcJCwtD48aNERISAldXV0yaNAn+/v5Yvny5vE5wcDDefPNNzJ8/H66urpg/fz58fHwQHBxc3V1WW8lIKtekEhERVQ8jPTFHUomIaoEaS1ILCgpw8eJF+Pr6KpT7+vri9OnTarWxfv16mJubY8SIEfKyuLg4pTb79++PCxcuoLCwsMw66j63JsjXpDJJJSIiqhbG+rp4yY2TiIi0nrimHpSZmYmioiLY2toqlNva2uLIkSPl3i+TybBhwwaMGzcOBgb/f5ZoWloa+vbtq9SmVCpFZmYmJBIJ0tLSVD43LS1N5bPCw8MRHh4OAEhOTkZMTIw6XSzV8+fPy23jwr3iJPXPS+dwT1/0Ws/TJHX6Whewn3UL+1m31Jd+UsUVT/dlkkpEpO1qLEktIRIpJmCCICiVqXLgwAE8ePAAEydOVKvNV8sr8tyAgAAEBAQAANzd3eHj41NufGWJiYkpt41L0X9BdOs2BvT1ga5O7U1S1elrXcB+1i3sZ91SX/pJFWekr4sCqQxFMqFWv2uJiOq6Gpvua2VlBV1dXaXRy4yMDKVRTlXCw8Ph6emJtm3bKpTb2dmpbFMsFsPS0rLMOuo8t6Y8e1mAhoZ6fGkSERFVE2N9XQDgWalERFquxpJUfX19uLm5ITo6WqE8Ojoanp6eZd6bkpKCffv2KWyYVKJHjx5K04Wjo6Ph7u4OPT09eZ3KPLcmPcst5HpUIiKiamSkXzyBjDv8EhFptxrd3XfmzJmIiIjAunXrcOPGDQQGBiIlJQVTpkwBAMydOxd9+vRRum/Dhg0wMTHB6NGjla5NmTIFycnJmDFjBm7cuIF169YhIiICQUFB8jqBgYE4evQoFi9ejJs3b2Lx4sU4duwYZsyYUW19rainuYUwN2aSSkREVF2M9f4eSeW6VCIirVajSeqYMWMQHByMRYsWoVOnTjh58iT2798PBwcHAEBqaioSEhIU7hEEAevXr8fYsWNhbGys1KaTkxP279+PEydOoFOnTvjuu++wevVqhR2APT09ERUVhU2bNqFDhw7YvHkztm3bBg8Pj+rtcAU8fcmRVCIi0pzQ0FA4OTnB0NAQbm5uiI2NLbO+IAgIDg5G69atYWBgAIlEgs8//1xl3ZMnT0IsFqNdu3bVEbrajP6e7svNk4iItFuNb5w0depUTJ06VeW1iIgIpTKRSIS7d++W2WavXr1w6dKlMuuMHDkSI0eOVDvOmvYstxBNGykn4URERNVt27ZtCAwMRGhoKN544w2EhoZiwIABuH79Opo1a6bynlmzZmHv3r1YtmwZ2rdvj2fPniE1NVWp3pMnTzBu3Dj06dMHDx8+rO6ulIlJKhFR7VCjI6lUuqcvC2BmVOOfGRARUS02bNgw7N27FzKZ7LXaWbFiBcaPH49JkybB1dUVISEhkEgkWLt2rcr6t27dQkhICPbs2YOhQ4fC2dkZnTt3xsCBA5XqfvTRR/D390ePHj1eK8aqwOm+RES1A5NULSCTCXiWWwhzI31Nh0JERLWIiYkJxowZgyZNmmDevHm4fft2hdsoKCjAxYsX4evrq1Du6+uL06dPq7xnz549cHZ2xsGDB+Hs7AxHR0f4+/sjIyNDoV5oaCjS0tLwxRdfVDiu6mD898ZJ3N2XiEi7cehOCzzLLYRMABqZMEklIiL1/fjjj8jOzsaPP/6IjRs3YsmSJXjjjTcwceJEjBo1CkZGRuW2kZmZiaKiIqVj2WxtbZV2zy+RmJiI+/fvIyoqChERERCJRAgKCsLgwYMRFxcHHR0d/PHHH1i4cCHOnDkDXV3dcuMIDw9HeHg4ACA5ORkxMTHl/wDK8Pz5c6U2Up4XjzhfvPIH9DJuvFb72kJVP+ui+tJPoP70lf2sW6q6n0xStUDWiwIAgKUpk1QiIqqYhg0b4uOPP8bHH3+Ma9euYd26dZg8eTKmTZuGd999FzNmzICrq2u57YhEiud0C4KgVFZCJpMhPz8fkZGRaNmyJQAgMjISrVq1wvnz59GpUye8++67WL58OZycnNTqR0BAAAICAgAA7u7u8PHxUeu+0sTExCi1kfI0Fzh5FI4tWsKnm+q1trWNqn7WRfWln0D96Sv7WbdUdT853VcLPP47SeVIKhERVVZKSgr27NmDvXv3QiwWY+TIkXjw4AE6dOiA5cuXl3qflZUVdHV1kZaWplCekZGhNLpaQiKRQCwWyxNUAHBxcYFYLEZSUhJSU1Nx/fp1fPjhhxCLxRCLxfjmm29w7do1iMViHD58uGo6XUHG3DiJiKhWYJKqBR6/yAfAJJWIiCqmsLAQv/zyCwYOHAgHBwfs3r0bc+bMQWpqKtavX4/9+/fjxx9/xKJFi0ptQ19fH25uboiOjlYoj46Ohqenp8p7vLy8IJVKFY6NS0xMhFQqhYODA+zt7fHHH3/gypUr8q8pU6agRYsWuHLlSqntVreS3X25JpWISLtxuq8WePyiEACTVCIiqhiJRAJBEPD+++9jyZIl6NChg1Kdfv36wcLCosx2Zs6cCT8/P3Tr1g1eXl4ICwtDSkoKpkyZAgCYO3cuzp07h99//x0A0LdvX3Tp0gUTJkxAcHAwAGDGjBnw8PCAu7s7dHR0lM5EtbGxgYGBgUbPStXX1YGujggvC6Qai4GIiMrHJFULcCSViIgqY+XKlRg1ahQMDQ1LrWNhYVHueeNjxoxBVlYWFi1ahNTUVLRr1w779++Hg4MDACA1NVVh1FRHRwd79+7F9OnT4e3tDSMjI/Tr1w8rVqyAjo72TtISiUQw0tNFbsHrHdlDRETVi0mqFsh6UQBTAzEMxOXvfkhERFTCz88PAJCbmytPIps3b67Wrr6vmjp1KqZOnaryWkREhFKZRCLB9u3b1W7/66+/xtdff13huKqakb4ucgs5kkpEpM209+POeuTxiwKOohIRUYXl5+djxowZaNSoETp27IgOHTqgUaNGCAwMRF5enqbD00rG+rrcOImISMtxJFULMEklIqLK+Pjjj3H48GGsW7cOPXr0AADExcVh7ty5yMnJwYYNGzQcofYx0mOSSkSk7ZikaoHHLwpg27D09URERESqbN++HTt37kS/fv3kZc7OzrCxscGIESOYpKpgrK+LXCapRERajdN9tQBHUomIqDJMTExgb2+vVG5vb1+pdan1gYmBGM/zuSaViEibMUnVMEEQkPWiAJZMUomIqIKmTZuGhQsXIjc3V16Wm5uLb7/9FtOmTdNgZNrLzEgP2bmFmg6DiIjKwOm+GvayoAgFUhlHUomIqMLOnDmD48ePw97eXn5G6h9//AGpVIoXL15gyJAh8rq//vqrpsLUKubGenjGJJWISKsxSdWwxy8KAAAWTFKJiKiCrKysMGLECIUyJycnDUVTO5gZ6eFpbiEEQYBIJNJ0OEREpAKTVA0r2WHQ1IB/FEREVDEbN27UdAi1jrmRPopkAp7nS9HAUE/T4RARkQpqrUndvXs3ioq4E151eFlQvHmDkZ6uhiMhIqLaKjExEXv37sW+ffuQmJio6XC0mplRcWLKKb9ERNpLrSR17NixsLe3x2effYZbt25Vd0z1Sm5hcfJvpM8klYiIKiY7OxujRo1CixYtMGzYMAwdOhQuLi4YPXo0cnJyNB2eVjIzLk5Sn75kkkpEpK3USlLT0tKwcOFCHD9+HG3atMEbb7yBjRs34sWLF9UdX52XV5KkciSViIgqKDAwEPHx8Th27Bhyc3ORm5uL33//HfHx8ZgxY4amw9NK5n+PpHKHXyIi7aVWktqgQQNMnjwZZ86cwR9//AEPDw/MnTsXEokEkyZNwpkzZ6o7zjqrZE0qR1KJiKiifv31V6xbtw69evWCnp4e9PT04OPjg/DwcOzevVvT4Wkl+Ugqk1QiIq1V4XNS27Rpg08//RQBAQEoKCjAtm3b0LNnT3h4eCA+Pr7c+0NDQ+Hk5ARDQ0O4ubkhNja2zPqCICA4OBitW7eGgYEBJBIJPv/8c/n18ePHQyQSKX2ZmJjI60RERKisk5eXV9HuV7ncAo6kEhFR5eTm5sLS0lKpvFGjRlrxjtNG5kbFu+lzui8RkfZSO0ktLCzEzz//jLfeegtOTk44evQowsLCkJ6ejvv376Nly5YYM2ZMmW1s27YNgYGBmDdvHi5fvgxPT08MGDAASUlJpd4za9YshIaGYunSpbhx4wb2798Pb29v+fVVq1YhNTVV4cvZ2RmjR49WaMfY2FipnqGhobrdrzZck0pERJXl5eWFL7/8Ei9fvpSXvXjxAgsWLICnp6cGI9Ne3DiJiEj7qXXuybRp07B161aIRCL4+flhxYoVaNOmjfy6kZERvvvuOzg6OpbZzooVKzB+/HhMmjQJABASEoKDBw9i7dq1WLx4sVL9W7duISQkBPHx8XB1dZWXd+7cWf7fZmZmMDMzk39/6tQpJCYmIjIyUqEtkUgEOzs7dbpboziSSkRElbVixQoMGDAA9vb26NChA0QiEa5evQoTExMcOnRI0+FpJUM9HeiLdfA0t0DToRARUSnUGkm9fv061qxZg4cPHyolqCUaN26MY8eOldpGQUEBLl68CF9fX4VyX19fnD59WuU9e/bsgbOzMw4ePAhnZ2c4OjrC398fGRkZpT7nhx9+QNu2bZU+Qc7NzYWDgwOaNGmCt99+G5cvXy6ryzUmlxsnERFRJbVv3x63b9/Gf/7zH7i7u6NLly5YtmwZbt++jbZt22o6PK0kEolgbqSHZ5zuS0SktdQaSf3999/Lb0gsRq9evUq9npmZiaKiItja2iqU29ra4siRIyrvSUxMxP379xEVFSVfVxoUFITBgwcjLi4OOjqKOfazZ8+wfft2/Pvf/1Yob9WqFTZs2ICOHTsiJycHq1atgpeXF65evQoXFxel54aHhyM8PBwAkJycjJiYmHL7X5bnz5+X2sathALo6QAnThx/rWdoi7L6Wpewn3UL+1m31Jd+FhYWomnTpvj999/lM5RIPWZGepzuS0SkxdRKUufPn4+mTZtiypQpCuVhYWF4+PAhvv32W7UfKBKJFL4XBEGprIRMJkN+fj4iIyPRsmVLAEBkZCRatWqF8+fPw8PDQ6H+li1bUFRUBD8/P4XyHj16oEePHvLvPT090alTJ4SEhGD16tVKzw0ICEBAQAAAwN3dHT4+Pmr3T5WYmJhS2zj67E+Ypqe89jO0RVl9rUvYz7qF/axb6ks/S3bzLe0dSqUzN9bjxklERFpMrem+kZGRCutAS7i5uWHz5s1qPcjKygq6urpIS0tTKM/IyFAaXS0hkUggFovlCSoAuLi4QCwWq9xs6YcffsCIESPQqFGjMmPR1dWFu7s7bt++rVbs1Sm3oIhTfYmIqFKmTZuGxYsXQyqVajqUWoUjqURE2k2tkdSMjAxYW1srlVtaWiI9PV2tB+nr68PNzQ3R0dEYNWqUvDw6OhojRoxQeY+XlxekUikSEhLQvHlzAMVTgKVSKRwcHBTqnjt3DlevXkVwcHC5sQiCgPj4eHTs2FGt2KvTy8IiGHJnXyIiqoTY2FgcP34c9vb2aNeuncLxa0DxOaqkzMxIHzdSczQdBhERlUKtJLVZs2aIjY2Fs7OzQvmJEyfQpEkTtR82c+ZM+Pn5oVu3bvDy8kJYWBhSUlLk04jnzp2Lc+fOydfA9u3bF126dMGECRPkyeeMGTPg4eEBd3d3hbbDw8Ph4uKicl3swoUL0b17d7i4uCA7OxurV69GfHw81q5dq3bs1SWvoAjGTFKJiKgSrKysSv2gl0pn09AAGTl5KJDKoC+u8JHxRERUzdRKUidPnoxPP/0UBQUF6N27N4DizZTmzp2Lzz77TO2HjRkzBllZWVi0aBFSU1PRrl077N+/Xz4qmpqaioSEBHl9HR0d7N27F9OnT4e3tzeMjIzQr18/rFixQmHTpJycHERFReGrr75SuTbn6dOnCAgIQFpaGszMzNC5c2ecOHEC3bp1Uzv26vKS032JiKiSNm7cqOkQaqW2jRuisEjAX+k5aGdvVv4NRERUo9RKUmfNmoXMzExMnz4dBQXF54rp6+sjMDAQc+bMqdADp06diqlTp6q8FhERoVQmkUiwffv2Mtts0KABnj9/Xur1lStXYuXKlRWKs6bkFhahgaFafwxEREQKevfujZ07d8Lc3FyhPDs7G8OGDcPRo0c1E5iWa9u4ODG9npLNJJWISAupnR0tXrwYX3zxBa5fvw5BENCmTRuYmppWZ2z1Ql5hEWwbGmg6DCIiqoViYmLkHx7/U15eHmJjYzUQUe3g0MgYpgZi/JnyDKPRVNPhEBHRKyo0hGdiYoKuXbtWVyz1Eqf7EhFRRV26dEn+3/Hx8Qq72hcVFeHQoUOwt7fXRGi1go6OCG0kDXEtJVvToRARkQpqJ6nHjh3D1q1bkZSUpPSpLacTVV5uYRGMuHESERFVgLu7O0QiEUQiEXx9fZWuGxkZISQkRAOR1R5t7Rsi6twDFMkE6OrwrFkiIm2i1pZ2ERERGDBgAHJychATEwNra2s8efIEly5dQps2bao7xjotr6AIRnpck0pEROq7e/cuEhISIAgCzp07h7t378q/Hj58iOzsbEyYMEHTYWq1Dk3MkFtYhFtpPIqGiEjbqJWkLl++HGvWrMHWrVuhp6eHxYsX4/Lly/jggw+4LvU1CIKAl4VFMNLn9vdERKQ+BwcHODo6QiaTwd3dHQ4ODvIviUQCXd2Kz9AJDQ2Fk5MTDA0N4ebmVu6aVkEQEBwcjNatW8PAwAASiQSff/65/PrOnTvh6+sLa2trNGjQAB4eHlp1bmtXx+Ip0mfvZmk4EiIiepVaQ3iJiYno27cvAMDAwEC+k+6//vUv+Pj4YMmSJdUXYR1WWCSgSCbAWJ8jqUREVDkPHjxAbGwsMjIyIJPJFK7NnDlTrTa2bduGwMBAhIaG4o033kBoaCgGDBiA69evo1mzZirvmTVrFvbu3Ytly5ahffv2ePbsGVJTU+XXjx8/jt69e2PRokVo1KgRfvzxRwwfPhwxMTHo2bNn5TtcRZpYGKOJhRHOJj7Gh15Omg6HiIj+Qa3syNLSEjk5xdNh7O3t8eeff6JDhw7IyspCbm5utQZYl+UWFAEADLlxEhERVcKPP/6ICRMmQCwWw9raWuGscJFIpHaSumLFCowfPx6TJk0CAISEhODgwYNYu3YtFi9erFT/1q1bCAkJQXx8PFxdXeXlnTt3lv/3qlWrFO5ZsGAB9u3bh927d2tFkgoAHk6WOHYrA4IgqDxnnYiINEOteaY9e/bE4cOHAQCjR4/G9OnT8eGHH+K9995Dv379qjXAuiy3sDhJ5e6+RERUGV999RVmzZqF7Oxs3Lt3T2FtamJiolptFBQU4OLFi0obMPn6+uL06dMq79mzZw+cnZ1x8OBBODs7w9HREf7+/sjIyCjzWTk5ObCwsFCvczXAw7kRHr8owO2M0s9aJyKimqfWSOqaNWuQl5cHAJg7dy7EYjFOnTqF0aNH44svvqjWAOuykiTVmLv7EhFRJaSnp2PixImVWoNaIjMzE0VFRbC1tVUot7W1xZEjR1Tek5iYiPv37yMqKgoREREQiUQICgrC4MGDERcXBx0d5c/Av//+eyQnJ8PPz09lm+Hh4QgPDwcAJCcnIyYmptJ9AoDnz5+X38bL4unRkYfOoE8zvdd6nqao1c86oL70E6g/fWU/65aq7me5SapUKkVUVBSGDRsGANDR0cFnn31WZQHUZy8LpAA43ZeIiCpn4MCBOHv2LJydnV+7rVenu5Y1BVYmkyE/Px+RkZFo2bIlACAyMhKtWrXC+fPn4eHhoVB/x44dmD17NqKiouDg4KCyzYCAAAQEBAAoPmLHx8fntfoTExNTbhuCIGDl1aN4LLaAj0+X13qepqjTz7qgvvQTqD99ZT/rlqruZ7lJqlgsxuzZszFo0KAqeygVyyuZ7suRVCIiqoR+/frhs88+w7Vr19C+fXvo6SmOBr7zzjvltmFlZQVdXV2kpaUplGdkZCiNrpaQSCQQi8XyBBUAXFxcIBaLkZSUpJCk7tixA35+fti8eTOGDBlSke5VO5FIBA+nRjh5J4vrUomItIha0327d++OixcvlvrpJ1VObkHxNCNO9yUiosqYPHkyAODf//630jWRSISioqJy29DX14ebmxuio6MxatQoeXl0dDRGjBih8h4vLy9IpVIkJCSgefPmAIqnAEulUoXfFX7++Wf4+/tj06ZNGDlyZIX6VlM8nC2x+0oKEjNfoLk1j9UjItIGaiWpkyZNQlBQEJKSkuDm5gYTExOF61261M4pMppWMpJqIOY5qUREVHGvHjlTWTNnzoSfnx+6desGLy8vhIWFISUlBVOmTAFQvB/FuXPn8PvvvwMA+vbtiy5dumDChAkIDg4GAMyYMQMeHh5wd3cHAERFRcHPzw/Lly+Ht7e3fKRWX18fjRo1qpK4q4KHU3EspxOymKQSEWkJtZLU999/H4Dq89bU/aSWlEn//uVCrGKDCSIiopoyZswYZGVlYdGiRUhNTUW7du2wf/9++ahoamoqEhIS5PV1dHSwd+9eTJ8+Hd7e3jAyMkK/fv2wYsUK+aZJYWFhkEqlmDFjBmbMmCG/t1evXlq1iYiTlQmaNTLG7zfS4dedM8aIiLSBWknq3bt3qzuOekkqEwAAerpcA0NEROrz9PTE/v37YW5uDqB4pHP27NnyEcrMzEx06dIFSUlJarc5depUTJ06VeW1iIgIpTKJRILt27eX2p42JaJlEYlE6NfGFpFx9/E8XwpTA7V+NSIiomqk1r/EXItaPYr+TlJ1dZikEhGR+s6cOYOCggL5999//z0mTZokT1KLiorw8OFDTYVX6/i2scX6k3dx4q9HGNheoulwiIjqPbWS1J07d5Z5XZ3dA0lZYVFxksrpvkRE9DoEQdB0CLWam4MFLIz1cPDPNCapRERaQK0ktbQd+Uq2auea1MopKlmTyum+REREGiPW1cFb7eyw50oKcguKeDQcEZGGqTWEJ5PJFL4KCgpw9uxZ9OzZEydOnKjuGOuskjWpYk73JSKiChCJREpnevKMz9fzdofGeFlQhGO3MjQdChFRvVep3QHEYjG6du2Kf//73/j4449x9erVqo6rXpAWcU0qERFVnCAI+OCDD2BgYAAAyMvLw6RJk2BsbAwAyM/P12R4tZKHUyNYmepjb3wKp/wSEWnYa21hZ25urrAlPVXM/4+kck0qERGpz9/fX+H7Dz74QKnOuHHjaiqcOkGsq4MB7STYfvEBXuRLYcJdfomINEatf4EvXbqk8L0gCEhNTcXSpUvRuXPnagmsPuCaVCIiqoyNGzdqOoQ66e0OEkSeuY8jN9IxtJO9psMhIqq31BrCc3d3R9euXeHu7i7/7yFDhqCoqAjr1q2r0ANDQ0Ph5OQEQ0NDuLm5ITY2tsz6giAgODgYrVu3hoGBASQSCT7//HP59ZiYGPnanH9+3bx5U6GdHTt2oE2bNjAwMECbNm2wa9euCsVdHQo53ZeIiEhrdHVsBNuGBtgbn6rpUIiI6jW1RlLv3r2r8L2Ojg6sra1haGhYoYdt27YNgYGBCA0NxRtvvIHQ0FAMGDAA169fR7NmzVTeM2vWLOzduxfLli1D+/bt8ezZM6SmKr88rl27Jj8fDgCsra3l/x0XF4cxY8Zg4cKFeOedd7Bz506MGjUKp06dgoeHR4X6UJWKuHESERGR1tDREWFgewl+PJOE7LxCNDTU03RIRET1klpJqoODQ5U8bMWKFRg/fjwmTZoEAAgJCcHBgwexdu1aLF68WKn+rVu3EBISgvj4eLi6usrLVU0xtrGxgZWVlcrnBgcH480338T8+fMBAPPnz8exY8cQHByMrVu3VkXXKqVkTSpHUomIiLTD2x0aY+Ope/j9RjqGd26i6XCIiOoltab7zp8/H2FhYUrlYWFh+PLLL9V6UEFBAS5evAhfX1+Fcl9fX5w+fVrlPXv27IGzszMOHjwIZ2dnODo6wt/fHxkZytvDu7u7QyKRoE+fPjh27JjCtbi4OKXn9u/fv9Tn1pQimQxiHeVjBIiIiEgzOjc1R2MzQ+y9yim/RESaotZIamRkJLZv365U7ubmhsWLF+Pbb78tt43MzEwUFRXB1tZWodzW1hZHjhxReU9iYiLu37+PqKgoREREQCQSISgoCIMHD0ZcXBx0dHQgkUiwdu1adO3aFQUFBYiMjESfPn0QExMDb29vAEBaWprK56alpal8bnh4OMLDwwEAycnJiImJKbd/ZXn+/LnKNhLvFUAE4bXb1yal9bWuYT/rFvazbqkv/aTqUTLld1PcPTzLLYSZEaf8EhHVNLWS1IyMDIU1niUsLS2Rnp5eoQe+OmooCEKpI4kymQz5+fmIjIxEy5YtARQnzK1atcL58+fh4eGBVq1aoVWrVvJ7evTogXv37mH58uXyJLWizw0ICEBAQACA4hFaHx+fCvXxVTExMSrbiH1+HQYpD167fW1SWl/rGvazbmE/65b60k8AOH78OAwNDeX7K0RERGDdunVo27Yt/vvf/8LU1FTDEdZOb3dsjHUn7yL6ejpGunHKLxFRTVNrum+zZs1U7sJ74sQJNGmi3j/eVlZW0NXVVRq9zMjIUBrlLCGRSCAWi+UJKgC4uLhALBYjKSmp1Gd5eHjg9u3b8u/t7Owq9NyaUiQTuB6ViIgqbcaMGfL3261btzB58mR06NABcXFxmD17toajq706NjGDvbkR9sWnaDoUIqJ6Sa0kdfLkyfj000/xww8/ICEhAQkJCQgPD8esWbPkI47l0dfXh5ubG6KjoxXKo6Oj4enpqfIeLy8vSKVSJCQkyMsSExMhlUrL3MzpypUrkEgk8u979OhRoefWlMIiGXf2JSKiSktISED79u0BFB+11q9fP4SGhuKHH37Ab7/9puHoai+RSIS3O0gQezsTT18WaDocIqJ6R63pvrNmzUJmZiamT5+OgoLif6z19fURGBiIOXPmqP2wmTNnws/PD926dYOXlxfCwsKQkpKCKVOmAADmzp2Lc+fO4ffffwcA9O3bF126dMGECRMQHBwMoPhTYw8PD7i7uwMo3rnX0dERbdu2RUFBAbZs2YLdu3djx44d8ucGBgbC29sbixcvxvDhw7Fr1y4cO3YMJ0+eVDv26sCRVCIieh0ikQhFRUUAgN9//x3Dhw8HUDyDKCsrS5Oh1XqDOzbG/04kYt8fqRjrUTWnHBARkXrUSlIBYPHixfjiiy9w/fp1CIKANm3aVHity5gxY5CVlYVFixYhNTUV7dq1w/79++WjoqmpqQqjpjo6Oti7dy+mT58Ob29vGBkZoV+/flixYgV0dIoHgQsKChAUFISHDx/CyMgIbdu2xb59+zBw4EB5O56enoiKisIXX3yBBQsWoHnz5ti2bZtGz0gFio+g0dNVazCbiIhISdeuXfHtt9+iX79+iI2NlW/6d+/ePdjZ2Wk4utqtbeOGaGlrih0Xk5mkEhHVMLWS1LS0NEilUjRp0gRdu3aVlycnJ0NPT69CazunTp2KqVOnqrwWERGhVCaRSFTuLFxizpw5ao3mjhw5EiNHjlQ7zpogLZJxJJWIiCotODgY77//Pvbs2YP58+ejefPmAIDt27drfElLbScSiTCiSxMsPnATiY+ew9mam1AREdUUtYbx/Pz8cODAAaXyQ4cOwc/Pr8qDqi+kMoFrUomIqNLatWuH+Ph4PHv2DAsWLJCXL1++XOUHv1QxwzrbQyQCfr3KDZSIiGqSWknq+fPnFY5zKdGzZ09cuHChyoOqL4pkAsS6TFKJiKhyZDIZZDKZ/Pu0tDSsW7cOly5dgp4ez/d8XbYNDeHuYIGDf6o+V52IiKqHWkmqVCpFfn6+UnleXp7KclKPVCZAV4drUomIqHIGDRqEkJAQAMDz58/h7u6O2bNno1evXti8ebOGo6sb+re1w820HNzLfKHpUIiI6g21MiQPDw+sXbtWqfz7779XWKNKFSPlETRERPQaLl68iN69ewMAdu7ciYYNGyIjIwM//PADli9fruHo6oa32hVvQHXoGkdTiYhqilobJ3333Xfo3bs3rl69ij59+gAAjh49ikuXLsmPi6GKk3K6LxERvYacnByYm5sDAA4fPozhw4dDT08PvXv3xieffKLZ4OqIJhbGaG9vhgN/pmFyr+aaDoeIqF5QayS1e/fuiIuLg5OTE3bu3IkdO3bA2dkZcXFxePnyZXXHWGcVceMkIiJ6Dc2aNcOpU6fw4sULHDp0CP369QMAPH78GMbGxhqOru54q50drjx4itRnuZoOhYioXlB7QWTHjh3x448/4tq1azh8+DBatmyJ4cOHo3///tUZX50mLRJ4BA0REVXazJkz4efnhyZNmsDe3l6+yeGJEyfQvn17DUdXd5RM+T18LV3DkRAR1Q9qJ6lFRUXYtWsXBg0aBCcnJ+zevRsff/wx7ty5U53x1WlSmQxibpxERESVNHnyZMTFxWHDhg04efIkdP5+pzRv3hzffvuthqOrO5pbm8LFxhT74lM1HQoRUb1QboZ069YtzJ49G40bN8asWbPQuXNnCIKAyMhIzJkzB05OTjURZ53EI2iIiOh1ubu7Y/jw4TA1NZWXDRo0CF5eXhVqJzQ0FE5OTjA0NISbmxtiY2PLrC8IAoKDg9G6dWsYGBhAIpHg888/V6hz/PhxuLm5wdDQEM7OzggLC6tQTNpkWGd7nLv3GA8ec5kTEVF1KzNJ7dmzJ7p3746nT5/i559/RmJiIhYtWgSRiIlVVSgs4ppUIiJ6Pfv27YO3tzesrKxgbW2NXr16Yf/+/RVqY9u2bQgMDMS8efNw+fJleHp6YsCAAUhKSir1nlmzZiE0NBRLly7FjRs3sH//foUz1e/evYuBAwfC09MTly9fxty5czFt2jTs2LGj0n3VpGGd7SESATsuJWs6FCKiOq/MJDUuLg7jxo1DYGAgevXqVVMx1RtFMq5JJSKiylu3bh2GDx+O5s2bY+nSpViyZAmcnJwwfPhwbNiwQe12VqxYgfHjx2PSpElwdXVFSEgIJBKJyuPngOJZViEhIdizZw+GDh0KZ2dndO7cGQMHDpTXCQsLQ+PGjRESEgJXV1dMmjQJ/v7+tfZoHHtzI/RwtsTuyw8hCIKmwyEiqtPKTFIvXLgAqVSKnj17onPnzli5ciXS0nhOWFWRymQQ63JNKhERVc7SpUuxYsUKbNy4ER999BE++ugjREREYPny5ViyZIlabRQUFODixYvw9fVVKPf19cXp06dV3rNnzx44Ozvj4MGDcHZ2hqOjI/z9/ZGRkSGvExcXp9Rm//79ceHCBRQWFlawp9phQDs73Mt6icTMF5oOhYioTivznNROnTrh+++/x3//+19s374d69evx5w5cyCTybBv3z5IJBJYWFjUVKx1Do+gISKi15GUlIS33npLqXzAgAEICgpSq43MzEwUFRXB1tZWodzW1hZHjhxReU9iYiLu37+PqKgoREREQCQSISgoCIMHD0ZcXBx0dHSQlpaGvn37KrUplUqRmZkJiUSicC08PBzh4eEAgOTkZMTExKgVf2meP3/+2m28yvClDACwbl8c+jvqVWnblVUd/dRG9aWfQP3pK/tZt1R1P8tMUksYGhrCz88Pfn5+uHPnDtatW4eVK1fiiy++QO/evXHgwIEqC6g+KeQRNERE9BqaNWuG6OhotGjRQqH88OHDcHBwqFBbr+43IQhCqXtQyGQy5OfnIzIyEi1btgQAREZGolWrVjh//jw8PDxKbVNVOQAEBAQgICAAQPFmUD4+PhWK/1UxMTGv3YYq4TePI0lqAB+f7lXedmVUVz+1TX3pJ1B/+sp+1i1V3c8KzzVt0aIFlixZggcPHuDnn3+Gvr5+lQVT3xTJBOjxCBoiIqqkoKAgBAYGYtKkSdi4cSMiIiIwceJEfPrpp2qPpFpZWUFXV1dpOU9GRobS6GoJiUQCsVgsT1ABwMXFBWKxWL7Zkp2dnco2xWIxLC0tK9JNrdK7tQ3O3X2Mxy8KNB0KEVGdVekMSVdXF0OHDsWePXuqMp56RSoToMsjaIiIqJImT56Mbdu24caNGwgKCsKsWbNw8+ZN/Pzzz/JRyfLo6+vDzc0N0dHRCuXR0dHw9PRUeY+XlxekUikSEhLkZYmJiZBKpfIR3B49eihNF46Ojoa7uzv09LRjqmxljHBrgsIiAT+dva/pUIiI6iwO42mQVCbjmlQiIqqUwsJCzJkzB126dMHJkyeRlZWFrKwsnDx5EkOHDq1QWzNnzkRERATWrVuHGzduIDAwECkpKZgyZQoAYO7cuejTp4+8ft++fdGlSxdMmDABly9fxuXLlzFhwgR4eHjA3d0dADBlyhQkJydjxowZuHHjBtatW4eIiAi1R3i1VUvbBujV0hqb4u4jX1qk6XCIiOokJqkaVMQ1qUREVEl6enoIDQ2tkuNQxowZg+DgYCxatAidOnXCyZMnsX//fvmoaGpqqsKoqY6ODvbu3QsbGxt4e3ujf//+aNKkCfbs2QOdv5exODk5Yf/+/Thx4gQ6deqE7777DqtXr8aIESNeO15Nm+ztjEc5+fj+6B1Nh0JEVCeptXESVQ+pTIAej6AhIqJK6t+/P44ePYoJEya8dltTp07F1KlTVV6LiIhQKpNIJNi+fXuZbfbq1QuXLl167di0jWcLK7zT2R7fxyTA3bERvFtaazokIqI6hUmqBkllMo6kEhFRpfXp0wfz5s1DfHw83NzcYGJionD9nXfe0VBkdd+CIW1xLSUb4zeew6p3O2Nwx8aaDomIqM5gkqpBUp6TSkREr+Ff//oXAGD16tVK10QiEYqKuGayupgZ6WHnVE+8v+4svt17HX1dbWGkr6vpsIiI6gTONdUQmUyAIABiHkFDRESVJJPJSv1iglr9TAzE+GKQKzJy8rEp7p6mwyEiqjNqPEMKDQ2Fk5MTDA0N4ebmhtjY2DLrC4KA4OBgtG7dGgYGBpBIJPj888/l13fu3AlfX19YW1ujQYMG8PDwwK+//qrQRkREBEQikdJXXl5etfRRHVJZ8UYXYh5BQ0REVGt1dWyEN1tZI/TYHTx7WajpcIiI6oQaTVK3bduGwMBAzJs3D5cvX4anpycGDBggP/hblVmzZiE0NBRLly7FjRs3sH//fnh7e8uvHz9+HL1798a+fftw+fJlDBw4EMOHD1dKfo2NjZGamqrwZWhoWG19LY9UJgMArkklIqIKO3DgABwdHfHs2TOla8+ePYOjoyMOHz6sgcjqp9n9WyM7T4r/nUgovzIREZWrRtekrlixAuPHj8ekSZMAACEhITh48CDWrl2LxYsXK9W/desWQkJCEB8fD1dXV3l5586d5f+9atUqhXsWLFiAffv2Yffu3ejZs6e8XCQSwc7Orqq7VGnykVQmqUREVEFr1qzB7NmzYWZmpnTNzMwMn332GVatWgVfX18NRFf/tGncEEM7NcbGU/cw3tMRNg019yE4EVFdUGMjqQUFBbh48aLSC9PX1xenT59Wec+ePXvg7OyMgwcPwtnZGY6OjvD390dGRkaZz8rJyYGFhYVCWW5uLhwcHNCkSRO8/fbbuHz58ut16DUVFTFJJSKiyomPj0ffvn1Lvd67d29cvXq1BiOimf1aorBIhhCenUpE9NpqbCQ1MzMTRUVFsLW1VSi3tbXFkSNHVN6TmJiI+/fvIyoqSr6uNCgoCIMHD0ZcXJz8wPB/+v7775GcnAw/Pz95WatWrbBhwwZ07NgROTk5WLVqFby8vHD16lW4uLgotREeHo7w8HAAQHJyMmJiYl6j58Dz58+V2niaXzzdNzHhDmIK779W+9pEVV/rIvazbmE/65b60M9Hjx6pfAeWEIlEyMrKqsGIyMHSBO92a4qt55IwsacTHCxNyr+JiIhUqvEjaEQixZFDQRCUykrIZDLk5+cjMjISLVu2BABERkaiVatWOH/+PDw8PBTq79ixA7Nnz0ZUVBQcHBzk5T169ECPHj3k33t6eqJTp04ICQlRuW1/QEAAAgICAADu7u7w8fGpVF9LxMTEKLWR+iwXOHYUrq1bwadbs9dqX5uo6mtdxH7WLexn3VIf+tmkSRPEx8er/KAVKB5ptbe3r+GoaHpvF/xyMRkro/9C8Ludy7+BiIhUqrHpvlZWVtDV1UVaWppCeUZGhtLoagmJRAKxWCxPUAHAxcUFYrFYabOlHTt2wM/PD5s3b8aQIUPKjEVXVxfu7u64fft2JXvz+qSc7ktERJU0aNAgfPnll8jNzVW69vLlS3z11VcYNGiQBiKr32waGuJDLyfsuZqCP5KVN7UiIiL11FiSqq+vDzc3N0RHRyuUR0dHw9PTU+U9Xl5ekEqlSEj4/93yEhMTIZVKFUZKf/75Z3zwwQeIiIjAyJEjy41FEATEx8dDIpFUsjevj0fQEBFRZc2fPx/Pnj2Di4sLli5dij179mDPnj1YsmQJWrZsiWfPnmHevHmaDrNemtKrOSxN9PHlnj8h+/tdT0REFVOj031nzpwJPz8/dOvWDV5eXggLC0NKSgqmTJkCAJg7dy7OnTuH33//HQDQt29fdOnSBRMmTEBwcDAAYMaMGfDw8IC7uzsAICoqCn5+fli+fDm8vb3lI7X6+vpo1KgRAGDhwoXo3r07XFxckJ2djdWrVyM+Ph5r166tye4rKJIfQVPjR9USEVEtZ2Njg9OnT+Pjjz/GvHnzIAjFyZBIJEL//v0RGhpa6iwlql5mRnqYO8AVs7ZfxfaLDzCma91Z0kNEVFNqNEkdM2YMsrKysGjRIqSmpqJdu3bYv3+/fFQ0NTVVYdRUR0cHe/fuxfTp0+Ht7Q0jIyP069cPK1askG8YERYWBqlUihkzZmDGjBnye3v16iXfOOPp06cICAhAWloazMzM0LlzZ5w4cQLdunWrsb6/qmQkVY/TfYmIqBIcHBywf/9+PHnyBHfu3IEgCHBxcVHa3Z5q3jtd7BF1PglLDtyEbxs7WJjoazokIqJapcY3Tpo6dSqmTp2q8lpERIRSmUQiwfbt20ttT50dHFeuXImVK1eqG2KNKFmTqssklYiIXoOFhQW6du2q6TDoH0QiEb4d1g6DVp/E5zvjsXasG3T4viciUhvnmmoI16QSERHVXa3tGmLeQFccupaO5YdvaTocIqJapcZHUqkY16QSERHVbRO8HJHw6DlCYxLgbG2KkW5NNB0SEVGtwAxJQ0qm+3JNKhERUd0kEomwcEhb9HC2xII9fyLreb6mQyIiqhWYpGpIyXRfrkklIiKqu/R0dfDtsHbILSzC98cSyr+BiIiYpGoK16QSERHVDy1siqf6bjlzHw+f5mo6HCIircckVUNK1qSKuSaViIiozgvs2xIAsOrIXxqOhIhI+zFD0pBCHkFDRERUb9ibG+GD7g745WIyfruaoulwiIi0GpNUDSnidF8iIqJ6JbCvC9wcLDBt62UMXBWLuIQsTYdERKSVmKRqiHxNKqf7EhER1QtmRnrYMtED8wa2xvN8KT7+8SJSuEaViEgJMyQN+f81qRxJJSIiqi8MxLoI8G6OiA+7Qlok4KNNF/DsZaGmwyIi0ipMUjWEa1KJiIjqL2drU4SO7YKEjOcYH3EOz/Olmg6JiEhrMEnVEK5JJSIiqt+8W1oj5P3OiE9+ho8izuPJiwJNh0REpBWYpGoI16QSERFR/7Z2WDmmEy4nPcXbIScRn/xU0yEREWkcMyQNkRZxTSoREWmP0NBQODk5wdDQEG5uboiNjS217r179yASiZS+Dh48qFDvp59+QqdOnWBsbAw7Ozt88MEHSEtLq+6u1DpDOjbG9ik9AAAj18bhp7NJEARBw1EREWkOk1QNKZnuq8vpvkREpGHbtm1DYGAg5s2bh8uXL8PT0xMDBgxAUlJSmfcdPHgQqamp8q/evXvLr506dQp+fn7w9/fHtWvXsHv3bly/fh1jx46t7u7USh2bmmPvtDfQvbkl5u36A7N/iUduQZGmwyIi0ggmqRpSsnGSHqf7EhGRhq1YsQLjx4/HpEmT4OrqipCQEEgkEqxdu7bM+ywtLWFnZyf/0tfXl1+Li4tDkyZN8Omnn8LJyQndu3fHtGnTcPbs2eruTq1lYaKPjeO7IrCPC3ZcSsa0rZc4okpE9RIzJA15nl8IXR0RDPX4R0BERJpTUFCAixcvwtfXV6Hc19cXp0+fLvPed955BzY2NvDy8sIvv/yicM3Lywupqan47bffIAgCMjMzERUVhYEDB1Z5H+oSXR0RPu3XEvMHuuLIjQxsv5Cs6ZCIiGqcWNMB1Fc5eVI0MBRDJOJ0XyIi0pzMzEwUFRXB1tZWodzW1hZHjhxReY+pqSmWL18OLy8viMVi/PrrrxgzZgw2bdqEDz74AADQo0cPbN26FWPHjkVubi6kUin69euHTZs2qWwzPDwc4eHhAIDk5GTExMS8Vr+eP3/+2m1okrMgoKWFDubsiEfk8WsY2kIPLcx1lerV9n6qq770E6g/fWU/65aq7ieTVA3Jzi1EA0P++ImISDu8+qGpIAilfpBqZWWFWbNmyb93d3dHZmYm/vOf/8iT1OvXr2P69On48ssv0b9/f6SmpmL27NmYPHkyNm/erNRmQEAAAgIC5O35+Pi8Vn9iYmJeuw1N6+4lRWTcfYQdT8CiM3lwlTTElF7OGNyhMXT+3nixLvRTHfWln0D96Sv7WbdUdT8511RDcvKkaGiop+kwiIionrOysoKurq7SrrsZGRlKo6tl8fDwwO3bt+XfL168GN26dcPs2bPRoUMH9O/fH6GhoYiMjMSDBw+qLP66zFhfjMm9muPkZ73x7dC2KJLJEBh1BR//eBF5hdxUiYjqLiapGpKdV8gklYiINE5fXx9ubm6Ijo5WKI+Ojoanp6fa7Vy5cgUSiUT+/cuXL6Grqzg9teR7bgZUMSYGYvj1cMTBQG/MH+iKQ9fSMWTNSVxKeqLp0IiIqkWNJ6kVOYcNKH6RBQcHo3Xr1jAwMIBEIsHnn3+uUOf48eNwc3ODoaEhnJ2dERYWptTOjh070KZNGxgYGKBNmzbYtWtXlfarorJzpZzuS0REWmHmzJmIiIjAunXrcOPGDQQGBiIlJQVTpkwBAMydOxd9+vSR19+0aRN++ukn3LhxA7du3cLy5cvx/fffY9q0afI6gwcPxp49e7B27VokJibi1KlTmD59Orp06YJmzZrVeB/rAh0dESZ5O2Pj+K54kV+ED9adxYMcmabDIiKqcjWaJZWcwxYaGoo33ngDoaGhGDBgAK5fv17qC2vWrFnYu3cvli1bhvbt2+PZs2dITU2VX7979y4GDhyICRMmYMuWLTh58iSmTp0Ka2trjBgxAkDxNvhjxozBwoUL8c4772Dnzp0YNWoUTp06BQ8Pjxrp+6ty8grR0IgjqUREpHljxoxBVlYWFi1ahNTUVLRr1w779++Hg4MDACA1NRUJCQkK9yxatAj379+Hrq4uWrZsiQ0bNsjXowLA+PHjkZOTgzVr1mDWrFkwMzPDm2++if/85z812re66M3WNtg51RND1pxE8MU8+Hi9RNNGxpoOi4ioytRokvrPc9gAICQkBAcPHsTatWuxePFipfq3bt1CSEgI4uPj4erqKi/v3Lmz/L/DwsLQuHFjhISEAABcXV1x9uxZLF++XJ6kBgcH480338T8+fMBAPPnz8exY8cQHByMrVu3Vlt/y5Kdx5FUIiLSHlOnTsXUqVNVXouIiFD43t/fH/7+/uW2OW3aNIXRVao6tg0Nsd6/K0avPYkx/4vDkhEd4N3SWtNhERFViRqb7luZc9j27NkDZ2dnHDx4EM7OznB0dIS/vz8yMjLkdeLi4pTa7N+/Py5cuIDCwsIy65R3/lt1KZIJeJ7PjZOIiIio8trZm2FOV0Poi3UwbsM5LDlwEzIZ1/sSUe1XY0N5lTmHLTExEffv30dUVBQiIiIgEokQFBSEwYMHIy4uDjo6OkhLS0Pfvn2V2pRKpcjMzIREIkFaWprK5766k2GJ6j6r7UVh8Qsk4+F9xMSkvFbb2oZnQdUt7Gfdwn4S1T2OZro49GlPfPPbdYQdT8CLfCm+GdqW57ATUa1W4/NNK3IOm0wmQ35+PiIjI9GyZUsAQGRkJFq1aoXz58/L15OqavPV8oo8t7rPanvw+CXw+zF0btcaPu5NX6ttbcOzoOoW9rNuYT+J6iYDsS4WDWsHY31d/BB7F00bGSHAu7mmwyIiqrQam+5bmXPYJBIJxGKxPEEFABcXF4jFYiQlJQEA7OzsVLYpFothaWlZZp2KnP9WlbLziqchc7ovERERVQWRSIS5A1wxqL0E/95/EzsuJms6JCKiSquxJLUy57B5eXlBKpUq7CiYmJgIqVQq33GwR48eStOFo6Oj4e7uDj09PXmd1z3/rSpl50oBAA25cRIRERFVER0dEf47uiO6OTbCrO1XMWnzBSQ/eanpsIiIKqxGz0mt6Dlsffv2RZcuXTBhwgRcvnwZly9fxoQJE+Dh4QF3d3cAwJQpU5CcnIwZM2bgxo0bWLduHSIiIhAUFCRvJzAwEEePHsXixYtx8+ZNLF68GMeOHcOMGTNqsvtyOSUjqTyChoiIiKqQoZ4utkz0wOcDWuPk7Uy8FRyLu5kvNB0WEVGF1GiSOmbMGAQHB2PRokXo1KkTTp48WeY5bDo6Oti7dy9sbGzg7e2N/v37o0mTJtizZw90dIpDd3Jywv79+3HixAl06tQJ3333HVavXi0/fgYAPD09ERUVhU2bNqFDhw7YvHkztm3bprEzUrPzikdSeQQNERERVTV9sQ6m9GqOQzO8oSMCgrZfRRF3/SWiWqTGs6SKnMMGFK9L3b59e5lt9urVC5cuXSqzzsiRIzFy5Ei146xOOVyTSkRERNWsmaUxFg5ti0+3XUXA5gtY9V5nmBrwA3Ii0n41OpJKxUrWpJpyJJWIiIiq0fDOTfDtsHaI+esRRq49jXuc+ktEtQCTVA3IySuEsb4u9HT54yciIqLq5dfdARvGd8XDJ7nos+I4vv71GvIKizQdFhFRqZglaUB2XiGn+hIREVGN6dXSGkdm9cJ73Zoi4vQ9jAk/g6cvCzQdFhGRSkxSNSA7V8pNk4iIiKhG2TY0xKJh7RH2gRtupGZjzP/O4HpKtqbDIiJSwiRVA3LyC3n8DBEREWnEW+3ssMG/KzKf5+PtkFh8uu0K7mQ813RYRERyTFI1gCOpREREpElvuFjh6CwfTOzpjIN/pqHfyuOYtvUy/krP0XRoRERMUjUhh2tSiYiISMPMjPUwb6ArTn72Jqb0ao6jN9Lhu/IEPt5ykdOAiUijmKRqQHYeR1KJiIhIO1iaGuCzt1rj5Ge9Ma13C5y8nYnBa05i+4UHkMkETYdHRPUQk9QaJghC8Ugq16QSERGRFrEw0ccs31aI/exNdHduhNm/xKPDwsOYtPkCR1aJqEYxSa1heYUyFBYJnO5LREREWsncWB8bxnfF8lEdMaRTY1y8/wQTIs4j83m+pkMjonqCc05rWHZeIQBwui8RERFpLQOxLka6NcFItyYY69EM74SehueSo3C2MkF7ezMM72yP7s6W0NERAQAKi2TQEYmg+/f3RESvg5lSDcv5O0nldF8iIiKqDdo2NsNPk7rj8LU03ErPwcFradh+MRn25kZoZdcAz3ILcT0lGw0MxVj8Tnv0cbXVdMhEVMsxSa1hz3KlADiSSkRERLWHm4MF3BwsAAB5hUU4dC0N++JT8eBJLhoaijHavQnO3n2MjzZdwDdD2+IDDwf5KCsRUUUxU6ph8pFUrkklIiKiWshQTxdDO9ljaCd7hfK8wiJ88uMlfLXnGlZG/wXPFlbo2cIKfVxtYd3AQEPRElFtxCS1hmXnFY+kNuRIKhEREdUhhnq6CPNzw/4/UnH8r0c4eTsT++JToavzJzybW8LbxRoj3ZrAwkRf06ESkZZjplTDuCaViIiI6io9XR35KKsgCLiVnoNdlx/i2M0MfLf/BpYduoWuThYY7+mEvq42EIk4JZiIlDFJrWHZuSUjqUxSiYiIqO4SiURobdcQcwc0xNwBrriVloMdl5Jx4M9UTNp8AY6WxhjeuQmGd7ZHM0tjTYdLRFqESWoNy84rhFhHBEM9HlFLRERE9UcruwaYN9AVs/u3wm9XU7D9QjJWHvkLK4/8hW6OjTDSvQlGdGnCY2yICMyUalhOXiEaGulxegsREWmV0NBQODk5wdDQEG5uboiNjS217r179yASiZS+Dh48qFCvoKAAX331FZycnGBgYIBmzZph9erV1d0V0nJ6ujp4p0sTbA3ojlOf98bs/q2Q9SIfc36Jxzuhp7A2JgG/30jHg8cvIZMJmg6XiDSAI6k1LDtXyuNniKqQTCZDZmYmnj59iqKiokq1YWZmhhs3blRxZNqnPvdTV1cX5ubmsLKygo4OP5991bZt2xAYGIjQ0FC88cYbCA0NxYABA3D9+nU0a9as1PsOHjyIjh07yr9v1KiRwvX33nsPDx48QHh4OFxcXJCeno7c3Nxq6wfVPvbmRvjkzRaY6tMcv15NwbJDt7D04E35dStTffRqaQNLqRSGiVmwMtWHlakBzPiBP1GdxmyphuXkFXI9KlEVSk5OhkgkgqOjI/T0KvdLS05ODho0aFAN0WmX+tpPQRBQWFiI9PR0JCcnl5l01VcrVqzA+PHjMWnSJABASEgIDh48iLVr12Lx4sWl3mdpaQk7OzuV1w4fPowjR44gISEBVlZWAABHR8cqj53qBpFIJN9w6VluIW6n5+BWeg7OJj7GkRvpeJZbiPD4M/L6Yh0RLE310ayRMTo3s4CRni4M9HTQ1bERGhiKoSsSwcHSBPri/2vv3uOirvL/gb/mPsNVkJuAAgreNVS8oZFlkX5La62Uh1tSmZdcb6W2aburpQ9vm7dtUTcVMc3LmtkvN20zldTMVMRLQWkhsIKooCQDzP38/kAmR+5ymxlez8djHjCfz5nPnLeH5vSec/nwSykiR8QktYnd0XEklaghFRcXo1OnThwdoypJJBIolUoEBQXh559/bu7q2B2DwYCUlBTMnj3b5nhsbCxOnDhR7WtHjRoFnU6HiIgIvPHGG3j++eet5z777DP07dsXK1euxEcffQSNRoPhw4dj8eLFcHNza5RYyDl4ahSICvVGVKg3/tg/BCazBbv2JyOsS0/c1OpRoDUgX6tHvlaPn69rsfnbKzCaK04LbuWiwAt9ghHs5YIIfzd0C/SEJ++uQOQQmjxbWrt2Lf7+97/j2rVr6NatG1avXo2HH3640rKZmZkICwurcPzAgQMYNmwYAODll1/Gli1bKpRxcXFBcXExACApKQmvvPJKhTKlpaVQq9X1CafOrt/RoU+IV5O+J5GzY4JKtcG/k8rl5+fDbDbD39/f5ri/vz++/vrrSl/j5uaG999/H4MGDYJcLsfnn3+OMWPGYMuWLXjxxRcBABkZGTh+/DhUKhX27NmDwsJCTJs2Dbm5ufjkk08qXPPDDz/Ehx9+CKBshkRycnK94tJqtfW+hiNoKXF6SkpguPoDPAF4AmivBqAG/s8HQDcXWISAzgT8kG+GAGAWwOk8EzYeu4J709dWKgn8XCQIdpOio7cMQW5S+LtIoJTZz9ThltKmjNO5NHScTZqkNsaalzVr1mDp0qU25QcNGoSYmBibYy4uLvj1119tjjV1gmoyW3DtNx2CvTRN+r5EREQ1uX+qvBCiyunzPj4+mDVrlvV5VFQU8vPzsXz5cmuSarFYIJFIsH37dnh6egIA/vnPf+LJJ5/E9evXKyTFEydOxMSJE63XGzJkSL3iSU5Orvc1HAHjtPV/9z03WwTytXqkX7uDtGt3cOVmMTILivF97h0c/p8eACCRAF0CPNC/vTf6h7VG75BW8HVTNduaV7apc2GcD6ZJk9TGWPPi6elp7fwA4Ntvv0VGRga2bt1qU04ikVR5jaZyvUgPs0UgqBXvBUZERPbBx8cHMpkMeXl5Nsdv3LhRIZGsTv/+/bF582br8zZt2iAoKMimj+7SpQsAIDs7u07XJnpQMqkE/h5q+HuoMaSTn/W40WzBpetFyLhZjMvXi3A68za2f5+Nzd9mAgC8XBQI8tLgltYAD40C/cK88XCELzoHuCOolQZS3iaHqFE1WZLaWGte7rdhwwZ069YN0dHRNsdLS0sREhICs9mMyMhILFy4EL169XrwgB5Azu2yHQ2DOJJKRA1gwYIF+OSTT/DDDz80d1XIgSmVSvTp0wcHDx7ECy+8YD1+8OBBPPfcc7W+zrlz59CmTRvr80GDBmH37t3QarXWNaiXLl0CAISEhDRQ7YkejEImRbdAT3QL/P1LFL3JjAtXf8PFq7/h8o0i5BTq0NHPHQXFBuw6/T989F0WAECtkCLYywVRIV7o394bGoUcvu5KdA/yhEoua66QiJxKkyWpjbXm5V6//fYbdu/ejcWLF9sc79SpExITE/HQQw+hqKgIa9aswaBBg3D+/HlERERUuE5jrYs5kWsCAORcuojkXOdcG8V5987FEeL09PREUVFRva5hNpvrfY26GD16NHQ6HT7//PMK537++Wf07dsXn332GR577LFqr6PX62GxWGpV9zlz5mDDhg1YvXo1Xn755QetukOorj11Op3d/003hzfffBMvvfQS+vXrh0GDBmH9+vXIzc3F5MmTAQBz587FqVOncOjQIQDAli1boFAo0KtXL0ilUuzbtw8JCQlYtmyZ9Zpjx47FwoUL8corr2DBggUoLCzEjBkz8Pzzz8PPz6/SehA1J5Vchr6h3ugb6l3hXInBhPRrRXdHX7W4kl+M/RevYefp/1nLeGoUiO3qD0+NAi4qOUJbuyDczw0h3q7w0Mh5yxyiOmjyjZMaes3LvbZt2waz2YyXXnrJ5vjAgQMxcOBA6/Po6GhERkbigw8+qPSm4o21LuaHw5eBC5fwh9hHoFE65zdtnHfvXBwhzvT09HrfVqWpb80yefJk/OEPf0BBQUGFW3Ls3LkTISEhGDFiRI0b/ahUKkil0hrrrtfrsXv3brz55pvYtm0bpk2bVt8Q6sVkMkEmkzXa/7BV155qtbrJZ9E4gjFjxqCgoACLFi3CtWvX0L17d+zfv9864nnt2rUK+zosWrQIWVlZkMlk6NixIxITE236Zjc3N3z99deYNm0a+vbtCy8vLzz77LMV9pEgcgQuSjn6hHjZbH5ptghcvlEEk1ng6u1S7Dufi8M/3UCp0YxSoxlC3Pt6GQI81Qj01Nz9qUabVhoEeKjRLdADfh5Nu08Kkb1rsuG8hlzzcvny5UrPbdiwAc8991yFm4nfTyaTISoqqsrrNJacwlL4uCmdNkElotp56qmn4O/vb7N+DwCMRiO2bt2KV199FUIIjB8/HmFhYdBoNIiIiMDy5cthsVjq/H6ffvopQkNDMXv2bKSnp1eYHiyEwIoVKxAREQGVSoXg4GDMnTvXej43Nxd//OMf0bp1a7i4uCAyMhJHjhwBUDbluHv37jbXS0pKsrnFSHmZpKQkdOjQASqVCsXFxfjyyy/x8MMPw8vLC97e3njyySeRnp5uc62q3jszMxMymQxnzpyxKb9hwwaEhobCYDDU+d+ppZsyZQoyMzOh1+uRkpJiswFhUlISMjMzrc/j4+ORlpaG4uJi3LlzB2fOnKn0y+NOnTrhq6++QklJCXJycpCQkNAi7tVLLYNMKkHnAA90D/LEsO4BSPhjb6T89QmkvTcMlxYNx9dvPoL1L/bBX57qgri+7dDJ3x1avQnHLt/EB0d+wdxPL+KVpNMYtOwwpnycgoQjv+Dj77PwXa4J/+9cDvamXsWRn27gf7dKYLFUvMUOkTNrspHUxlrzUu7UqVM4f/48Vq9eXeM1hBC4cOGCzY7BTeHq7VIEteJ6VKLG9u6+H5GWe6fW5c1mM2Sy+n151DXQA/NHdKtVWblcjvj4eCQlJWH+/PnWEdN9+/YhPz8fr7zyCiwWC4KCgvDvf/8bvr6+OHXqFCZOnIjWrVtj/Pjxdarbxo0b8eKLL8LFxQWjRo3Cxo0bbT4r582bh3Xr1mHlypWIiYnBzZs3kZqaCqDsPrSPPPII/Pz8sHfvXgQFBeH8+fN1en8AuHLlCrZv347du3dDqVRCrVajuLgYM2fORM+ePVFaWopFixZhxIgRSEtLg1KprPa9Q0ND8fjjjyMxMRFRUVHW90lMTERcXByUSmWd60hE1FAUMinC/dwQ7lf5PYGNZgtuFOmR91sp9p2/hv/+mIf9F+8ZyLlwzqa8RiFDuJ8bIvzcEO7vho5+7vBxV0EmkUCjLFsjq1ZwEIScR5NO922MNS/lPvzwQ0REROCRRx6pcO7dd9/FgAEDEBERgTt37uAf//gHLly4gHXr1jVuwPfJKSxF5wB+g0xEwPjx47Fs2TJ8/fXXiI2NBQBs2rQJsbGxaNu2LQDgvffes5YPDQ3F2bNnsWPHjjolqRkZGTh27Bg+/vhjAMC4ceMwevRoLFu2DCqVClqtFqtWrcLq1avx6quvAgDCw8OtSyS2b9+OvLw8fPfdd/Dx8QEAdOjQoc7xGgwGbN261WbmzP1fUG7evBkeHh44deoUBg8eXON7T5gwARMmTMDKlSuhVquRnp6OkydP1urLSiKi5qSQSRHUSoOgVhr0CfHGgpHdUGIwoUhnwqGjJ9CvXz/IpBIUaPW4fEOLS9eL8MsNLU78WoBPU3MqXE8mleChYE/IpBKYLQJymRRKmRRymQQahQztfV0R4KGGt6sKQV4ahHi7wEOjgIy7FJOdatIktTHWvABl64927tyJv/3tb5WucSosLMTEiRORl5cHT09P9OrVC0ePHkW/fv0aL9j7XL+jQ3ZBCYZ1a97b4BC1BLUd0SzX1GtSASAiIgIxMTFITExEbGwscnNz8d///he7du2yllm/fj02btyIrKwslJaWwmg01nlX1MTERAwdOhQBAQEoKirCkCFD4OLigs8++wxjxoxBWloa9Ho9hg4dWunrU1NT0bNnT2uS+KCCg4MrLO349ddf8de//hXff/89bt68CYvFAovFguzs7Fq99zPPPIM//elP+PTTTzF27FgkJiaiX79+6Nq1a73qSkTUHFyUcrgo5Qh0k1pHYMN8XBF130ZOd3RGXL6uxW+lBlgsQPHdTZ1OZ96CTCqBWiGDwWRBqdEMk86CbL0JX6Vdh7mSKcPerkr0CfGCEEArFwXCfFwR5uOKkNYuCG3tCldVk29fQwSgGTZOmjJlCqZMmVLpuaSkJJvn8fHxiI+Pr/Ga7u7u0Gq1VZ5ftWoVVq1aVad6NrQPj2ZAAIjr265Z60FE9uO1117DhAkTcOvWLSQlJcHb2xsjR44EAOzatQszZ87E+++/j+joaHh4eCAhIQF79+6t9fXNZjOSkpKQm5sLufz3j3uLxYKNGzdizJgxEKL6dU41nZdKpRXKGI3GCuVcXV0rHBsxYgSCgoLwr3/9C0FBQZDL5ejatat1PWlN761QKDBu3DgkJiZi9OjR2Lp1q83oMxGRM/JQK2w2cAKAZyKrf43RbMHtEgNuFRuQmV+CnMJS3Ck1IqewFGcyb0GtkOHCVQM+Sblq8zo/dxWiQr0Q4KGBQi6BUiaFWiGDj5sS3q4qCCHg7apEkJcGfu5qjsxSg+HXI02g2Cjw8fdZeCYyEO1auzR3dYjITjz//POYNm0atm3bhsTERIwbNw4KhQIAcPz4cfTv3x9Tp061lr9/pklNvvzySxQUFODMmTPWNZ6urq7Izs7G008/jczMTHTt2hUqlQqHDh2q9JZcvXv3xrZt25Cfn1/piKavry+uX79us1P7uXPnaqxbQUEB0tPTkZCQgEcffRQAcPbsWZhMplq/N1A25bdLly5Yu3YtioqKEBcXV5t/GiKiFkUhk8LPXQ0/dzU6B3hUWU6rNyGroBiZ+SXILCjGLze0OJ15C8dK8mEwW2AwW1DV94cKmQSeGgWkEglCfVzRwdcNHmo5ZFIJ5FIJFDIpFHIp1PKyRDcj1wTdD3lQK8qeuyrl8HZTorWrEiq5lLfsaeGYpDaBS7fN0BktGB3VtrmrQkR2RKPRYOzYsViwYAFu375ts9a0Y8eOSEpKwoEDBxAeHo6dO3fim2++gZeXVzVXtLVx40YMHz4cvXv3BvD7tObu3btb7x/93nvvYcaMGZg7dy5UKhViYmJQUFCAlJQUvP766xg7diyWLl2KZ599FkuWLEFwcDAuXrwId3d3PProoxgyZAhu3bqFxYsXIy4uDsnJyfjkk09qrJuXlxd8fHywYcMGtG3bFjk5OZgzZ47NiG9N713+7zR48GDMmTMHcXFx8PDwaNJ73hIRORM3lRzdAj3RLdCzyjKlBjPytXoUlhghkQA3tXrk3C5FTmEpCkuMMFssyLhZjC9/uIZSoxlmi4DRXEVmeyGl0sNSSdlmUWrrQwqNUmY9ppJLoZBJ4aKUw89DhdauSkgkEgghoFLI4KaSwU2lgKtKBneVAp6asoe7Wg4pR3sdApPUJvDzLTOUMiki27Zq7qoQkZ157bXXsG7dOkRHR6NLly7W45MmTcK5c+cwduxYCCHw3HPPYdasWUhMTKzVda9fv47//Oc/2LJlS6XnX3jhBWzevBkLFizAkiVL4OXlhYULF+Lq1avw9/fHuHHjAJRN0/3mm28wa9YsjBgxAgaDAZ06dbIuoejSpQvWrVuHxYsXY/HixRgxYgTmzZuHd955p9r6SaVS7Nq1C9OnT0f37t0RHh6OFStW2GymVNN7lxs/fjyOHj1a512PiYio7jRKGdp6u6Bt9Xd8tCGEgNkiYDBboDNaoDOacfTb79CzVxRKjWbojWZo9SbcLjEgX2tAqaHsXrM64+8/dUYLSg1mFOlMuGW2wGi2oEhnws0iPUy1vEWPRAKo5TIoZGVrd1u5KNDKRQkvFwW8XMpuEymXSiCTSqGQSeCmksNdXZbclj0UUMml0JvMMJgEPDUKtHZTwstFCaW8ye7s2SJIRE2Lflq4qKioCvfhq6tHlxyAr1cr/HvywAaqlf1KTk7GkCFDmrsajY5x2o/09HSb5O5BNMfGSc3BWeNctmwZNm3ahEuXLgGoPs7q/l4a4vOeGkZDtIUjfH41BMbpfFpKrA0Vp8UiUKQvWyoikQA6oxnFejO0OhO0+rLHb6XGskeJATqTpWxjKYMZt0sMKCw1orDEgNslRujujvyaLALGaqY2V0ajkEEpl0Ill0KlKNtdWSWXQV+ihY93q7IpzSoZXJRyuCpl0CjlUCukUMrLy979XS6FUia753cplHKJ7THr8buvk0mbfYT4Qduzqs97jqQ2Mq3ehKw7Fjzdpw5fNxERUY20Wi1++uknrFmzpsaRWyIick5Sadla2HIeagXQAN/HCiFQbDCjSGdEkc6EIp0Rd3QmGEwWqBUyKKQS/FZqREGxAQVaA7R6IwwmC/R3k2D93UeeoRgAUFhiQG6hGSUGM4oNJhTrTVVPg34AcqnEJoFV3E1iy497uSjR2k0Jd7UcGsXdqdN3p1BrFDLIpBLrQyop+6mQlY0oK++uJy5fW6y8O926jae60e7PyyS1kaVk3YZFAP3CmKQSETWkqVOnYseOHRg5ciQmTZrU3NUhIiInIpGUTfd1U8nRpuolujUqG2GsfDal5e4U6PLE1mC++9P63Pz7ufvPmy02SbHBbIGx/KfZAoNJ3P1Zdux2iQHZ2SUo1ptQencadX3n0+6cOAAD2reu30WqwCS1kXVt44FXuivRu13tNzshIqKaJSUlVbh1GRERkaOQSiVQS2WNNhpZHSEE9HenPZdvcGW2CJiFgOXuT5NZWJNfo/lu0mu2wHT39/L7+TYGJqmNzNddhUeCFbwZMhERERER2QWJRGLdPdkeh9K4DRUROTzu/0a1wb8TIiIix8AklYgcmkKhQGlpaXNXgxxAaWkpFApFzQWJiIioWTFJJSKH5ufnh5ycHJSUlHCkjColhEBJSQlycnLg5+fX3NUhIiKiGnChJBE5NA8PDwBAbm4ujEbjA11Dp9NBrVY3ZLXsUkuOU6FQwN/f3/r3QkRERPaLSSoROTwPD496JR/Jycno1atXA9bIPjFOIiIicgSc7ktERERERER2g0kqERERERER2Q0mqURERERERGQ3mKQSERERERGR3WCSSkRERERERHZDInhjwWr5+PggNDS0Xte4efMmfH19G6ZCdq6lxMo4nQvjdC4PGmdmZiby8/MboUZUV+x7a49xOp+WEivjdC4N3fcySW0CUVFROHPmTHNXo0m0lFgZp3NhnM6lpcRJ1WspfweM0/m0lFgZp3Np6Dg53ZeIiIiIiIjsBpNUIiIiIiIishtMUpvAxIkTm7sKTaalxMo4nQvjdC4tJU6qXkv5O2CczqelxMo4nUtDx8k1qURERERERGQ3OJJKREREREREdoNJKhEREREREdkNJqmNbO3atQgLC4NarUafPn1w7Nix5q5SvSxYsAASicTmERAQYD0vhMCCBQsQGBgIjUaDIUOG4Mcff2zGGtfO0aNHMXLkSAQFBUEikSApKcnmfG3i0uv1mDZtGnx8fODq6oqRI0fi6tWrTRhFzWqK8+WXX67QvgMGDLAp4whxLlmyBH379oWHhwd8fX0xYsQI/PDDDzZlnKFNaxOnM7RpQkICevbsCQ8PD3h4eGDgwIH44osvrOedoS2p4bDfdYx+F2DfW84ZPqdbSr8LsO8t19jtySS1Ee3atQszZszAvHnzkJqaiujoaAwfPhzZ2dnNXbV66dSpE65du2Z9XLx40Xpu+fLlWLFiBT744AOcPn0afn5+eOKJJ1BUVNSMNa6ZVqtF9+7dsWbNGmg0mgrnaxPXzJkzsWfPHuzYsQPHjh3DnTt38PTTT8NsNjdlKNWqKU4AePzxx23ad//+/TbnHSHO5ORkTJkyBSdOnMDhw4chl8vx+OOP49atW9YyztCmtYkTcPw2DQ4OxrJly3D27FmcOXMGjz32GJ599llcuHABgHO0JTUM9ruO0+8C7Hvv5eif0y2l3wXY9zZZ3yuo0fTr10+89tprNsfCw8PF22+/3Uw1qr/58+eLbt26VXrOYrGIgIAAsWjRIuuxkpIS4ebmJtavX99UVaw3V1dXsXnzZuvz2sRVWFgoFAqF2LZtm7VMdna2kEgk4ssvv2yyutfF/XEKIUR8fLx46qmnqnyNI8YphBBFRUVCKpWKzz//XAjhvG16f5xCOG+benl5ifXr1zttW9KDYb/rmP2uEOx7ne1zuqX0u0Kw7y3X0O3JkdRGYjAYkJKSgtjYWJvjsbGxOHHiRDPVqmFkZGQgKCgIYWFhiIuLQ0ZGBgDgypUryMvLs4lZo9EgJibGoWOuTVwpKSkwGo02Zdq2bYsuXbo4XOzHjx+Hn58fOnbsiAkTJuDGjRvWc44aZ1FRESwWC7y8vAA4b5veH2c5Z2pTs9mMnTt3QqvVIjo62mnbkuqO/W4ZZ+h3Aef9nK6KM31OAy2n3wXY95Zr6PZkktpI8vPzYTab4e/vb3Pc398feXl5zVSr+uvfvz+SkpJw4MABbNiwAXl5eYiOjkZBQYE1LmeLuTZx5eXlQSaTwcfHp8oyjmDYsGH46KOPcOjQIaxYsQKnTp3CY489Br1eD8Bx45wxYwYiIyMxcOBAAM7bpvfHCThPm168eBFubm5QqVSYPHky9u7dix49ejhtW1Ldsd/9naPHDDjv53RlnOVz+l4tpd8F2PfeqyHbU95AMVAVJBKJzXMhRIVjjmT48OE2zwcMGID27dtjy5Yt1gXhzhZzuQeJy9Fij4uLs/7eo0cP9OnTByEhIfjiiy8watSoKl9nz3G++eabOH78OI4fPw6ZTGZzzpnatKo4naVNO3XqhHPnzqGwsBB79uxBfHw8kpOTreedqS2pfpytD2rJ/S7QMv7bdpbP6XItpd8F2Pc2ZntyJLWR+Pj4QCaTVfim4MaNGxW+dXBkbm5u6NatGy5fvmzdbdDZYq5NXAEBATCbzcjPz6+yjCMKDAxEcHAwLl++DMDx4nzjjTewY8cOHD58GO3bt7ced7Y2rSrOyjhqmyqVSoSHhyMqKgpLlixBZGQkVq1a5XRtSQ+O/e7vnCHmlvzftqN+TgMtp98F2PcCjdueTFIbiVKpRJ8+fXDw4EGb4wcPHkR0dHQz1arh6XQ6/PTTT2jTpg3CwsIQEBBgE7NOp8OxY8ccOubaxNWnTx8oFAqbMlevXkV6erpDx56fn4+cnBy0adMGgGPFOWPGDGzfvh2HDx9G586dbc45U5tWF2dlHLlN72WxWKDX652qLal+2O/+ft7R+13AuT6n68pRP6dbSr8LsO9tkvas3x5PVJ2dO3cKhUIhNmzYINLS0sT06dOFq6uryMzMbO6qPbBZs2aJ5ORkkZGRIU6ePCmeeuop4e7ubo1p6dKlwt3dXezZs0dcvHhRjBkzRrRp00bcuXOnmWtevaKiIpGamipSU1OFRqMR7777rkhNTRVZWVlCiNrFNXnyZBEYGCgOHjwozp49K4YMGSIeeughYTKZmiusCqqLs6ioSMyaNUucOHFCXLlyRRw5ckQMGDBABAUFOVycU6ZMEe7u7uLQoUPi2rVr1kdRUZG1jDO0aU1xOkub/vnPfxZHjx4VV65cERcuXBBvv/22kEgkYv/+/UII52hLahjsdx2n3xWCfa8z9b0tpd8Vgn1vU/W9TFIbWUJCgggJCRFKpVL07t1bfPPNN81dpXop/wNUKBQiMDBQjBo1Svz444/W8xaLRcyfP18EBAQIlUolYmJixMWLF5uxxrVz5MgRAaDCIz4+XghRu7hKS0vF1KlThbe3t9BoNOLpp58W2dnZzRBN1aqLs6SkRMTGxgpfX1+hUChEu3btRHx8fIUYHCHOymIEIObPn28t4wxtWlOcztKm8fHxol27dkKpVApfX18xdOhQm+3rnaEtqeGw33WMflcI9r3O1Pe2lH5XCPa95Rq7PSVCCFGr8V0iIiIiIiKiRsY1qURERERERGQ3mKQSERERERGR3WCSSkRERERERHaDSSoRERERERHZDSapREREREREZDeYpBIREREREZHdYJJKRERERORgMjMzIZFIcObMmeauClGDY5JKREREREREdoNJKhEREREREdkNJqlERERERHUkhMDy5cvRoUMHaDQa9OjRA9u2bQPw+1Tc7du3Y/DgwVCr1ejcuTO++uorm2scPXoU/fv3h1qthr+/P9544w0YDAab91ixYgUiIiKgUqkQHByMuXPn2lwjKysLTzzxBFxcXNC1a1ccPHiw8YMnamRMUomIiIiI6ugvf/kLNm3ahISEBKSlpWHu3LmYNGkSvvjiC2uZt956C9OnT8e5c+fwxBNP4JlnnkFOTg4AICcnB8OHD0evXr2QmpqKTZs2YceOHTZJ6Lx587Bw4ULMnTsXP/74I3bv3o22bdva1OOdd97B9OnTcf78efTt2xdxcXHQarVN849A1EgkQgjR3JUgIiIiInIUxcXF8PHxwVdffYWHH37YenzmzJm4dOkS1q5di7CwMCxatAjvvPMOAMBisaBz584YPXq09fiuXbtw6dIlSKVl40ZJSUmYNGkSbt++DYvFAh8fH6xevRqTJ0+uUIfMzEyEhYVh/fr1mDRpEoCyxDc4OBjHjh3D4MGDm+BfgqhxyJu7AkREREREjiQtLQ06nQ7Dhg2DRCKxHjcajQgNDbU+HzhwoPV3qVSK/v37Iy0tDQCQnp6OgQMHWhNUABg8eDAMBgN++eUX6HQ66PV6DB06tNq69OzZ0/p7YGAgAODGjRv1io+ouTFJJSIiIiKqA4vFAgDYt28f2rVrZ3NOoVCgNhMVhRA2Ce69JBJJra5R/n73vu7e+hE5Kq5JJSIiIiKqg65du0KlUiErKwvh4eE2j5CQEGu5kydPWn8XQuDUqVPo0qWL9RrfffedTUJ5/PhxKJVKdOjQwfoehw4darrAiOwER1KJiIiIiOrA3d0ds2fPxuzZsyGEQExMDLRaLU6ePAmpVIrY2FgAwLp169CxY0f06NEDa9euRVZWFl5//XUAwJQpU7B69WpMmTIFM2bMQEZGBt5++21MnToVLi4uAIAZM2Zg7ty5UKlUiImJQUFBAVJSUqzXIHJWTFKJiIiIiOpo4cKF8Pf3x/vvv4/XX38dHh4eiIyMxFtvvWUts3TpUqxcuRJnz55FSEgI9u7di+DgYABAUFAQDhw4gDlz5iAyMhKtWrXC2LFjsXjxYuvrlyxZAi8vLyxcuBBXr16Fv78/xo0b1+SxEjU17u5LRERERNSAynfePX36NKKiopq7OkQOh2tSiYiIiIiIyG4wSSUiIiIiIiK7wem+REREREREZDc4kkpERERERER2g0kqERERERER2Q0mqURERERERGQ3mKQSERERERGR3WCSSkRERERERHaDSSoRERERERHZjf8P9N1dug66djIAAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 1008x432 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import matplotlib.pyplot as plt\n",
"\n",
"acc = history.history['accuracy']\n",
"loss = history.history['loss']\n",
"\n",
"plt.figure(figsize=(21,6))\n",
"plt.rcParams['figure.figsize'] = [8,8]\n",
"plt.rcParams['font.size'] = 14\n",
"plt.rcParams['axes.grid'] = True\n",
"plt.rcParams['figure.facecolor'] = 'white'\n",
"\n",
"plt.subplot(1, 3, 1)\n",
"plt.plot(acc, label='Training Accuracy')\n",
"plt.legend(loc='lower right')\n",
"plt.ylabel('Accuracy')\n",
"plt.title(f'\\nTrain Accuracy: {round(acc[-1],8)}')\n",
"\n",
"plt.subplot(1, 3, 2)\n",
"plt.plot(loss, label='Training Loss')\n",
"plt.legend(loc='upper right')\n",
"plt.ylabel('Cross Entropy')\n",
"plt.title(f'\\nTrain Loss: {round(loss[-1],8)}')\n",
"plt.xlabel('epoch')\n",
"\n",
"plt.subplot(1, 3, 3)\n",
"plt.plot(lr_list, label='Learning Rate')\n",
"plt.legend(loc='upper right')\n",
"plt.ylabel('LR')\n",
"plt.title(f'\\nLearning Rate')\n",
"plt.xlabel('epoch')\n",
"\n",
"plt.tight_layout(pad=3.0)\n",
"plt.show()\n",
"\n",
"acc = history.history['val_accuracy']\n",
"loss = history.history['val_loss']\n",
"\n",
"plt.figure(figsize=(14,6))\n",
"plt.rcParams['figure.figsize'] = [8,8]\n",
"plt.rcParams['font.size'] = 14\n",
"plt.rcParams['axes.grid'] = True\n",
"plt.rcParams['figure.facecolor'] = 'white'\n",
"plt.subplot(1, 2, 1)\n",
"plt.plot(acc, label='Val Accuracy')\n",
"plt.legend(loc='lower right')\n",
"plt.ylabel('Accuracy')\n",
"plt.title(f'\\nTest Accuracy: {round(acc[-1],8)}')\n",
"\n",
"plt.subplot(1, 2, 2)\n",
"plt.plot(loss, label='Val Loss')\n",
"plt.legend(loc='upper right')\n",
"plt.ylabel('Cross Entropy')\n",
"plt.title(f'\\nTest Loss: {round(loss[-1],8)}')\n",
"plt.xlabel('epoch')\n",
"plt.tight_layout(pad=3.0)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Try Realtime Inference"
]
},
{
"cell_type": "code",
"execution_count": 100,
"metadata": {},
"outputs": [],
"source": [
"metrics = {\n",
" \"TP\": 0, \"FP\": 0, \"TN\": 0, \"FN\": 0\n",
"}"
]
},
{
"cell_type": "code",
"execution_count": 105,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"2023-02-07 21:41:16.408838: I tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.cc:113] Plugin optimizer for device_type GPU is enabled.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"13-12-2022 Nifty Prediction -> Market may Close BEARISH on 14-12-2022! Actual -> BEARISH, Prediction -> Correct, Pred = 0.57\n",
"14-12-2022 Nifty Prediction -> Market may Close BULLISH on 15-12-2022! Actual -> BEARISH, Prediction -> Wrong, Pred = 0.4\n",
"15-12-2022 Nifty Prediction -> Market may Close BEARISH on 16-12-2022! Actual -> BEARISH, Prediction -> Correct, Pred = 0.86\n",
"16-12-2022 Nifty Prediction -> Market may Close BEARISH on 17-12-2022! Actual -> BULLISH, Prediction -> Wrong, Pred = 0.67\n",
"19-12-2022 Nifty Prediction -> Market may Close BULLISH on 20-12-2022! Actual -> BEARISH, Prediction -> Wrong, Pred = 0.35\n",
"20-12-2022 Nifty Prediction -> Market may Close BEARISH on 21-12-2022! Actual -> BEARISH, Prediction -> Correct, Pred = 0.59\n",
"21-12-2022 Nifty Prediction -> Market may Close BEARISH on 22-12-2022! Actual -> BEARISH, Prediction -> Correct, Pred = 0.8\n",
"22-12-2022 Nifty Prediction -> Market may Close BEARISH on 23-12-2022! Actual -> BEARISH, Prediction -> Correct, Pred = 0.65\n",
"23-12-2022 Nifty Prediction -> Market may Close BEARISH on 24-12-2022! Actual -> BULLISH, Prediction -> Wrong, Pred = 0.86\n",
"26-12-2022 Nifty Prediction -> Market may Close BULLISH on 27-12-2022! Actual -> BULLISH, Prediction -> Correct, Pred = 0.28\n",
"27-12-2022 Nifty Prediction -> Market may Close BULLISH on 28-12-2022! Actual -> BEARISH, Prediction -> Wrong, Pred = 0.27\n",
"28-12-2022 Nifty Prediction -> Market may Close BEARISH on 29-12-2022! Actual -> BULLISH, Prediction -> Wrong, Pred = 0.56\n",
"29-12-2022 Nifty Prediction -> Market may Close BULLISH on 30-12-2022! Actual -> BEARISH, Prediction -> Wrong, Pred = 0.43\n",
"30-12-2022 Nifty Prediction -> Market may Close BEARISH on 31-12-2022! Actual -> BEARISH, Prediction -> Correct, Pred = 0.62\n",
"02-01-2023 Nifty Prediction -> Market may Close BULLISH on 03-01-2023! Actual -> BULLISH, Prediction -> Correct, Pred = 0.36\n",
"03-01-2023 Nifty Prediction -> Market may Close BULLISH on 04-01-2023! Actual -> BEARISH, Prediction -> Wrong, Pred = 0.43\n",
"04-01-2023 Nifty Prediction -> Market may Close BEARISH on 05-01-2023! Actual -> BEARISH, Prediction -> Correct, Pred = 0.86\n",
"05-01-2023 Nifty Prediction -> Market may Close BEARISH on 06-01-2023! Actual -> BEARISH, Prediction -> Correct, Pred = 0.54\n",
"06-01-2023 Nifty Prediction -> Market may Close BEARISH on 07-01-2023! Actual -> BULLISH, Prediction -> Wrong, Pred = 0.74\n",
"09-01-2023 Nifty Prediction -> Market may Close BULLISH on 10-01-2023! Actual -> BEARISH, Prediction -> Wrong, Pred = 0.2\n",
"10-01-2023 Nifty Prediction -> Market may Close BEARISH on 11-01-2023! Actual -> BEARISH, Prediction -> Correct, Pred = 0.85\n",
"11-01-2023 Nifty Prediction -> Market may Close BULLISH on 12-01-2023! Actual -> BULLISH, Prediction -> Correct, Pred = 0.48\n",
"12-01-2023 Nifty Prediction -> Market may Close BEARISH on 13-01-2023! Actual -> BULLISH, Prediction -> Wrong, Pred = 0.62\n",
"13-01-2023 Nifty Prediction -> Market may Close BULLISH on 14-01-2023! Actual -> BEARISH, Prediction -> Wrong, Pred = 0.39\n",
"16-01-2023 Nifty Prediction -> Market may Close BEARISH on 17-01-2023! Actual -> BEARISH, Prediction -> Correct, Pred = 0.63\n",
"17-01-2023 Nifty Prediction -> Market may Close BULLISH on 18-01-2023! Actual -> BULLISH, Prediction -> Correct, Pred = 0.32\n",
"18-01-2023 Nifty Prediction -> Market may Close BULLISH on 19-01-2023! Actual -> BEARISH, Prediction -> Wrong, Pred = 0.31\n",
"19-01-2023 Nifty Prediction -> Market may Close BEARISH on 20-01-2023! Actual -> BEARISH, Prediction -> Correct, Pred = 0.59\n",
"20-01-2023 Nifty Prediction -> Market may Close BEARISH on 21-01-2023! Actual -> BULLISH, Prediction -> Wrong, Pred = 0.71\n",
"23-01-2023 Nifty Prediction -> Market may Close BULLISH on 24-01-2023! Actual -> BEARISH, Prediction -> Wrong, Pred = 0.36\n",
"24-01-2023 Nifty Prediction -> Market may Close BEARISH on 25-01-2023! Actual -> BEARISH, Prediction -> Correct, Pred = 0.6\n",
"25-01-2023 Nifty Prediction -> Market may Close BEARISH on 26-01-2023! Actual -> BEARISH, Prediction -> Correct, Pred = 0.82\n",
"27-01-2023 Nifty Prediction -> Market may Close BEARISH on 28-01-2023! Actual -> BULLISH, Prediction -> Wrong, Pred = 0.82\n",
"30-01-2023 Nifty Prediction -> Market may Close BULLISH on 31-01-2023! Actual -> BULLISH, Prediction -> Correct, Pred = 0.34\n",
"31-01-2023 Nifty Prediction -> Market may Close BEARISH on 01-02-2023! Actual -> BEARISH, Prediction -> Correct, Pred = 0.57\n",
"01-02-2023 Nifty Prediction -> Market may Close BEARISH on 02-02-2023! Actual -> BEARISH, Prediction -> Correct, Pred = 0.51\n",
"02-02-2023 Nifty Prediction -> Market may Close BULLISH on 03-02-2023! Actual -> BULLISH, Prediction -> Correct, Pred = 0.39\n",
"03-02-2023 Nifty Prediction -> Market may Close BULLISH on 04-02-2023! Actual -> BEARISH, Prediction -> Wrong, Pred = 0.21\n",
"06-02-2023 Nifty Prediction -> Market may Close BEARISH on 07-02-2023! Actual -> BEARISH, Prediction -> Correct, Pred = 0.6\n",
"07-02-2023 Nifty Prediction -> Market may Close BEARISH on 08-02-2023! Actual -> BEARISH, Prediction -> Correct, Pred = 0.66\n",
"Correct: 111, Wrong: 17, Accuracy: 0.8671875\n",
"{'TP': 12, 'FP': 14, 'TN': 34, 'FN': 20}\n"
]
}
],
"source": [
"endpoint = keras.models.load_model('best_model.h5')\n",
"try:\n",
" scaler\n",
"except NameError:\n",
" pkl = joblib.load('nifty_model.pkl')\n",
" scaler = pkl['scaler']\n",
"today = yf.download(\n",
" tickers=\"^NSEI\",\n",
" period=f'{TEST_DAYS}d',\n",
" interval='1d',\n",
" progress=False,\n",
" timeout=10\n",
" )\n",
"today = today.drop(columns=['Adj Close', 'Volume'])\n",
"\n",
"###\n",
"today = preprocessBeforeScaling(today)\n",
"###\n",
"\n",
"cnt_corrct, cnt_wrong = 0, 0\n",
"for i in range(-TEST_DAYS,0):\n",
" df = today.iloc[i]\n",
" twr = today.iloc[i+1]['Close']\n",
" df = scaler.transform([df])\n",
" pred = endpoint.predict([df], verbose=0)\n",
"\n",
" if twr > today.iloc[i]['Open']:\n",
" fact = \"BULLISH\"\n",
" else:\n",
" fact = \"BEARISH\"\n",
"\n",
" if pred > 0.5:\n",
" out = \"BEARISH\"\n",
" else:\n",
" out = \"BULLISH\"\n",
"\n",
" if out == fact:\n",
" cnt_correct += 1\n",
" if out == \"BULLISH\":\n",
" metrics[\"TP\"] += 1\n",
" else:\n",
" metrics[\"TN\"] += 1\n",
" else:\n",
" cnt_wrong += 1\n",
" if out == \"BULLISH\":\n",
" metrics[\"FN\"] += 1\n",
" else:\n",
" metrics[\"FP\"] += 1\n",
"\n",
" \n",
" print(\"{} Nifty Prediction -> Market may Close {} on {}! Actual -> {}, Prediction -> {}, Pred = {}\".format(\n",
" today.iloc[i].name.strftime(\"%d-%m-%Y\"),\n",
" out,\n",
" (today.iloc[i].name + pd.Timedelta(days=1)).strftime(\"%d-%m-%Y\"),\n",
" fact,\n",
" \"Correct\" if fact == out else \"Wrong\",\n",
" str(np.round(pred[0][0], 2))\n",
" )\n",
" )\n",
"\n",
"print(\"Correct: {}, Wrong: {}, Accuracy: {}\".format(cnt_correct, cnt_wrong, cnt_correct/(cnt_correct+cnt_wrong)))\n",
"print(metrics)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Save Model for Screeni-py integration"
]
},
{
"cell_type": "code",
"execution_count": 102,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['nifty_model.pkl']"
]
},
"execution_count": 102,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pkl = {\n",
" # 'model': model,\n",
" 'scaler': scaler,\n",
" 'columns': ['Open', 'Close', 'High', 'Low']\n",
"}\n",
"\n",
"joblib.dump(pkl, 'nifty_model.pkl')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"pkl = joblib.load('nifty_model.pkl')\n",
"z = yf.download(\n",
" tickers=\"^NSEI\",\n",
" period='1d',\n",
" interval='1d',\n",
" progress=False,\n",
" timeout=10\n",
" )\n",
"z = preprocessBeforeScaling(z)\n",
"z = z.iloc[-1]\n",
"z = z[pkl['columns']]\n",
"print(z)\n",
"z = pkl['scaler'].transform([z])\n",
"endpoint.predict(z)"
]
},
{
"cell_type": "code",
"execution_count": 108,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Open</th>\n",
" <th>High</th>\n",
" <th>Low</th>\n",
" <th>Close</th>\n",
" <th>Adj Close</th>\n",
" <th>Volume</th>\n",
" </tr>\n",
" <tr>\n",
" <th>Date</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>2023-02-01</th>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>NaN</td>\n",
" <td>17616.300781</td>\n",
" <td>512900</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2023-02-02</th>\n",
" <td>-1.653417</td>\n",
" <td>-1.771062</td>\n",
" <td>0.533318</td>\n",
" <td>-0.033494</td>\n",
" <td>17610.400391</td>\n",
" <td>490100</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2023-02-03</th>\n",
" <td>1.168289</td>\n",
" <td>1.225794</td>\n",
" <td>0.792448</td>\n",
" <td>1.383560</td>\n",
" <td>17854.050781</td>\n",
" <td>424100</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2023-02-06</th>\n",
" <td>0.546226</td>\n",
" <td>-0.260777</td>\n",
" <td>0.649165</td>\n",
" <td>-0.501013</td>\n",
" <td>17764.599609</td>\n",
" <td>282500</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2023-02-07</th>\n",
" <td>-0.159672</td>\n",
" <td>-0.070405</td>\n",
" <td>-0.258775</td>\n",
" <td>-0.242615</td>\n",
" <td>17721.500000</td>\n",
" <td>0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Open High Low Close Adj Close Volume\n",
"Date \n",
"2023-02-01 NaN NaN NaN NaN 17616.300781 512900\n",
"2023-02-02 -1.653417 -1.771062 0.533318 -0.033494 17610.400391 490100\n",
"2023-02-03 1.168289 1.225794 0.792448 1.383560 17854.050781 424100\n",
"2023-02-06 0.546226 -0.260777 0.649165 -0.501013 17764.599609 282500\n",
"2023-02-07 -0.159672 -0.070405 -0.258775 -0.242615 17721.500000 0"
]
},
"execution_count": 108,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"z = yf.download(\n",
" tickers=\"^NSEI\",\n",
" period='5d',\n",
" interval='1d',\n",
" progress=False,\n",
" timeout=10\n",
" )\n",
"z = preprocessBeforeScaling(z)\n",
"z"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"pkl['model'].save('nifty_model.h5')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"pkl"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"del pkl['model']"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"pkl"
]
},
{
"cell_type": "code",
"execution_count": 121,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"92.66973999999999"
]
},
"execution_count": 121,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"def getSigmoidConfidence(x):\n",
" out_min, out_max = 0, 100\n",
" if x > 0.5:\n",
" in_min = 0.50001\n",
" in_max = 1\n",
" else:\n",
" in_min = 0\n",
" in_max = 0.5\n",
" return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min\n",
"\n",
"map_range(0.9633487, 0.5, 1, 0, 100)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.9.13 ('ds')",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.13"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "272f5af4762c02c25377d17b8d5be1b9d83b050e7634f4572d665f6d13ef995d"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|