File size: 248,655 Bytes
a4c7650
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {},
   "outputs": [],
   "source": [
    "import yfinance as yf\n",
    "import pandas as pd\n",
    "import numpy as np\n",
    "from sklearn.preprocessing import StandardScaler, MinMaxScaler\n",
    "from sklearn.compose import ColumnTransformer\n",
    "import joblib\n",
    "import keras\n",
    "import matplotlib.pyplot as plt"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 86,
   "metadata": {},
   "outputs": [],
   "source": [
    "TEST_DAYS = 40"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 87,
   "metadata": {},
   "outputs": [],
   "source": [
    "INDICATOR_DATASET = False"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 88,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/var/folders/9c/8m67hqg13wd179_xl1xrnn2c0000gp/T/ipykernel_58100/1703223587.py:24: SettingWithCopyWarning: \n",
      "A value is trying to be set on a copy of a slice from a DataFrame\n",
      "\n",
      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
      "  d.dropna(inplace=True)\n"
     ]
    }
   ],
   "source": [
    "if INDICATOR_DATASET:\n",
    "    d = joblib.load('nifty_data.pkl')\n",
    "else:\n",
    "    d = yf.download(\n",
    "                tickers=\"^NSEI\",\n",
    "                period='max',\n",
    "                interval='1d',\n",
    "                progress=False,\n",
    "                timeout=10\n",
    "            )\n",
    "    d['target'] = d.Open/d.Close.shift(-1)\n",
    "    d.target = d.target.apply(np.floor)\n",
    "\n",
    "    d['change'] = abs(d['Close'].pct_change() * 100)\n",
    "\n",
    "    d['High'] = d['High'].pct_change() * 100\n",
    "    d['Low'] = d['Low'].pct_change() * 100\n",
    "    d['Open'] = d['Open'].pct_change() * 100\n",
    "    d['Close'] = d['Close'].pct_change() * 100 \n",
    "    # d.rename(columns = {'HighNew':'High','LowNew':'Low','OpenNew':'Open','CloseNew':'Close'}, inplace = True)\n",
    "\n",
    "    # Remove outliers when Market closes +- 3.5%\n",
    "    d = d[d['change'] < 3.5]\n",
    "    d.dropna(inplace=True)\n",
    "    d.tail()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 103,
   "metadata": {},
   "outputs": [],
   "source": [
    "def preprocessBeforeScaling(df):\n",
    "    df['High'] = df['High'].pct_change() * 100\n",
    "    df['Low'] = df['Low'].pct_change() * 100\n",
    "    df['Open'] = df['Open'].pct_change() * 100\n",
    "    df['Close'] = df['Close'].pct_change() * 100 \n",
    "    return df"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 89,
   "metadata": {},
   "outputs": [],
   "source": [
    "test_dataset = d.tail(TEST_DAYS)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 90,
   "metadata": {},
   "outputs": [],
   "source": [
    "d = d[:-(TEST_DAYS+1)]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 91,
   "metadata": {},
   "outputs": [],
   "source": [
    "if INDICATOR_DATASET:\n",
    "    x = d.drop(columns=['target'])\n",
    "    y = d.target\n",
    "else:\n",
    "    x = d.drop(columns=['target', 'Adj Close', 'Volume', 'change'], errors='ignore')\n",
    "    y = d.target"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 92,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Open</th>\n",
       "      <th>High</th>\n",
       "      <th>Low</th>\n",
       "      <th>Close</th>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>Date</th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>2007-09-18</th>\n",
       "      <td>-0.538904</td>\n",
       "      <td>0.060452</td>\n",
       "      <td>-0.029006</td>\n",
       "      <td>1.146926</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2007-09-20</th>\n",
       "      <td>4.056922</td>\n",
       "      <td>0.461070</td>\n",
       "      <td>3.755835</td>\n",
       "      <td>0.321187</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2007-09-21</th>\n",
       "      <td>0.382274</td>\n",
       "      <td>1.992293</td>\n",
       "      <td>0.265831</td>\n",
       "      <td>1.895715</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2007-09-24</th>\n",
       "      <td>1.771525</td>\n",
       "      <td>1.759781</td>\n",
       "      <td>2.185388</td>\n",
       "      <td>1.956577</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2007-09-25</th>\n",
       "      <td>2.107650</td>\n",
       "      <td>0.258037</td>\n",
       "      <td>0.847607</td>\n",
       "      <td>0.134826</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>...</th>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2022-12-02</th>\n",
       "      <td>-0.633474</td>\n",
       "      <td>-0.559364</td>\n",
       "      <td>-0.740220</td>\n",
       "      <td>-0.618740</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2022-12-05</th>\n",
       "      <td>-0.175175</td>\n",
       "      <td>-0.284047</td>\n",
       "      <td>-0.256715</td>\n",
       "      <td>0.026482</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2022-12-06</th>\n",
       "      <td>-0.635167</td>\n",
       "      <td>-0.393512</td>\n",
       "      <td>-0.072341</td>\n",
       "      <td>-0.311751</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2022-12-07</th>\n",
       "      <td>0.205365</td>\n",
       "      <td>0.071833</td>\n",
       "      <td>-0.266446</td>\n",
       "      <td>-0.441190</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2022-12-08</th>\n",
       "      <td>-0.364829</td>\n",
       "      <td>-0.231948</td>\n",
       "      <td>0.046139</td>\n",
       "      <td>0.263191</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>3632 rows × 4 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "                Open      High       Low     Close\n",
       "Date                                              \n",
       "2007-09-18 -0.538904  0.060452 -0.029006  1.146926\n",
       "2007-09-20  4.056922  0.461070  3.755835  0.321187\n",
       "2007-09-21  0.382274  1.992293  0.265831  1.895715\n",
       "2007-09-24  1.771525  1.759781  2.185388  1.956577\n",
       "2007-09-25  2.107650  0.258037  0.847607  0.134826\n",
       "...              ...       ...       ...       ...\n",
       "2022-12-02 -0.633474 -0.559364 -0.740220 -0.618740\n",
       "2022-12-05 -0.175175 -0.284047 -0.256715  0.026482\n",
       "2022-12-06 -0.635167 -0.393512 -0.072341 -0.311751\n",
       "2022-12-07  0.205365  0.071833 -0.266446 -0.441190\n",
       "2022-12-08 -0.364829 -0.231948  0.046139  0.263191\n",
       "\n",
       "[3632 rows x 4 columns]"
      ]
     },
     "execution_count": 92,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "x"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 93,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Date\n",
       "2007-09-18    0.0\n",
       "2007-09-20    0.0\n",
       "2007-09-21    0.0\n",
       "2007-09-24    0.0\n",
       "2007-09-25    0.0\n",
       "             ... \n",
       "2022-12-02    1.0\n",
       "2022-12-05    1.0\n",
       "2022-12-06    1.0\n",
       "2022-12-07    1.0\n",
       "2022-12-08    1.0\n",
       "Name: target, Length: 3632, dtype: float64"
      ]
     },
     "execution_count": 93,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "y"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 94,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "No. of Bullish samples: 1853\n",
      "No. of Bearish samples: 1779\n"
     ]
    }
   ],
   "source": [
    "print('No. of Bullish samples: {}'.format(y[y == 0].size))\n",
    "print('No. of Bearish samples: {}'.format(y[y == 1].size))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 95,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Using StandardScaler\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "array([[-0.44397101,  0.03341403, -0.07956986,  1.02006975],\n",
       "       [ 2.99061278,  0.42381322,  2.99941387,  0.25208989],\n",
       "       [ 0.24444976,  1.91598031,  0.16028141,  1.71648272],\n",
       "       ...,\n",
       "       [-0.51591104, -0.40897068, -0.11482332, -0.33657615],\n",
       "       [ 0.11224095,  0.04450465, -0.27272798, -0.4569611 ],\n",
       "       [-0.31388057, -0.25152816, -0.0184391 ,  0.19815053]])"
      ]
     },
     "execution_count": 95,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "if not INDICATOR_DATASET:\n",
    "    print(\"Using StandardScaler\")\n",
    "    scaler = StandardScaler()\n",
    "    x = scaler.fit_transform(x.to_numpy())\n",
    "    x\n",
    "else:\n",
    "    print(\"Using ColumnTransformer\")\n",
    "    col_names = ['Open', 'High', 'Low', 'Close', 'ATR']\n",
    "    scaler = ColumnTransformer(\n",
    "        [('StandardScaler', StandardScaler(), col_names)],\n",
    "        remainder='passthrough'\n",
    "    )\n",
    "    x = scaler.fit_transform(x)\n",
    "x"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 96,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Model: \"sequential_5\"\n",
      "_________________________________________________________________\n",
      " Layer (type)                Output Shape              Param #   \n",
      "=================================================================\n",
      " dense_35 (Dense)            (None, 64)                320       \n",
      "                                                                 \n",
      " dense_36 (Dense)            (None, 32)                2080      \n",
      "                                                                 \n",
      " dense_37 (Dense)            (None, 16)                528       \n",
      "                                                                 \n",
      " dense_38 (Dense)            (None, 8)                 136       \n",
      "                                                                 \n",
      " dense_39 (Dense)            (None, 4)                 36        \n",
      "                                                                 \n",
      " dense_40 (Dense)            (None, 2)                 10        \n",
      "                                                                 \n",
      " dense_41 (Dense)            (None, 1)                 3         \n",
      "                                                                 \n",
      "=================================================================\n",
      "Total params: 3,113\n",
      "Trainable params: 3,113\n",
      "Non-trainable params: 0\n",
      "_________________________________________________________________\n"
     ]
    }
   ],
   "source": [
    "import tensorflow as tf\n",
    "from keras import Sequential\n",
    "from keras import Model\n",
    "from keras.layers import Dense\n",
    "from keras.optimizers import SGD\n",
    "import keras\n",
    "\n",
    "lr_list = []\n",
    "def scheduler(epoch, lr):\n",
    "    if epoch < 15:\n",
    "        lr = lr\n",
    "    else:\n",
    "        lr = lr * tf.math.exp(-0.01)\n",
    "    lr_list.append(lr)\n",
    "    return lr\n",
    "\n",
    "units = 64 #1024\n",
    "# sgd = SGD(learning_rate=0.0001, momentum=0.0, nesterov=True)\n",
    "sgd = SGD(learning_rate=0.001, momentum=0.45, nesterov=True)\n",
    "kernel_init = 'he_uniform'\n",
    "activation = 'relu'\n",
    "\n",
    "callback_mc = keras.callbacks.ModelCheckpoint(\n",
    "                'best_model.h5',\n",
    "                verbose=1,\n",
    "                monitor='val_accuracy',\n",
    "                save_best_only=True,\n",
    "                mode='auto'\n",
    "                )\n",
    "callback_es = keras.callbacks.EarlyStopping(\n",
    "                monitor='val_accuracy',\n",
    "                mode='auto',\n",
    "                verbose=0,\n",
    "                patience=200\n",
    ")\n",
    "callback_lr = keras.callbacks.LearningRateScheduler(scheduler)\n",
    "\n",
    "model = Sequential([\n",
    "    Dense(units, kernel_initializer=kernel_init, activation=activation, input_dim=x.shape[1]),\n",
    "    # Dense(units, kernel_initializer=kernel_init, activation=activation),\n",
    "    Dense(units//2, kernel_initializer=kernel_init, activation=activation),\n",
    "    Dense(units//4, kernel_initializer=kernel_init, activation=activation),\n",
    "    Dense(units//8, kernel_initializer=kernel_init, activation=activation),\n",
    "    Dense(units//16, kernel_initializer=kernel_init, activation=activation),\n",
    "    Dense(units//32, kernel_initializer=kernel_init, activation=activation),\n",
    "    Dense(1, kernel_initializer=kernel_init, activation='sigmoid'),\n",
    "])\n",
    "model.compile(optimizer=sgd, loss='binary_crossentropy', metrics=['accuracy'])\n",
    "model.summary()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 97,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Epoch 1/500\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "2023-02-07 21:32:56.887556: I tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.cc:113] Plugin optimizer for device_type GPU is enabled.\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Epoch 1: val_accuracy improved from -inf to 0.56514, saving model to best_model.h5\n",
      "25/25 - 1s - loss: 0.7395 - accuracy: 0.5190 - val_loss: 0.6813 - val_accuracy: 0.5651 - lr: 0.0010 - 798ms/epoch - 32ms/step\n",
      "Epoch 2/500\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "2023-02-07 21:32:57.345736: I tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.cc:113] Plugin optimizer for device_type GPU is enabled.\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Epoch 2: val_accuracy improved from 0.56514 to 0.56881, saving model to best_model.h5\n",
      "25/25 - 0s - loss: 0.7237 - accuracy: 0.5238 - val_loss: 0.6748 - val_accuracy: 0.5688 - lr: 0.0010 - 227ms/epoch - 9ms/step\n",
      "Epoch 3/500\n",
      "\n",
      "Epoch 3: val_accuracy improved from 0.56881 to 0.57064, saving model to best_model.h5\n",
      "25/25 - 0s - loss: 0.7119 - accuracy: 0.5287 - val_loss: 0.6682 - val_accuracy: 0.5706 - lr: 0.0010 - 232ms/epoch - 9ms/step\n",
      "Epoch 4/500\n",
      "\n",
      "Epoch 4: val_accuracy improved from 0.57064 to 0.57798, saving model to best_model.h5\n",
      "25/25 - 0s - loss: 0.7027 - accuracy: 0.5368 - val_loss: 0.6624 - val_accuracy: 0.5780 - lr: 0.0010 - 228ms/epoch - 9ms/step\n",
      "Epoch 5/500\n",
      "\n",
      "Epoch 5: val_accuracy improved from 0.57798 to 0.59266, saving model to best_model.h5\n",
      "25/25 - 0s - loss: 0.6922 - accuracy: 0.5465 - val_loss: 0.6567 - val_accuracy: 0.5927 - lr: 0.0010 - 205ms/epoch - 8ms/step\n",
      "Epoch 6/500\n",
      "\n",
      "Epoch 6: val_accuracy improved from 0.59266 to 0.60734, saving model to best_model.h5\n",
      "25/25 - 0s - loss: 0.6815 - accuracy: 0.5640 - val_loss: 0.6493 - val_accuracy: 0.6073 - lr: 0.0010 - 205ms/epoch - 8ms/step\n",
      "Epoch 7/500\n",
      "\n",
      "Epoch 7: val_accuracy improved from 0.60734 to 0.66055, saving model to best_model.h5\n",
      "25/25 - 0s - loss: 0.6670 - accuracy: 0.6158 - val_loss: 0.6347 - val_accuracy: 0.6606 - lr: 0.0010 - 203ms/epoch - 8ms/step\n",
      "Epoch 8/500\n",
      "\n",
      "Epoch 8: val_accuracy improved from 0.66055 to 0.68257, saving model to best_model.h5\n",
      "25/25 - 0s - loss: 0.6458 - accuracy: 0.6683 - val_loss: 0.6256 - val_accuracy: 0.6826 - lr: 0.0010 - 214ms/epoch - 9ms/step\n",
      "Epoch 9/500\n",
      "\n",
      "Epoch 9: val_accuracy improved from 0.68257 to 0.69358, saving model to best_model.h5\n",
      "25/25 - 0s - loss: 0.6340 - accuracy: 0.6796 - val_loss: 0.6224 - val_accuracy: 0.6936 - lr: 0.0010 - 210ms/epoch - 8ms/step\n",
      "Epoch 10/500\n",
      "\n",
      "Epoch 10: val_accuracy improved from 0.69358 to 0.70642, saving model to best_model.h5\n",
      "25/25 - 0s - loss: 0.6285 - accuracy: 0.6884 - val_loss: 0.6199 - val_accuracy: 0.7064 - lr: 0.0010 - 208ms/epoch - 8ms/step\n",
      "Epoch 11/500\n",
      "\n",
      "Epoch 11: val_accuracy improved from 0.70642 to 0.71376, saving model to best_model.h5\n",
      "25/25 - 0s - loss: 0.6239 - accuracy: 0.6916 - val_loss: 0.6174 - val_accuracy: 0.7138 - lr: 0.0010 - 207ms/epoch - 8ms/step\n",
      "Epoch 12/500\n",
      "\n",
      "Epoch 12: val_accuracy improved from 0.71376 to 0.71927, saving model to best_model.h5\n",
      "25/25 - 0s - loss: 0.6202 - accuracy: 0.6910 - val_loss: 0.6154 - val_accuracy: 0.7193 - lr: 0.0010 - 206ms/epoch - 8ms/step\n",
      "Epoch 13/500\n",
      "\n",
      "Epoch 13: val_accuracy improved from 0.71927 to 0.72661, saving model to best_model.h5\n",
      "25/25 - 0s - loss: 0.6181 - accuracy: 0.6923 - val_loss: 0.6136 - val_accuracy: 0.7266 - lr: 0.0010 - 214ms/epoch - 9ms/step\n",
      "Epoch 14/500\n",
      "\n",
      "Epoch 14: val_accuracy improved from 0.72661 to 0.72844, saving model to best_model.h5\n",
      "25/25 - 0s - loss: 0.6157 - accuracy: 0.6929 - val_loss: 0.6117 - val_accuracy: 0.7284 - lr: 0.0010 - 212ms/epoch - 8ms/step\n",
      "Epoch 15/500\n",
      "\n",
      "Epoch 15: val_accuracy did not improve from 0.72844\n",
      "25/25 - 0s - loss: 0.6137 - accuracy: 0.6955 - val_loss: 0.6098 - val_accuracy: 0.7284 - lr: 0.0010 - 186ms/epoch - 7ms/step\n",
      "Epoch 16/500\n",
      "\n",
      "Epoch 16: val_accuracy improved from 0.72844 to 0.73028, saving model to best_model.h5\n",
      "25/25 - 0s - loss: 0.6117 - accuracy: 0.6945 - val_loss: 0.6080 - val_accuracy: 0.7303 - lr: 9.9005e-04 - 256ms/epoch - 10ms/step\n",
      "Epoch 17/500\n",
      "\n",
      "Epoch 17: val_accuracy improved from 0.73028 to 0.73578, saving model to best_model.h5\n",
      "25/25 - 0s - loss: 0.6098 - accuracy: 0.6952 - val_loss: 0.6064 - val_accuracy: 0.7358 - lr: 9.8020e-04 - 212ms/epoch - 8ms/step\n",
      "Epoch 18/500\n",
      "\n",
      "Epoch 18: val_accuracy did not improve from 0.73578\n",
      "25/25 - 0s - loss: 0.6079 - accuracy: 0.6948 - val_loss: 0.6044 - val_accuracy: 0.7339 - lr: 9.7045e-04 - 179ms/epoch - 7ms/step\n",
      "Epoch 19/500\n",
      "\n",
      "Epoch 19: val_accuracy did not improve from 0.73578\n",
      "25/25 - 0s - loss: 0.6063 - accuracy: 0.6991 - val_loss: 0.6025 - val_accuracy: 0.7321 - lr: 9.6079e-04 - 195ms/epoch - 8ms/step\n",
      "Epoch 20/500\n",
      "\n",
      "Epoch 20: val_accuracy did not improve from 0.73578\n",
      "25/25 - 0s - loss: 0.6049 - accuracy: 0.6965 - val_loss: 0.6008 - val_accuracy: 0.7321 - lr: 9.5123e-04 - 185ms/epoch - 7ms/step\n",
      "Epoch 21/500\n",
      "\n",
      "Epoch 21: val_accuracy did not improve from 0.73578\n",
      "25/25 - 0s - loss: 0.6032 - accuracy: 0.6968 - val_loss: 0.5987 - val_accuracy: 0.7358 - lr: 9.4176e-04 - 186ms/epoch - 7ms/step\n",
      "Epoch 22/500\n",
      "\n",
      "Epoch 22: val_accuracy improved from 0.73578 to 0.73761, saving model to best_model.h5\n",
      "25/25 - 0s - loss: 0.6015 - accuracy: 0.6994 - val_loss: 0.5973 - val_accuracy: 0.7376 - lr: 9.3239e-04 - 224ms/epoch - 9ms/step\n",
      "Epoch 23/500\n",
      "\n",
      "Epoch 23: val_accuracy did not improve from 0.73761\n",
      "25/25 - 0s - loss: 0.6001 - accuracy: 0.6994 - val_loss: 0.5964 - val_accuracy: 0.7358 - lr: 9.2312e-04 - 187ms/epoch - 7ms/step\n",
      "Epoch 24/500\n",
      "\n",
      "Epoch 24: val_accuracy did not improve from 0.73761\n",
      "25/25 - 0s - loss: 0.5990 - accuracy: 0.7007 - val_loss: 0.5959 - val_accuracy: 0.7358 - lr: 9.1393e-04 - 188ms/epoch - 8ms/step\n",
      "Epoch 25/500\n",
      "\n",
      "Epoch 25: val_accuracy improved from 0.73761 to 0.73945, saving model to best_model.h5\n",
      "25/25 - 0s - loss: 0.5980 - accuracy: 0.7007 - val_loss: 0.5947 - val_accuracy: 0.7394 - lr: 9.0484e-04 - 234ms/epoch - 9ms/step\n",
      "Epoch 26/500\n",
      "\n",
      "Epoch 26: val_accuracy did not improve from 0.73945\n",
      "25/25 - 0s - loss: 0.5968 - accuracy: 0.7017 - val_loss: 0.5935 - val_accuracy: 0.7394 - lr: 8.9583e-04 - 178ms/epoch - 7ms/step\n",
      "Epoch 27/500\n",
      "\n",
      "Epoch 27: val_accuracy did not improve from 0.73945\n",
      "25/25 - 0s - loss: 0.5957 - accuracy: 0.7033 - val_loss: 0.5924 - val_accuracy: 0.7394 - lr: 8.8692e-04 - 180ms/epoch - 7ms/step\n",
      "Epoch 28/500\n",
      "\n",
      "Epoch 28: val_accuracy did not improve from 0.73945\n",
      "25/25 - 0s - loss: 0.5947 - accuracy: 0.7026 - val_loss: 0.5912 - val_accuracy: 0.7376 - lr: 8.7809e-04 - 180ms/epoch - 7ms/step\n",
      "Epoch 29/500\n",
      "\n",
      "Epoch 29: val_accuracy did not improve from 0.73945\n",
      "25/25 - 0s - loss: 0.5938 - accuracy: 0.7020 - val_loss: 0.5902 - val_accuracy: 0.7376 - lr: 8.6936e-04 - 178ms/epoch - 7ms/step\n",
      "Epoch 30/500\n",
      "\n",
      "Epoch 30: val_accuracy did not improve from 0.73945\n",
      "25/25 - 0s - loss: 0.5929 - accuracy: 0.7026 - val_loss: 0.5892 - val_accuracy: 0.7394 - lr: 8.6071e-04 - 201ms/epoch - 8ms/step\n",
      "Epoch 31/500\n",
      "\n",
      "Epoch 31: val_accuracy did not improve from 0.73945\n",
      "25/25 - 0s - loss: 0.5920 - accuracy: 0.7023 - val_loss: 0.5884 - val_accuracy: 0.7358 - lr: 8.5214e-04 - 181ms/epoch - 7ms/step\n",
      "Epoch 32/500\n",
      "\n",
      "Epoch 32: val_accuracy did not improve from 0.73945\n",
      "25/25 - 0s - loss: 0.5911 - accuracy: 0.7049 - val_loss: 0.5877 - val_accuracy: 0.7358 - lr: 8.4366e-04 - 179ms/epoch - 7ms/step\n",
      "Epoch 33/500\n",
      "\n",
      "Epoch 33: val_accuracy did not improve from 0.73945\n",
      "25/25 - 0s - loss: 0.5904 - accuracy: 0.7059 - val_loss: 0.5866 - val_accuracy: 0.7376 - lr: 8.3527e-04 - 180ms/epoch - 7ms/step\n",
      "Epoch 34/500\n",
      "\n",
      "Epoch 34: val_accuracy did not improve from 0.73945\n",
      "25/25 - 0s - loss: 0.5896 - accuracy: 0.7049 - val_loss: 0.5854 - val_accuracy: 0.7376 - lr: 8.2696e-04 - 178ms/epoch - 7ms/step\n",
      "Epoch 35/500\n",
      "\n",
      "Epoch 35: val_accuracy did not improve from 0.73945\n",
      "25/25 - 0s - loss: 0.5892 - accuracy: 0.7033 - val_loss: 0.5848 - val_accuracy: 0.7339 - lr: 8.1873e-04 - 180ms/epoch - 7ms/step\n",
      "Epoch 36/500\n",
      "\n",
      "Epoch 36: val_accuracy did not improve from 0.73945\n",
      "25/25 - 0s - loss: 0.5883 - accuracy: 0.7049 - val_loss: 0.5847 - val_accuracy: 0.7339 - lr: 8.1058e-04 - 179ms/epoch - 7ms/step\n",
      "Epoch 37/500\n",
      "\n",
      "Epoch 37: val_accuracy did not improve from 0.73945\n",
      "25/25 - 0s - loss: 0.5877 - accuracy: 0.7033 - val_loss: 0.5838 - val_accuracy: 0.7358 - lr: 8.0252e-04 - 194ms/epoch - 8ms/step\n",
      "Epoch 38/500\n",
      "\n",
      "Epoch 38: val_accuracy did not improve from 0.73945\n",
      "25/25 - 0s - loss: 0.5869 - accuracy: 0.7039 - val_loss: 0.5832 - val_accuracy: 0.7358 - lr: 7.9453e-04 - 179ms/epoch - 7ms/step\n",
      "Epoch 39/500\n",
      "\n",
      "Epoch 39: val_accuracy did not improve from 0.73945\n",
      "25/25 - 0s - loss: 0.5863 - accuracy: 0.7039 - val_loss: 0.5825 - val_accuracy: 0.7358 - lr: 7.8663e-04 - 182ms/epoch - 7ms/step\n",
      "Epoch 40/500\n",
      "\n",
      "Epoch 40: val_accuracy did not improve from 0.73945\n",
      "25/25 - 0s - loss: 0.5857 - accuracy: 0.7052 - val_loss: 0.5821 - val_accuracy: 0.7358 - lr: 7.7880e-04 - 178ms/epoch - 7ms/step\n",
      "Epoch 41/500\n",
      "\n",
      "Epoch 41: val_accuracy did not improve from 0.73945\n",
      "25/25 - 0s - loss: 0.5849 - accuracy: 0.7046 - val_loss: 0.5817 - val_accuracy: 0.7339 - lr: 7.7105e-04 - 175ms/epoch - 7ms/step\n",
      "Epoch 42/500\n",
      "\n",
      "Epoch 42: val_accuracy did not improve from 0.73945\n",
      "25/25 - 0s - loss: 0.5844 - accuracy: 0.7039 - val_loss: 0.5811 - val_accuracy: 0.7358 - lr: 7.6338e-04 - 178ms/epoch - 7ms/step\n",
      "Epoch 43/500\n",
      "\n",
      "Epoch 43: val_accuracy did not improve from 0.73945\n",
      "25/25 - 0s - loss: 0.5837 - accuracy: 0.7042 - val_loss: 0.5806 - val_accuracy: 0.7358 - lr: 7.5578e-04 - 178ms/epoch - 7ms/step\n",
      "Epoch 44/500\n",
      "\n",
      "Epoch 44: val_accuracy did not improve from 0.73945\n",
      "25/25 - 0s - loss: 0.5831 - accuracy: 0.7046 - val_loss: 0.5797 - val_accuracy: 0.7339 - lr: 7.4826e-04 - 176ms/epoch - 7ms/step\n",
      "Epoch 45/500\n",
      "\n",
      "Epoch 45: val_accuracy did not improve from 0.73945\n",
      "25/25 - 0s - loss: 0.5826 - accuracy: 0.7042 - val_loss: 0.5794 - val_accuracy: 0.7358 - lr: 7.4082e-04 - 177ms/epoch - 7ms/step\n",
      "Epoch 46/500\n",
      "\n",
      "Epoch 46: val_accuracy did not improve from 0.73945\n",
      "25/25 - 0s - loss: 0.5819 - accuracy: 0.7046 - val_loss: 0.5790 - val_accuracy: 0.7358 - lr: 7.3345e-04 - 178ms/epoch - 7ms/step\n",
      "Epoch 47/500\n",
      "\n",
      "Epoch 47: val_accuracy did not improve from 0.73945\n",
      "25/25 - 0s - loss: 0.5813 - accuracy: 0.7055 - val_loss: 0.5788 - val_accuracy: 0.7358 - lr: 7.2615e-04 - 176ms/epoch - 7ms/step\n",
      "Epoch 48/500\n",
      "\n",
      "Epoch 48: val_accuracy did not improve from 0.73945\n",
      "25/25 - 0s - loss: 0.5810 - accuracy: 0.7059 - val_loss: 0.5785 - val_accuracy: 0.7376 - lr: 7.1892e-04 - 175ms/epoch - 7ms/step\n",
      "Epoch 49/500\n",
      "\n",
      "Epoch 49: val_accuracy did not improve from 0.73945\n",
      "25/25 - 0s - loss: 0.5804 - accuracy: 0.7062 - val_loss: 0.5779 - val_accuracy: 0.7394 - lr: 7.1177e-04 - 182ms/epoch - 7ms/step\n",
      "Epoch 50/500\n",
      "\n",
      "Epoch 50: val_accuracy did not improve from 0.73945\n",
      "25/25 - 0s - loss: 0.5798 - accuracy: 0.7065 - val_loss: 0.5776 - val_accuracy: 0.7394 - lr: 7.0469e-04 - 179ms/epoch - 7ms/step\n",
      "Epoch 51/500\n",
      "\n",
      "Epoch 51: val_accuracy improved from 0.73945 to 0.74128, saving model to best_model.h5\n",
      "25/25 - 0s - loss: 0.5792 - accuracy: 0.7065 - val_loss: 0.5768 - val_accuracy: 0.7413 - lr: 6.9767e-04 - 208ms/epoch - 8ms/step\n",
      "Epoch 52/500\n",
      "\n",
      "Epoch 52: val_accuracy did not improve from 0.74128\n",
      "25/25 - 0s - loss: 0.5786 - accuracy: 0.7081 - val_loss: 0.5762 - val_accuracy: 0.7394 - lr: 6.9073e-04 - 184ms/epoch - 7ms/step\n",
      "Epoch 53/500\n",
      "\n",
      "Epoch 53: val_accuracy did not improve from 0.74128\n",
      "25/25 - 0s - loss: 0.5780 - accuracy: 0.7065 - val_loss: 0.5758 - val_accuracy: 0.7394 - lr: 6.8386e-04 - 184ms/epoch - 7ms/step\n",
      "Epoch 54/500\n",
      "\n",
      "Epoch 54: val_accuracy did not improve from 0.74128\n",
      "25/25 - 0s - loss: 0.5777 - accuracy: 0.7085 - val_loss: 0.5753 - val_accuracy: 0.7394 - lr: 6.7706e-04 - 185ms/epoch - 7ms/step\n",
      "Epoch 55/500\n",
      "\n",
      "Epoch 55: val_accuracy did not improve from 0.74128\n",
      "25/25 - 0s - loss: 0.5773 - accuracy: 0.7088 - val_loss: 0.5746 - val_accuracy: 0.7413 - lr: 6.7032e-04 - 184ms/epoch - 7ms/step\n",
      "Epoch 56/500\n",
      "\n",
      "Epoch 56: val_accuracy did not improve from 0.74128\n",
      "25/25 - 0s - loss: 0.5768 - accuracy: 0.7088 - val_loss: 0.5739 - val_accuracy: 0.7413 - lr: 6.6365e-04 - 185ms/epoch - 7ms/step\n",
      "Epoch 57/500\n",
      "\n",
      "Epoch 57: val_accuracy did not improve from 0.74128\n",
      "25/25 - 0s - loss: 0.5764 - accuracy: 0.7101 - val_loss: 0.5735 - val_accuracy: 0.7394 - lr: 6.5705e-04 - 182ms/epoch - 7ms/step\n",
      "Epoch 58/500\n",
      "\n",
      "Epoch 58: val_accuracy did not improve from 0.74128\n",
      "25/25 - 0s - loss: 0.5760 - accuracy: 0.7088 - val_loss: 0.5731 - val_accuracy: 0.7394 - lr: 6.5051e-04 - 187ms/epoch - 7ms/step\n",
      "Epoch 59/500\n",
      "\n",
      "Epoch 59: val_accuracy improved from 0.74128 to 0.74312, saving model to best_model.h5\n",
      "25/25 - 0s - loss: 0.5757 - accuracy: 0.7091 - val_loss: 0.5722 - val_accuracy: 0.7431 - lr: 6.4403e-04 - 206ms/epoch - 8ms/step\n",
      "Epoch 60/500\n",
      "\n",
      "Epoch 60: val_accuracy did not improve from 0.74312\n",
      "25/25 - 0s - loss: 0.5753 - accuracy: 0.7101 - val_loss: 0.5717 - val_accuracy: 0.7413 - lr: 6.3763e-04 - 184ms/epoch - 7ms/step\n",
      "Epoch 61/500\n",
      "\n",
      "Epoch 61: val_accuracy did not improve from 0.74312\n",
      "25/25 - 0s - loss: 0.5749 - accuracy: 0.7101 - val_loss: 0.5711 - val_accuracy: 0.7431 - lr: 6.3128e-04 - 181ms/epoch - 7ms/step\n",
      "Epoch 62/500\n",
      "\n",
      "Epoch 62: val_accuracy did not improve from 0.74312\n",
      "25/25 - 0s - loss: 0.5745 - accuracy: 0.7094 - val_loss: 0.5708 - val_accuracy: 0.7431 - lr: 6.2500e-04 - 184ms/epoch - 7ms/step\n",
      "Epoch 63/500\n",
      "\n",
      "Epoch 63: val_accuracy did not improve from 0.74312\n",
      "25/25 - 0s - loss: 0.5741 - accuracy: 0.7101 - val_loss: 0.5704 - val_accuracy: 0.7413 - lr: 6.1878e-04 - 190ms/epoch - 8ms/step\n",
      "Epoch 64/500\n",
      "\n",
      "Epoch 64: val_accuracy did not improve from 0.74312\n",
      "25/25 - 0s - loss: 0.5737 - accuracy: 0.7104 - val_loss: 0.5698 - val_accuracy: 0.7431 - lr: 6.1262e-04 - 194ms/epoch - 8ms/step\n",
      "Epoch 65/500\n",
      "\n",
      "Epoch 65: val_accuracy improved from 0.74312 to 0.74495, saving model to best_model.h5\n",
      "25/25 - 0s - loss: 0.5734 - accuracy: 0.7098 - val_loss: 0.5694 - val_accuracy: 0.7450 - lr: 6.0653e-04 - 210ms/epoch - 8ms/step\n",
      "Epoch 66/500\n",
      "\n",
      "Epoch 66: val_accuracy did not improve from 0.74495\n",
      "25/25 - 0s - loss: 0.5730 - accuracy: 0.7098 - val_loss: 0.5691 - val_accuracy: 0.7450 - lr: 6.0049e-04 - 190ms/epoch - 8ms/step\n",
      "Epoch 67/500\n",
      "\n",
      "Epoch 67: val_accuracy did not improve from 0.74495\n",
      "25/25 - 0s - loss: 0.5727 - accuracy: 0.7098 - val_loss: 0.5688 - val_accuracy: 0.7431 - lr: 5.9452e-04 - 189ms/epoch - 8ms/step\n",
      "Epoch 68/500\n",
      "\n",
      "Epoch 68: val_accuracy did not improve from 0.74495\n",
      "25/25 - 0s - loss: 0.5724 - accuracy: 0.7088 - val_loss: 0.5684 - val_accuracy: 0.7431 - lr: 5.8860e-04 - 186ms/epoch - 7ms/step\n",
      "Epoch 69/500\n",
      "\n",
      "Epoch 69: val_accuracy did not improve from 0.74495\n",
      "25/25 - 0s - loss: 0.5720 - accuracy: 0.7104 - val_loss: 0.5681 - val_accuracy: 0.7413 - lr: 5.8275e-04 - 185ms/epoch - 7ms/step\n",
      "Epoch 70/500\n",
      "\n",
      "Epoch 70: val_accuracy did not improve from 0.74495\n",
      "25/25 - 0s - loss: 0.5717 - accuracy: 0.7110 - val_loss: 0.5679 - val_accuracy: 0.7413 - lr: 5.7695e-04 - 186ms/epoch - 7ms/step\n",
      "Epoch 71/500\n",
      "\n",
      "Epoch 71: val_accuracy did not improve from 0.74495\n",
      "25/25 - 0s - loss: 0.5715 - accuracy: 0.7110 - val_loss: 0.5673 - val_accuracy: 0.7413 - lr: 5.7121e-04 - 177ms/epoch - 7ms/step\n",
      "Epoch 72/500\n",
      "\n",
      "Epoch 72: val_accuracy did not improve from 0.74495\n",
      "25/25 - 0s - loss: 0.5711 - accuracy: 0.7117 - val_loss: 0.5672 - val_accuracy: 0.7413 - lr: 5.6552e-04 - 179ms/epoch - 7ms/step\n",
      "Epoch 73/500\n",
      "\n",
      "Epoch 73: val_accuracy did not improve from 0.74495\n",
      "25/25 - 0s - loss: 0.5710 - accuracy: 0.7104 - val_loss: 0.5670 - val_accuracy: 0.7431 - lr: 5.5990e-04 - 179ms/epoch - 7ms/step\n",
      "Epoch 74/500\n",
      "\n",
      "Epoch 74: val_accuracy did not improve from 0.74495\n",
      "25/25 - 0s - loss: 0.5707 - accuracy: 0.7114 - val_loss: 0.5662 - val_accuracy: 0.7431 - lr: 5.5433e-04 - 178ms/epoch - 7ms/step\n",
      "Epoch 75/500\n",
      "\n",
      "Epoch 75: val_accuracy did not improve from 0.74495\n",
      "25/25 - 0s - loss: 0.5703 - accuracy: 0.7114 - val_loss: 0.5661 - val_accuracy: 0.7413 - lr: 5.4881e-04 - 175ms/epoch - 7ms/step\n",
      "Epoch 76/500\n",
      "\n",
      "Epoch 76: val_accuracy did not improve from 0.74495\n",
      "25/25 - 0s - loss: 0.5701 - accuracy: 0.7117 - val_loss: 0.5660 - val_accuracy: 0.7450 - lr: 5.4335e-04 - 178ms/epoch - 7ms/step\n",
      "Epoch 77/500\n",
      "\n",
      "Epoch 77: val_accuracy did not improve from 0.74495\n",
      "25/25 - 0s - loss: 0.5699 - accuracy: 0.7114 - val_loss: 0.5657 - val_accuracy: 0.7450 - lr: 5.3794e-04 - 186ms/epoch - 7ms/step\n",
      "Epoch 78/500\n",
      "\n",
      "Epoch 78: val_accuracy did not improve from 0.74495\n",
      "25/25 - 0s - loss: 0.5697 - accuracy: 0.7123 - val_loss: 0.5655 - val_accuracy: 0.7450 - lr: 5.3259e-04 - 194ms/epoch - 8ms/step\n",
      "Epoch 79/500\n",
      "\n",
      "Epoch 79: val_accuracy did not improve from 0.74495\n",
      "25/25 - 0s - loss: 0.5694 - accuracy: 0.7117 - val_loss: 0.5654 - val_accuracy: 0.7450 - lr: 5.2729e-04 - 185ms/epoch - 7ms/step\n",
      "Epoch 80/500\n",
      "\n",
      "Epoch 80: val_accuracy did not improve from 0.74495\n",
      "25/25 - 0s - loss: 0.5692 - accuracy: 0.7120 - val_loss: 0.5655 - val_accuracy: 0.7450 - lr: 5.2204e-04 - 187ms/epoch - 7ms/step\n",
      "Epoch 81/500\n",
      "\n",
      "Epoch 81: val_accuracy did not improve from 0.74495\n",
      "25/25 - 0s - loss: 0.5691 - accuracy: 0.7117 - val_loss: 0.5657 - val_accuracy: 0.7450 - lr: 5.1685e-04 - 188ms/epoch - 8ms/step\n",
      "Epoch 82/500\n",
      "\n",
      "Epoch 82: val_accuracy did not improve from 0.74495\n",
      "25/25 - 0s - loss: 0.5690 - accuracy: 0.7130 - val_loss: 0.5653 - val_accuracy: 0.7450 - lr: 5.1171e-04 - 184ms/epoch - 7ms/step\n",
      "Epoch 83/500\n",
      "\n",
      "Epoch 83: val_accuracy did not improve from 0.74495\n",
      "25/25 - 0s - loss: 0.5687 - accuracy: 0.7127 - val_loss: 0.5647 - val_accuracy: 0.7450 - lr: 5.0661e-04 - 184ms/epoch - 7ms/step\n",
      "Epoch 84/500\n",
      "\n",
      "Epoch 84: val_accuracy did not improve from 0.74495\n",
      "25/25 - 0s - loss: 0.5685 - accuracy: 0.7123 - val_loss: 0.5645 - val_accuracy: 0.7450 - lr: 5.0157e-04 - 182ms/epoch - 7ms/step\n",
      "Epoch 85/500\n",
      "\n",
      "Epoch 85: val_accuracy did not improve from 0.74495\n",
      "25/25 - 0s - loss: 0.5683 - accuracy: 0.7133 - val_loss: 0.5643 - val_accuracy: 0.7450 - lr: 4.9658e-04 - 189ms/epoch - 8ms/step\n",
      "Epoch 86/500\n",
      "\n",
      "Epoch 86: val_accuracy did not improve from 0.74495\n",
      "25/25 - 0s - loss: 0.5681 - accuracy: 0.7123 - val_loss: 0.5642 - val_accuracy: 0.7450 - lr: 4.9164e-04 - 215ms/epoch - 9ms/step\n",
      "Epoch 87/500\n",
      "\n",
      "Epoch 87: val_accuracy did not improve from 0.74495\n",
      "25/25 - 0s - loss: 0.5680 - accuracy: 0.7117 - val_loss: 0.5639 - val_accuracy: 0.7450 - lr: 4.8675e-04 - 188ms/epoch - 8ms/step\n",
      "Epoch 88/500\n",
      "\n",
      "Epoch 88: val_accuracy did not improve from 0.74495\n",
      "25/25 - 0s - loss: 0.5678 - accuracy: 0.7117 - val_loss: 0.5638 - val_accuracy: 0.7450 - lr: 4.8191e-04 - 189ms/epoch - 8ms/step\n",
      "Epoch 89/500\n",
      "\n",
      "Epoch 89: val_accuracy improved from 0.74495 to 0.74679, saving model to best_model.h5\n",
      "25/25 - 0s - loss: 0.5676 - accuracy: 0.7123 - val_loss: 0.5635 - val_accuracy: 0.7468 - lr: 4.7711e-04 - 219ms/epoch - 9ms/step\n",
      "Epoch 90/500\n",
      "\n",
      "Epoch 90: val_accuracy did not improve from 0.74679\n",
      "25/25 - 0s - loss: 0.5674 - accuracy: 0.7117 - val_loss: 0.5633 - val_accuracy: 0.7468 - lr: 4.7236e-04 - 185ms/epoch - 7ms/step\n",
      "Epoch 91/500\n",
      "\n",
      "Epoch 91: val_accuracy improved from 0.74679 to 0.75046, saving model to best_model.h5\n",
      "25/25 - 0s - loss: 0.5673 - accuracy: 0.7120 - val_loss: 0.5630 - val_accuracy: 0.7505 - lr: 4.6766e-04 - 223ms/epoch - 9ms/step\n",
      "Epoch 92/500\n",
      "\n",
      "Epoch 92: val_accuracy did not improve from 0.75046\n",
      "25/25 - 0s - loss: 0.5671 - accuracy: 0.7130 - val_loss: 0.5628 - val_accuracy: 0.7468 - lr: 4.6301e-04 - 183ms/epoch - 7ms/step\n",
      "Epoch 93/500\n",
      "\n",
      "Epoch 93: val_accuracy did not improve from 0.75046\n",
      "25/25 - 0s - loss: 0.5670 - accuracy: 0.7123 - val_loss: 0.5626 - val_accuracy: 0.7468 - lr: 4.5840e-04 - 186ms/epoch - 7ms/step\n",
      "Epoch 94/500\n",
      "\n",
      "Epoch 94: val_accuracy did not improve from 0.75046\n",
      "25/25 - 0s - loss: 0.5668 - accuracy: 0.7117 - val_loss: 0.5624 - val_accuracy: 0.7486 - lr: 4.5384e-04 - 183ms/epoch - 7ms/step\n",
      "Epoch 95/500\n",
      "\n",
      "Epoch 95: val_accuracy did not improve from 0.75046\n",
      "25/25 - 0s - loss: 0.5666 - accuracy: 0.7127 - val_loss: 0.5621 - val_accuracy: 0.7468 - lr: 4.4933e-04 - 183ms/epoch - 7ms/step\n",
      "Epoch 96/500\n",
      "\n",
      "Epoch 96: val_accuracy did not improve from 0.75046\n",
      "25/25 - 0s - loss: 0.5665 - accuracy: 0.7123 - val_loss: 0.5617 - val_accuracy: 0.7486 - lr: 4.4486e-04 - 175ms/epoch - 7ms/step\n",
      "Epoch 97/500\n",
      "\n",
      "Epoch 97: val_accuracy did not improve from 0.75046\n",
      "25/25 - 0s - loss: 0.5664 - accuracy: 0.7130 - val_loss: 0.5616 - val_accuracy: 0.7505 - lr: 4.4043e-04 - 174ms/epoch - 7ms/step\n",
      "Epoch 98/500\n",
      "\n",
      "Epoch 98: val_accuracy improved from 0.75046 to 0.75229, saving model to best_model.h5\n",
      "25/25 - 0s - loss: 0.5662 - accuracy: 0.7120 - val_loss: 0.5615 - val_accuracy: 0.7523 - lr: 4.3605e-04 - 195ms/epoch - 8ms/step\n",
      "Epoch 99/500\n",
      "\n",
      "Epoch 99: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5661 - accuracy: 0.7114 - val_loss: 0.5614 - val_accuracy: 0.7505 - lr: 4.3171e-04 - 177ms/epoch - 7ms/step\n",
      "Epoch 100/500\n",
      "\n",
      "Epoch 100: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5660 - accuracy: 0.7114 - val_loss: 0.5612 - val_accuracy: 0.7486 - lr: 4.2741e-04 - 176ms/epoch - 7ms/step\n",
      "Epoch 101/500\n",
      "\n",
      "Epoch 101: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5658 - accuracy: 0.7120 - val_loss: 0.5610 - val_accuracy: 0.7486 - lr: 4.2316e-04 - 175ms/epoch - 7ms/step\n",
      "Epoch 102/500\n",
      "\n",
      "Epoch 102: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5657 - accuracy: 0.7117 - val_loss: 0.5610 - val_accuracy: 0.7486 - lr: 4.1895e-04 - 177ms/epoch - 7ms/step\n",
      "Epoch 103/500\n",
      "\n",
      "Epoch 103: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5655 - accuracy: 0.7114 - val_loss: 0.5609 - val_accuracy: 0.7468 - lr: 4.1478e-04 - 178ms/epoch - 7ms/step\n",
      "Epoch 104/500\n",
      "\n",
      "Epoch 104: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5654 - accuracy: 0.7130 - val_loss: 0.5609 - val_accuracy: 0.7468 - lr: 4.1065e-04 - 175ms/epoch - 7ms/step\n",
      "Epoch 105/500\n",
      "\n",
      "Epoch 105: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5653 - accuracy: 0.7130 - val_loss: 0.5609 - val_accuracy: 0.7468 - lr: 4.0657e-04 - 174ms/epoch - 7ms/step\n",
      "Epoch 106/500\n",
      "\n",
      "Epoch 106: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5651 - accuracy: 0.7130 - val_loss: 0.5607 - val_accuracy: 0.7468 - lr: 4.0252e-04 - 174ms/epoch - 7ms/step\n",
      "Epoch 107/500\n",
      "\n",
      "Epoch 107: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5649 - accuracy: 0.7127 - val_loss: 0.5606 - val_accuracy: 0.7468 - lr: 3.9852e-04 - 173ms/epoch - 7ms/step\n",
      "Epoch 108/500\n",
      "\n",
      "Epoch 108: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5648 - accuracy: 0.7123 - val_loss: 0.5606 - val_accuracy: 0.7468 - lr: 3.9455e-04 - 174ms/epoch - 7ms/step\n",
      "Epoch 109/500\n",
      "\n",
      "Epoch 109: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5647 - accuracy: 0.7130 - val_loss: 0.5605 - val_accuracy: 0.7468 - lr: 3.9063e-04 - 173ms/epoch - 7ms/step\n",
      "Epoch 110/500\n",
      "\n",
      "Epoch 110: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5645 - accuracy: 0.7133 - val_loss: 0.5603 - val_accuracy: 0.7468 - lr: 3.8674e-04 - 174ms/epoch - 7ms/step\n",
      "Epoch 111/500\n",
      "\n",
      "Epoch 111: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5644 - accuracy: 0.7133 - val_loss: 0.5604 - val_accuracy: 0.7468 - lr: 3.8289e-04 - 177ms/epoch - 7ms/step\n",
      "Epoch 112/500\n",
      "\n",
      "Epoch 112: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5643 - accuracy: 0.7133 - val_loss: 0.5603 - val_accuracy: 0.7468 - lr: 3.7908e-04 - 182ms/epoch - 7ms/step\n",
      "Epoch 113/500\n",
      "\n",
      "Epoch 113: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5642 - accuracy: 0.7133 - val_loss: 0.5600 - val_accuracy: 0.7486 - lr: 3.7531e-04 - 175ms/epoch - 7ms/step\n",
      "Epoch 114/500\n",
      "\n",
      "Epoch 114: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5640 - accuracy: 0.7123 - val_loss: 0.5600 - val_accuracy: 0.7468 - lr: 3.7157e-04 - 178ms/epoch - 7ms/step\n",
      "Epoch 115/500\n",
      "\n",
      "Epoch 115: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5640 - accuracy: 0.7130 - val_loss: 0.5598 - val_accuracy: 0.7505 - lr: 3.6788e-04 - 174ms/epoch - 7ms/step\n",
      "Epoch 116/500\n",
      "\n",
      "Epoch 116: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5639 - accuracy: 0.7127 - val_loss: 0.5597 - val_accuracy: 0.7505 - lr: 3.6422e-04 - 175ms/epoch - 7ms/step\n",
      "Epoch 117/500\n",
      "\n",
      "Epoch 117: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5637 - accuracy: 0.7130 - val_loss: 0.5597 - val_accuracy: 0.7486 - lr: 3.6059e-04 - 175ms/epoch - 7ms/step\n",
      "Epoch 118/500\n",
      "\n",
      "Epoch 118: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5636 - accuracy: 0.7133 - val_loss: 0.5596 - val_accuracy: 0.7468 - lr: 3.5700e-04 - 176ms/epoch - 7ms/step\n",
      "Epoch 119/500\n",
      "\n",
      "Epoch 119: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5635 - accuracy: 0.7133 - val_loss: 0.5594 - val_accuracy: 0.7486 - lr: 3.5345e-04 - 177ms/epoch - 7ms/step\n",
      "Epoch 120/500\n",
      "\n",
      "Epoch 120: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5634 - accuracy: 0.7127 - val_loss: 0.5593 - val_accuracy: 0.7468 - lr: 3.4994e-04 - 174ms/epoch - 7ms/step\n",
      "Epoch 121/500\n",
      "\n",
      "Epoch 121: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5633 - accuracy: 0.7130 - val_loss: 0.5592 - val_accuracy: 0.7468 - lr: 3.4645e-04 - 173ms/epoch - 7ms/step\n",
      "Epoch 122/500\n",
      "\n",
      "Epoch 122: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5632 - accuracy: 0.7136 - val_loss: 0.5591 - val_accuracy: 0.7486 - lr: 3.4301e-04 - 177ms/epoch - 7ms/step\n",
      "Epoch 123/500\n",
      "\n",
      "Epoch 123: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5631 - accuracy: 0.7133 - val_loss: 0.5589 - val_accuracy: 0.7505 - lr: 3.3959e-04 - 173ms/epoch - 7ms/step\n",
      "Epoch 124/500\n",
      "\n",
      "Epoch 124: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5630 - accuracy: 0.7133 - val_loss: 0.5588 - val_accuracy: 0.7505 - lr: 3.3621e-04 - 174ms/epoch - 7ms/step\n",
      "Epoch 125/500\n",
      "\n",
      "Epoch 125: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5629 - accuracy: 0.7130 - val_loss: 0.5586 - val_accuracy: 0.7505 - lr: 3.3287e-04 - 174ms/epoch - 7ms/step\n",
      "Epoch 126/500\n",
      "\n",
      "Epoch 126: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5628 - accuracy: 0.7136 - val_loss: 0.5586 - val_accuracy: 0.7505 - lr: 3.2956e-04 - 173ms/epoch - 7ms/step\n",
      "Epoch 127/500\n",
      "\n",
      "Epoch 127: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5628 - accuracy: 0.7130 - val_loss: 0.5586 - val_accuracy: 0.7468 - lr: 3.2628e-04 - 172ms/epoch - 7ms/step\n",
      "Epoch 128/500\n",
      "\n",
      "Epoch 128: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5627 - accuracy: 0.7143 - val_loss: 0.5586 - val_accuracy: 0.7486 - lr: 3.2303e-04 - 173ms/epoch - 7ms/step\n",
      "Epoch 129/500\n",
      "\n",
      "Epoch 129: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5626 - accuracy: 0.7136 - val_loss: 0.5584 - val_accuracy: 0.7486 - lr: 3.1982e-04 - 174ms/epoch - 7ms/step\n",
      "Epoch 130/500\n",
      "\n",
      "Epoch 130: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5625 - accuracy: 0.7143 - val_loss: 0.5582 - val_accuracy: 0.7505 - lr: 3.1663e-04 - 174ms/epoch - 7ms/step\n",
      "Epoch 131/500\n",
      "\n",
      "Epoch 131: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5625 - accuracy: 0.7133 - val_loss: 0.5581 - val_accuracy: 0.7505 - lr: 3.1348e-04 - 175ms/epoch - 7ms/step\n",
      "Epoch 132/500\n",
      "\n",
      "Epoch 132: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5624 - accuracy: 0.7136 - val_loss: 0.5581 - val_accuracy: 0.7505 - lr: 3.1036e-04 - 174ms/epoch - 7ms/step\n",
      "Epoch 133/500\n",
      "\n",
      "Epoch 133: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5623 - accuracy: 0.7136 - val_loss: 0.5579 - val_accuracy: 0.7505 - lr: 3.0728e-04 - 173ms/epoch - 7ms/step\n",
      "Epoch 134/500\n",
      "\n",
      "Epoch 134: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5622 - accuracy: 0.7133 - val_loss: 0.5578 - val_accuracy: 0.7505 - lr: 3.0422e-04 - 173ms/epoch - 7ms/step\n",
      "Epoch 135/500\n",
      "\n",
      "Epoch 135: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5621 - accuracy: 0.7133 - val_loss: 0.5578 - val_accuracy: 0.7505 - lr: 3.0119e-04 - 173ms/epoch - 7ms/step\n",
      "Epoch 136/500\n",
      "\n",
      "Epoch 136: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5620 - accuracy: 0.7133 - val_loss: 0.5577 - val_accuracy: 0.7505 - lr: 2.9820e-04 - 173ms/epoch - 7ms/step\n",
      "Epoch 137/500\n",
      "\n",
      "Epoch 137: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5620 - accuracy: 0.7136 - val_loss: 0.5574 - val_accuracy: 0.7505 - lr: 2.9523e-04 - 171ms/epoch - 7ms/step\n",
      "Epoch 138/500\n",
      "\n",
      "Epoch 138: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5619 - accuracy: 0.7136 - val_loss: 0.5574 - val_accuracy: 0.7505 - lr: 2.9229e-04 - 172ms/epoch - 7ms/step\n",
      "Epoch 139/500\n",
      "\n",
      "Epoch 139: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5618 - accuracy: 0.7136 - val_loss: 0.5574 - val_accuracy: 0.7505 - lr: 2.8938e-04 - 172ms/epoch - 7ms/step\n",
      "Epoch 140/500\n",
      "\n",
      "Epoch 140: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5617 - accuracy: 0.7136 - val_loss: 0.5573 - val_accuracy: 0.7505 - lr: 2.8650e-04 - 171ms/epoch - 7ms/step\n",
      "Epoch 141/500\n",
      "\n",
      "Epoch 141: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5616 - accuracy: 0.7133 - val_loss: 0.5572 - val_accuracy: 0.7486 - lr: 2.8365e-04 - 171ms/epoch - 7ms/step\n",
      "Epoch 142/500\n",
      "\n",
      "Epoch 142: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5616 - accuracy: 0.7127 - val_loss: 0.5571 - val_accuracy: 0.7486 - lr: 2.8083e-04 - 173ms/epoch - 7ms/step\n",
      "Epoch 143/500\n",
      "\n",
      "Epoch 143: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5615 - accuracy: 0.7127 - val_loss: 0.5570 - val_accuracy: 0.7468 - lr: 2.7804e-04 - 172ms/epoch - 7ms/step\n",
      "Epoch 144/500\n",
      "\n",
      "Epoch 144: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5614 - accuracy: 0.7130 - val_loss: 0.5569 - val_accuracy: 0.7468 - lr: 2.7527e-04 - 171ms/epoch - 7ms/step\n",
      "Epoch 145/500\n",
      "\n",
      "Epoch 145: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5613 - accuracy: 0.7127 - val_loss: 0.5568 - val_accuracy: 0.7468 - lr: 2.7253e-04 - 181ms/epoch - 7ms/step\n",
      "Epoch 146/500\n",
      "\n",
      "Epoch 146: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5613 - accuracy: 0.7123 - val_loss: 0.5567 - val_accuracy: 0.7468 - lr: 2.6982e-04 - 174ms/epoch - 7ms/step\n",
      "Epoch 147/500\n",
      "\n",
      "Epoch 147: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5612 - accuracy: 0.7123 - val_loss: 0.5567 - val_accuracy: 0.7468 - lr: 2.6713e-04 - 171ms/epoch - 7ms/step\n",
      "Epoch 148/500\n",
      "\n",
      "Epoch 148: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5612 - accuracy: 0.7127 - val_loss: 0.5567 - val_accuracy: 0.7468 - lr: 2.6448e-04 - 173ms/epoch - 7ms/step\n",
      "Epoch 149/500\n",
      "\n",
      "Epoch 149: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5611 - accuracy: 0.7130 - val_loss: 0.5564 - val_accuracy: 0.7468 - lr: 2.6184e-04 - 172ms/epoch - 7ms/step\n",
      "Epoch 150/500\n",
      "\n",
      "Epoch 150: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5610 - accuracy: 0.7117 - val_loss: 0.5563 - val_accuracy: 0.7468 - lr: 2.5924e-04 - 172ms/epoch - 7ms/step\n",
      "Epoch 151/500\n",
      "\n",
      "Epoch 151: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5609 - accuracy: 0.7123 - val_loss: 0.5562 - val_accuracy: 0.7468 - lr: 2.5666e-04 - 171ms/epoch - 7ms/step\n",
      "Epoch 152/500\n",
      "\n",
      "Epoch 152: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5609 - accuracy: 0.7136 - val_loss: 0.5562 - val_accuracy: 0.7468 - lr: 2.5411e-04 - 173ms/epoch - 7ms/step\n",
      "Epoch 153/500\n",
      "\n",
      "Epoch 153: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5608 - accuracy: 0.7123 - val_loss: 0.5562 - val_accuracy: 0.7468 - lr: 2.5158e-04 - 172ms/epoch - 7ms/step\n",
      "Epoch 154/500\n",
      "\n",
      "Epoch 154: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5608 - accuracy: 0.7130 - val_loss: 0.5562 - val_accuracy: 0.7468 - lr: 2.4907e-04 - 172ms/epoch - 7ms/step\n",
      "Epoch 155/500\n",
      "\n",
      "Epoch 155: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5607 - accuracy: 0.7123 - val_loss: 0.5561 - val_accuracy: 0.7468 - lr: 2.4660e-04 - 175ms/epoch - 7ms/step\n",
      "Epoch 156/500\n",
      "\n",
      "Epoch 156: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5606 - accuracy: 0.7130 - val_loss: 0.5560 - val_accuracy: 0.7468 - lr: 2.4414e-04 - 175ms/epoch - 7ms/step\n",
      "Epoch 157/500\n",
      "\n",
      "Epoch 157: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5606 - accuracy: 0.7123 - val_loss: 0.5559 - val_accuracy: 0.7468 - lr: 2.4171e-04 - 177ms/epoch - 7ms/step\n",
      "Epoch 158/500\n",
      "\n",
      "Epoch 158: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5605 - accuracy: 0.7127 - val_loss: 0.5558 - val_accuracy: 0.7468 - lr: 2.3931e-04 - 174ms/epoch - 7ms/step\n",
      "Epoch 159/500\n",
      "\n",
      "Epoch 159: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5605 - accuracy: 0.7123 - val_loss: 0.5557 - val_accuracy: 0.7468 - lr: 2.3693e-04 - 179ms/epoch - 7ms/step\n",
      "Epoch 160/500\n",
      "\n",
      "Epoch 160: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5604 - accuracy: 0.7130 - val_loss: 0.5556 - val_accuracy: 0.7468 - lr: 2.3457e-04 - 171ms/epoch - 7ms/step\n",
      "Epoch 161/500\n",
      "\n",
      "Epoch 161: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5603 - accuracy: 0.7123 - val_loss: 0.5556 - val_accuracy: 0.7468 - lr: 2.3223e-04 - 173ms/epoch - 7ms/step\n",
      "Epoch 162/500\n",
      "\n",
      "Epoch 162: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5602 - accuracy: 0.7133 - val_loss: 0.5556 - val_accuracy: 0.7468 - lr: 2.2992e-04 - 175ms/epoch - 7ms/step\n",
      "Epoch 163/500\n",
      "\n",
      "Epoch 163: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5602 - accuracy: 0.7130 - val_loss: 0.5555 - val_accuracy: 0.7468 - lr: 2.2764e-04 - 174ms/epoch - 7ms/step\n",
      "Epoch 164/500\n",
      "\n",
      "Epoch 164: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5601 - accuracy: 0.7123 - val_loss: 0.5553 - val_accuracy: 0.7468 - lr: 2.2537e-04 - 186ms/epoch - 7ms/step\n",
      "Epoch 165/500\n",
      "\n",
      "Epoch 165: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5600 - accuracy: 0.7127 - val_loss: 0.5554 - val_accuracy: 0.7468 - lr: 2.2313e-04 - 179ms/epoch - 7ms/step\n",
      "Epoch 166/500\n",
      "\n",
      "Epoch 166: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5599 - accuracy: 0.7127 - val_loss: 0.5554 - val_accuracy: 0.7468 - lr: 2.2091e-04 - 172ms/epoch - 7ms/step\n",
      "Epoch 167/500\n",
      "\n",
      "Epoch 167: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5599 - accuracy: 0.7130 - val_loss: 0.5554 - val_accuracy: 0.7468 - lr: 2.1871e-04 - 176ms/epoch - 7ms/step\n",
      "Epoch 168/500\n",
      "\n",
      "Epoch 168: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5599 - accuracy: 0.7123 - val_loss: 0.5554 - val_accuracy: 0.7468 - lr: 2.1653e-04 - 172ms/epoch - 7ms/step\n",
      "Epoch 169/500\n",
      "\n",
      "Epoch 169: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5598 - accuracy: 0.7127 - val_loss: 0.5553 - val_accuracy: 0.7468 - lr: 2.1438e-04 - 172ms/epoch - 7ms/step\n",
      "Epoch 170/500\n",
      "\n",
      "Epoch 170: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5597 - accuracy: 0.7130 - val_loss: 0.5552 - val_accuracy: 0.7468 - lr: 2.1225e-04 - 174ms/epoch - 7ms/step\n",
      "Epoch 171/500\n",
      "\n",
      "Epoch 171: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5597 - accuracy: 0.7123 - val_loss: 0.5552 - val_accuracy: 0.7468 - lr: 2.1013e-04 - 177ms/epoch - 7ms/step\n",
      "Epoch 172/500\n",
      "\n",
      "Epoch 172: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5596 - accuracy: 0.7130 - val_loss: 0.5551 - val_accuracy: 0.7468 - lr: 2.0804e-04 - 178ms/epoch - 7ms/step\n",
      "Epoch 173/500\n",
      "\n",
      "Epoch 173: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5595 - accuracy: 0.7136 - val_loss: 0.5550 - val_accuracy: 0.7468 - lr: 2.0597e-04 - 179ms/epoch - 7ms/step\n",
      "Epoch 174/500\n",
      "\n",
      "Epoch 174: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5595 - accuracy: 0.7133 - val_loss: 0.5550 - val_accuracy: 0.7468 - lr: 2.0392e-04 - 178ms/epoch - 7ms/step\n",
      "Epoch 175/500\n",
      "\n",
      "Epoch 175: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5594 - accuracy: 0.7130 - val_loss: 0.5549 - val_accuracy: 0.7468 - lr: 2.0189e-04 - 171ms/epoch - 7ms/step\n",
      "Epoch 176/500\n",
      "\n",
      "Epoch 176: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5594 - accuracy: 0.7127 - val_loss: 0.5547 - val_accuracy: 0.7468 - lr: 1.9989e-04 - 173ms/epoch - 7ms/step\n",
      "Epoch 177/500\n",
      "\n",
      "Epoch 177: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5593 - accuracy: 0.7127 - val_loss: 0.5548 - val_accuracy: 0.7468 - lr: 1.9790e-04 - 173ms/epoch - 7ms/step\n",
      "Epoch 178/500\n",
      "\n",
      "Epoch 178: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5593 - accuracy: 0.7130 - val_loss: 0.5547 - val_accuracy: 0.7468 - lr: 1.9593e-04 - 172ms/epoch - 7ms/step\n",
      "Epoch 179/500\n",
      "\n",
      "Epoch 179: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5592 - accuracy: 0.7133 - val_loss: 0.5546 - val_accuracy: 0.7468 - lr: 1.9398e-04 - 174ms/epoch - 7ms/step\n",
      "Epoch 180/500\n",
      "\n",
      "Epoch 180: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5592 - accuracy: 0.7133 - val_loss: 0.5545 - val_accuracy: 0.7468 - lr: 1.9205e-04 - 173ms/epoch - 7ms/step\n",
      "Epoch 181/500\n",
      "\n",
      "Epoch 181: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5591 - accuracy: 0.7127 - val_loss: 0.5545 - val_accuracy: 0.7468 - lr: 1.9014e-04 - 174ms/epoch - 7ms/step\n",
      "Epoch 182/500\n",
      "\n",
      "Epoch 182: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5591 - accuracy: 0.7127 - val_loss: 0.5544 - val_accuracy: 0.7468 - lr: 1.8825e-04 - 174ms/epoch - 7ms/step\n",
      "Epoch 183/500\n",
      "\n",
      "Epoch 183: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5590 - accuracy: 0.7130 - val_loss: 0.5542 - val_accuracy: 0.7468 - lr: 1.8637e-04 - 180ms/epoch - 7ms/step\n",
      "Epoch 184/500\n",
      "\n",
      "Epoch 184: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5590 - accuracy: 0.7120 - val_loss: 0.5542 - val_accuracy: 0.7468 - lr: 1.8452e-04 - 185ms/epoch - 7ms/step\n",
      "Epoch 185/500\n",
      "\n",
      "Epoch 185: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5589 - accuracy: 0.7123 - val_loss: 0.5542 - val_accuracy: 0.7468 - lr: 1.8268e-04 - 180ms/epoch - 7ms/step\n",
      "Epoch 186/500\n",
      "\n",
      "Epoch 186: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5589 - accuracy: 0.7127 - val_loss: 0.5542 - val_accuracy: 0.7468 - lr: 1.8086e-04 - 183ms/epoch - 7ms/step\n",
      "Epoch 187/500\n",
      "\n",
      "Epoch 187: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5589 - accuracy: 0.7127 - val_loss: 0.5541 - val_accuracy: 0.7468 - lr: 1.7906e-04 - 177ms/epoch - 7ms/step\n",
      "Epoch 188/500\n",
      "\n",
      "Epoch 188: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5588 - accuracy: 0.7127 - val_loss: 0.5540 - val_accuracy: 0.7468 - lr: 1.7728e-04 - 185ms/epoch - 7ms/step\n",
      "Epoch 189/500\n",
      "\n",
      "Epoch 189: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5587 - accuracy: 0.7123 - val_loss: 0.5541 - val_accuracy: 0.7468 - lr: 1.7552e-04 - 175ms/epoch - 7ms/step\n",
      "Epoch 190/500\n",
      "\n",
      "Epoch 190: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5587 - accuracy: 0.7127 - val_loss: 0.5540 - val_accuracy: 0.7468 - lr: 1.7377e-04 - 178ms/epoch - 7ms/step\n",
      "Epoch 191/500\n",
      "\n",
      "Epoch 191: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5586 - accuracy: 0.7127 - val_loss: 0.5539 - val_accuracy: 0.7468 - lr: 1.7204e-04 - 187ms/epoch - 7ms/step\n",
      "Epoch 192/500\n",
      "\n",
      "Epoch 192: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5586 - accuracy: 0.7120 - val_loss: 0.5538 - val_accuracy: 0.7468 - lr: 1.7033e-04 - 184ms/epoch - 7ms/step\n",
      "Epoch 193/500\n",
      "\n",
      "Epoch 193: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5586 - accuracy: 0.7120 - val_loss: 0.5539 - val_accuracy: 0.7468 - lr: 1.6864e-04 - 178ms/epoch - 7ms/step\n",
      "Epoch 194/500\n",
      "\n",
      "Epoch 194: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5585 - accuracy: 0.7123 - val_loss: 0.5537 - val_accuracy: 0.7468 - lr: 1.6696e-04 - 178ms/epoch - 7ms/step\n",
      "Epoch 195/500\n",
      "\n",
      "Epoch 195: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5585 - accuracy: 0.7120 - val_loss: 0.5536 - val_accuracy: 0.7468 - lr: 1.6530e-04 - 177ms/epoch - 7ms/step\n",
      "Epoch 196/500\n",
      "\n",
      "Epoch 196: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5584 - accuracy: 0.7123 - val_loss: 0.5537 - val_accuracy: 0.7468 - lr: 1.6365e-04 - 191ms/epoch - 8ms/step\n",
      "Epoch 197/500\n",
      "\n",
      "Epoch 197: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5584 - accuracy: 0.7123 - val_loss: 0.5536 - val_accuracy: 0.7468 - lr: 1.6202e-04 - 204ms/epoch - 8ms/step\n",
      "Epoch 198/500\n",
      "\n",
      "Epoch 198: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5583 - accuracy: 0.7127 - val_loss: 0.5536 - val_accuracy: 0.7468 - lr: 1.6041e-04 - 189ms/epoch - 8ms/step\n",
      "Epoch 199/500\n",
      "\n",
      "Epoch 199: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5583 - accuracy: 0.7130 - val_loss: 0.5536 - val_accuracy: 0.7468 - lr: 1.5882e-04 - 203ms/epoch - 8ms/step\n",
      "Epoch 200/500\n",
      "\n",
      "Epoch 200: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5583 - accuracy: 0.7127 - val_loss: 0.5536 - val_accuracy: 0.7468 - lr: 1.5724e-04 - 192ms/epoch - 8ms/step\n",
      "Epoch 201/500\n",
      "\n",
      "Epoch 201: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5582 - accuracy: 0.7130 - val_loss: 0.5536 - val_accuracy: 0.7468 - lr: 1.5567e-04 - 189ms/epoch - 8ms/step\n",
      "Epoch 202/500\n",
      "\n",
      "Epoch 202: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5582 - accuracy: 0.7127 - val_loss: 0.5535 - val_accuracy: 0.7468 - lr: 1.5412e-04 - 178ms/epoch - 7ms/step\n",
      "Epoch 203/500\n",
      "\n",
      "Epoch 203: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5582 - accuracy: 0.7127 - val_loss: 0.5535 - val_accuracy: 0.7468 - lr: 1.5259e-04 - 174ms/epoch - 7ms/step\n",
      "Epoch 204/500\n",
      "\n",
      "Epoch 204: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5581 - accuracy: 0.7127 - val_loss: 0.5535 - val_accuracy: 0.7468 - lr: 1.5107e-04 - 172ms/epoch - 7ms/step\n",
      "Epoch 205/500\n",
      "\n",
      "Epoch 205: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5581 - accuracy: 0.7133 - val_loss: 0.5535 - val_accuracy: 0.7468 - lr: 1.4957e-04 - 171ms/epoch - 7ms/step\n",
      "Epoch 206/500\n",
      "\n",
      "Epoch 206: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5580 - accuracy: 0.7140 - val_loss: 0.5534 - val_accuracy: 0.7468 - lr: 1.4808e-04 - 184ms/epoch - 7ms/step\n",
      "Epoch 207/500\n",
      "\n",
      "Epoch 207: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5580 - accuracy: 0.7127 - val_loss: 0.5534 - val_accuracy: 0.7468 - lr: 1.4661e-04 - 175ms/epoch - 7ms/step\n",
      "Epoch 208/500\n",
      "\n",
      "Epoch 208: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5580 - accuracy: 0.7140 - val_loss: 0.5533 - val_accuracy: 0.7468 - lr: 1.4515e-04 - 175ms/epoch - 7ms/step\n",
      "Epoch 209/500\n",
      "\n",
      "Epoch 209: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5579 - accuracy: 0.7143 - val_loss: 0.5533 - val_accuracy: 0.7468 - lr: 1.4370e-04 - 174ms/epoch - 7ms/step\n",
      "Epoch 210/500\n",
      "\n",
      "Epoch 210: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5579 - accuracy: 0.7143 - val_loss: 0.5533 - val_accuracy: 0.7468 - lr: 1.4227e-04 - 189ms/epoch - 8ms/step\n",
      "Epoch 211/500\n",
      "\n",
      "Epoch 211: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5579 - accuracy: 0.7146 - val_loss: 0.5533 - val_accuracy: 0.7468 - lr: 1.4086e-04 - 228ms/epoch - 9ms/step\n",
      "Epoch 212/500\n",
      "\n",
      "Epoch 212: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5578 - accuracy: 0.7140 - val_loss: 0.5533 - val_accuracy: 0.7468 - lr: 1.3946e-04 - 184ms/epoch - 7ms/step\n",
      "Epoch 213/500\n",
      "\n",
      "Epoch 213: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5578 - accuracy: 0.7143 - val_loss: 0.5532 - val_accuracy: 0.7468 - lr: 1.3807e-04 - 193ms/epoch - 8ms/step\n",
      "Epoch 214/500\n",
      "\n",
      "Epoch 214: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5578 - accuracy: 0.7143 - val_loss: 0.5532 - val_accuracy: 0.7486 - lr: 1.3669e-04 - 186ms/epoch - 7ms/step\n",
      "Epoch 215/500\n",
      "\n",
      "Epoch 215: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5577 - accuracy: 0.7140 - val_loss: 0.5532 - val_accuracy: 0.7486 - lr: 1.3533e-04 - 183ms/epoch - 7ms/step\n",
      "Epoch 216/500\n",
      "\n",
      "Epoch 216: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5577 - accuracy: 0.7143 - val_loss: 0.5532 - val_accuracy: 0.7486 - lr: 1.3399e-04 - 179ms/epoch - 7ms/step\n",
      "Epoch 217/500\n",
      "\n",
      "Epoch 217: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5577 - accuracy: 0.7153 - val_loss: 0.5531 - val_accuracy: 0.7486 - lr: 1.3265e-04 - 181ms/epoch - 7ms/step\n",
      "Epoch 218/500\n",
      "\n",
      "Epoch 218: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5577 - accuracy: 0.7143 - val_loss: 0.5531 - val_accuracy: 0.7486 - lr: 1.3133e-04 - 176ms/epoch - 7ms/step\n",
      "Epoch 219/500\n",
      "\n",
      "Epoch 219: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5576 - accuracy: 0.7156 - val_loss: 0.5531 - val_accuracy: 0.7486 - lr: 1.3003e-04 - 176ms/epoch - 7ms/step\n",
      "Epoch 220/500\n",
      "\n",
      "Epoch 220: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5576 - accuracy: 0.7156 - val_loss: 0.5531 - val_accuracy: 0.7486 - lr: 1.2873e-04 - 180ms/epoch - 7ms/step\n",
      "Epoch 221/500\n",
      "\n",
      "Epoch 221: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5575 - accuracy: 0.7156 - val_loss: 0.5530 - val_accuracy: 0.7486 - lr: 1.2745e-04 - 177ms/epoch - 7ms/step\n",
      "Epoch 222/500\n",
      "\n",
      "Epoch 222: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5575 - accuracy: 0.7153 - val_loss: 0.5530 - val_accuracy: 0.7486 - lr: 1.2618e-04 - 173ms/epoch - 7ms/step\n",
      "Epoch 223/500\n",
      "\n",
      "Epoch 223: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5575 - accuracy: 0.7156 - val_loss: 0.5530 - val_accuracy: 0.7486 - lr: 1.2493e-04 - 178ms/epoch - 7ms/step\n",
      "Epoch 224/500\n",
      "\n",
      "Epoch 224: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5575 - accuracy: 0.7156 - val_loss: 0.5529 - val_accuracy: 0.7486 - lr: 1.2369e-04 - 183ms/epoch - 7ms/step\n",
      "Epoch 225/500\n",
      "\n",
      "Epoch 225: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5574 - accuracy: 0.7153 - val_loss: 0.5529 - val_accuracy: 0.7486 - lr: 1.2245e-04 - 191ms/epoch - 8ms/step\n",
      "Epoch 226/500\n",
      "\n",
      "Epoch 226: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5574 - accuracy: 0.7149 - val_loss: 0.5528 - val_accuracy: 0.7468 - lr: 1.2124e-04 - 182ms/epoch - 7ms/step\n",
      "Epoch 227/500\n",
      "\n",
      "Epoch 227: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5573 - accuracy: 0.7156 - val_loss: 0.5528 - val_accuracy: 0.7486 - lr: 1.2003e-04 - 174ms/epoch - 7ms/step\n",
      "Epoch 228/500\n",
      "\n",
      "Epoch 228: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5573 - accuracy: 0.7153 - val_loss: 0.5528 - val_accuracy: 0.7486 - lr: 1.1884e-04 - 179ms/epoch - 7ms/step\n",
      "Epoch 229/500\n",
      "\n",
      "Epoch 229: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5573 - accuracy: 0.7153 - val_loss: 0.5528 - val_accuracy: 0.7486 - lr: 1.1765e-04 - 204ms/epoch - 8ms/step\n",
      "Epoch 230/500\n",
      "\n",
      "Epoch 230: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5573 - accuracy: 0.7156 - val_loss: 0.5527 - val_accuracy: 0.7486 - lr: 1.1648e-04 - 180ms/epoch - 7ms/step\n",
      "Epoch 231/500\n",
      "\n",
      "Epoch 231: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5572 - accuracy: 0.7153 - val_loss: 0.5526 - val_accuracy: 0.7486 - lr: 1.1532e-04 - 178ms/epoch - 7ms/step\n",
      "Epoch 232/500\n",
      "\n",
      "Epoch 232: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5572 - accuracy: 0.7153 - val_loss: 0.5526 - val_accuracy: 0.7486 - lr: 1.1418e-04 - 174ms/epoch - 7ms/step\n",
      "Epoch 233/500\n",
      "\n",
      "Epoch 233: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5572 - accuracy: 0.7153 - val_loss: 0.5526 - val_accuracy: 0.7486 - lr: 1.1304e-04 - 176ms/epoch - 7ms/step\n",
      "Epoch 234/500\n",
      "\n",
      "Epoch 234: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5571 - accuracy: 0.7156 - val_loss: 0.5526 - val_accuracy: 0.7486 - lr: 1.1192e-04 - 175ms/epoch - 7ms/step\n",
      "Epoch 235/500\n",
      "\n",
      "Epoch 235: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5571 - accuracy: 0.7153 - val_loss: 0.5526 - val_accuracy: 0.7486 - lr: 1.1080e-04 - 174ms/epoch - 7ms/step\n",
      "Epoch 236/500\n",
      "\n",
      "Epoch 236: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5571 - accuracy: 0.7153 - val_loss: 0.5526 - val_accuracy: 0.7486 - lr: 1.0970e-04 - 174ms/epoch - 7ms/step\n",
      "Epoch 237/500\n",
      "\n",
      "Epoch 237: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5571 - accuracy: 0.7149 - val_loss: 0.5525 - val_accuracy: 0.7486 - lr: 1.0861e-04 - 172ms/epoch - 7ms/step\n",
      "Epoch 238/500\n",
      "\n",
      "Epoch 238: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5570 - accuracy: 0.7153 - val_loss: 0.5525 - val_accuracy: 0.7486 - lr: 1.0753e-04 - 171ms/epoch - 7ms/step\n",
      "Epoch 239/500\n",
      "\n",
      "Epoch 239: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5570 - accuracy: 0.7149 - val_loss: 0.5524 - val_accuracy: 0.7486 - lr: 1.0646e-04 - 180ms/epoch - 7ms/step\n",
      "Epoch 240/500\n",
      "\n",
      "Epoch 240: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5570 - accuracy: 0.7159 - val_loss: 0.5524 - val_accuracy: 0.7486 - lr: 1.0540e-04 - 173ms/epoch - 7ms/step\n",
      "Epoch 241/500\n",
      "\n",
      "Epoch 241: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5570 - accuracy: 0.7153 - val_loss: 0.5524 - val_accuracy: 0.7486 - lr: 1.0435e-04 - 178ms/epoch - 7ms/step\n",
      "Epoch 242/500\n",
      "\n",
      "Epoch 242: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5570 - accuracy: 0.7159 - val_loss: 0.5524 - val_accuracy: 0.7486 - lr: 1.0331e-04 - 172ms/epoch - 7ms/step\n",
      "Epoch 243/500\n",
      "\n",
      "Epoch 243: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5569 - accuracy: 0.7153 - val_loss: 0.5524 - val_accuracy: 0.7486 - lr: 1.0228e-04 - 179ms/epoch - 7ms/step\n",
      "Epoch 244/500\n",
      "\n",
      "Epoch 244: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5569 - accuracy: 0.7153 - val_loss: 0.5524 - val_accuracy: 0.7486 - lr: 1.0127e-04 - 173ms/epoch - 7ms/step\n",
      "Epoch 245/500\n",
      "\n",
      "Epoch 245: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5569 - accuracy: 0.7153 - val_loss: 0.5523 - val_accuracy: 0.7486 - lr: 1.0026e-04 - 179ms/epoch - 7ms/step\n",
      "Epoch 246/500\n",
      "\n",
      "Epoch 246: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5569 - accuracy: 0.7159 - val_loss: 0.5523 - val_accuracy: 0.7486 - lr: 9.9260e-05 - 179ms/epoch - 7ms/step\n",
      "Epoch 247/500\n",
      "\n",
      "Epoch 247: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5568 - accuracy: 0.7156 - val_loss: 0.5523 - val_accuracy: 0.7486 - lr: 9.8272e-05 - 175ms/epoch - 7ms/step\n",
      "Epoch 248/500\n",
      "\n",
      "Epoch 248: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5568 - accuracy: 0.7153 - val_loss: 0.5522 - val_accuracy: 0.7486 - lr: 9.7294e-05 - 174ms/epoch - 7ms/step\n",
      "Epoch 249/500\n",
      "\n",
      "Epoch 249: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5568 - accuracy: 0.7149 - val_loss: 0.5522 - val_accuracy: 0.7486 - lr: 9.6326e-05 - 175ms/epoch - 7ms/step\n",
      "Epoch 250/500\n",
      "\n",
      "Epoch 250: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5567 - accuracy: 0.7159 - val_loss: 0.5522 - val_accuracy: 0.7486 - lr: 9.5368e-05 - 178ms/epoch - 7ms/step\n",
      "Epoch 251/500\n",
      "\n",
      "Epoch 251: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5567 - accuracy: 0.7159 - val_loss: 0.5522 - val_accuracy: 0.7468 - lr: 9.4419e-05 - 172ms/epoch - 7ms/step\n",
      "Epoch 252/500\n",
      "\n",
      "Epoch 252: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5567 - accuracy: 0.7156 - val_loss: 0.5522 - val_accuracy: 0.7468 - lr: 9.3479e-05 - 172ms/epoch - 7ms/step\n",
      "Epoch 253/500\n",
      "\n",
      "Epoch 253: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5567 - accuracy: 0.7159 - val_loss: 0.5521 - val_accuracy: 0.7486 - lr: 9.2549e-05 - 181ms/epoch - 7ms/step\n",
      "Epoch 254/500\n",
      "\n",
      "Epoch 254: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5567 - accuracy: 0.7162 - val_loss: 0.5521 - val_accuracy: 0.7486 - lr: 9.1628e-05 - 179ms/epoch - 7ms/step\n",
      "Epoch 255/500\n",
      "\n",
      "Epoch 255: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5566 - accuracy: 0.7159 - val_loss: 0.5521 - val_accuracy: 0.7468 - lr: 9.0717e-05 - 174ms/epoch - 7ms/step\n",
      "Epoch 256/500\n",
      "\n",
      "Epoch 256: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5566 - accuracy: 0.7153 - val_loss: 0.5520 - val_accuracy: 0.7468 - lr: 8.9814e-05 - 174ms/epoch - 7ms/step\n",
      "Epoch 257/500\n",
      "\n",
      "Epoch 257: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5566 - accuracy: 0.7153 - val_loss: 0.5520 - val_accuracy: 0.7468 - lr: 8.8920e-05 - 172ms/epoch - 7ms/step\n",
      "Epoch 258/500\n",
      "\n",
      "Epoch 258: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5566 - accuracy: 0.7149 - val_loss: 0.5520 - val_accuracy: 0.7468 - lr: 8.8036e-05 - 177ms/epoch - 7ms/step\n",
      "Epoch 259/500\n",
      "\n",
      "Epoch 259: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5566 - accuracy: 0.7159 - val_loss: 0.5520 - val_accuracy: 0.7486 - lr: 8.7160e-05 - 171ms/epoch - 7ms/step\n",
      "Epoch 260/500\n",
      "\n",
      "Epoch 260: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5565 - accuracy: 0.7159 - val_loss: 0.5520 - val_accuracy: 0.7486 - lr: 8.6292e-05 - 173ms/epoch - 7ms/step\n",
      "Epoch 261/500\n",
      "\n",
      "Epoch 261: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5565 - accuracy: 0.7156 - val_loss: 0.5520 - val_accuracy: 0.7486 - lr: 8.5434e-05 - 172ms/epoch - 7ms/step\n",
      "Epoch 262/500\n",
      "\n",
      "Epoch 262: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5565 - accuracy: 0.7159 - val_loss: 0.5520 - val_accuracy: 0.7486 - lr: 8.4584e-05 - 172ms/epoch - 7ms/step\n",
      "Epoch 263/500\n",
      "\n",
      "Epoch 263: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5565 - accuracy: 0.7153 - val_loss: 0.5520 - val_accuracy: 0.7486 - lr: 8.3742e-05 - 172ms/epoch - 7ms/step\n",
      "Epoch 264/500\n",
      "\n",
      "Epoch 264: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5565 - accuracy: 0.7149 - val_loss: 0.5519 - val_accuracy: 0.7486 - lr: 8.2909e-05 - 173ms/epoch - 7ms/step\n",
      "Epoch 265/500\n",
      "\n",
      "Epoch 265: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5564 - accuracy: 0.7162 - val_loss: 0.5519 - val_accuracy: 0.7486 - lr: 8.2084e-05 - 183ms/epoch - 7ms/step\n",
      "Epoch 266/500\n",
      "\n",
      "Epoch 266: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5564 - accuracy: 0.7159 - val_loss: 0.5519 - val_accuracy: 0.7486 - lr: 8.1267e-05 - 179ms/epoch - 7ms/step\n",
      "Epoch 267/500\n",
      "\n",
      "Epoch 267: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5564 - accuracy: 0.7156 - val_loss: 0.5519 - val_accuracy: 0.7486 - lr: 8.0458e-05 - 173ms/epoch - 7ms/step\n",
      "Epoch 268/500\n",
      "\n",
      "Epoch 268: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5564 - accuracy: 0.7156 - val_loss: 0.5519 - val_accuracy: 0.7486 - lr: 7.9658e-05 - 173ms/epoch - 7ms/step\n",
      "Epoch 269/500\n",
      "\n",
      "Epoch 269: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5564 - accuracy: 0.7143 - val_loss: 0.5518 - val_accuracy: 0.7486 - lr: 7.8865e-05 - 172ms/epoch - 7ms/step\n",
      "Epoch 270/500\n",
      "\n",
      "Epoch 270: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5564 - accuracy: 0.7149 - val_loss: 0.5518 - val_accuracy: 0.7486 - lr: 7.8081e-05 - 173ms/epoch - 7ms/step\n",
      "Epoch 271/500\n",
      "\n",
      "Epoch 271: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5563 - accuracy: 0.7153 - val_loss: 0.5518 - val_accuracy: 0.7486 - lr: 7.7304e-05 - 173ms/epoch - 7ms/step\n",
      "Epoch 272/500\n",
      "\n",
      "Epoch 272: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5563 - accuracy: 0.7149 - val_loss: 0.5518 - val_accuracy: 0.7486 - lr: 7.6534e-05 - 177ms/epoch - 7ms/step\n",
      "Epoch 273/500\n",
      "\n",
      "Epoch 273: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5563 - accuracy: 0.7156 - val_loss: 0.5518 - val_accuracy: 0.7486 - lr: 7.5773e-05 - 201ms/epoch - 8ms/step\n",
      "Epoch 274/500\n",
      "\n",
      "Epoch 274: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5563 - accuracy: 0.7149 - val_loss: 0.5517 - val_accuracy: 0.7486 - lr: 7.5019e-05 - 175ms/epoch - 7ms/step\n",
      "Epoch 275/500\n",
      "\n",
      "Epoch 275: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5563 - accuracy: 0.7149 - val_loss: 0.5517 - val_accuracy: 0.7486 - lr: 7.4272e-05 - 173ms/epoch - 7ms/step\n",
      "Epoch 276/500\n",
      "\n",
      "Epoch 276: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5562 - accuracy: 0.7156 - val_loss: 0.5517 - val_accuracy: 0.7486 - lr: 7.3533e-05 - 173ms/epoch - 7ms/step\n",
      "Epoch 277/500\n",
      "\n",
      "Epoch 277: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5562 - accuracy: 0.7149 - val_loss: 0.5517 - val_accuracy: 0.7486 - lr: 7.2802e-05 - 181ms/epoch - 7ms/step\n",
      "Epoch 278/500\n",
      "\n",
      "Epoch 278: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5562 - accuracy: 0.7156 - val_loss: 0.5517 - val_accuracy: 0.7486 - lr: 7.2077e-05 - 174ms/epoch - 7ms/step\n",
      "Epoch 279/500\n",
      "\n",
      "Epoch 279: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5562 - accuracy: 0.7153 - val_loss: 0.5517 - val_accuracy: 0.7486 - lr: 7.1360e-05 - 176ms/epoch - 7ms/step\n",
      "Epoch 280/500\n",
      "\n",
      "Epoch 280: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5562 - accuracy: 0.7153 - val_loss: 0.5517 - val_accuracy: 0.7486 - lr: 7.0650e-05 - 179ms/epoch - 7ms/step\n",
      "Epoch 281/500\n",
      "\n",
      "Epoch 281: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5562 - accuracy: 0.7149 - val_loss: 0.5516 - val_accuracy: 0.7486 - lr: 6.9947e-05 - 173ms/epoch - 7ms/step\n",
      "Epoch 282/500\n",
      "\n",
      "Epoch 282: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5562 - accuracy: 0.7149 - val_loss: 0.5515 - val_accuracy: 0.7486 - lr: 6.9251e-05 - 179ms/epoch - 7ms/step\n",
      "Epoch 283/500\n",
      "\n",
      "Epoch 283: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5561 - accuracy: 0.7149 - val_loss: 0.5515 - val_accuracy: 0.7486 - lr: 6.8562e-05 - 177ms/epoch - 7ms/step\n",
      "Epoch 284/500\n",
      "\n",
      "Epoch 284: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5561 - accuracy: 0.7146 - val_loss: 0.5515 - val_accuracy: 0.7486 - lr: 6.7880e-05 - 173ms/epoch - 7ms/step\n",
      "Epoch 285/500\n",
      "\n",
      "Epoch 285: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5561 - accuracy: 0.7149 - val_loss: 0.5515 - val_accuracy: 0.7486 - lr: 6.7204e-05 - 172ms/epoch - 7ms/step\n",
      "Epoch 286/500\n",
      "\n",
      "Epoch 286: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5561 - accuracy: 0.7153 - val_loss: 0.5514 - val_accuracy: 0.7486 - lr: 6.6536e-05 - 170ms/epoch - 7ms/step\n",
      "Epoch 287/500\n",
      "\n",
      "Epoch 287: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5561 - accuracy: 0.7149 - val_loss: 0.5514 - val_accuracy: 0.7486 - lr: 6.5874e-05 - 170ms/epoch - 7ms/step\n",
      "Epoch 288/500\n",
      "\n",
      "Epoch 288: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5561 - accuracy: 0.7149 - val_loss: 0.5514 - val_accuracy: 0.7486 - lr: 6.5218e-05 - 174ms/epoch - 7ms/step\n",
      "Epoch 289/500\n",
      "\n",
      "Epoch 289: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5561 - accuracy: 0.7149 - val_loss: 0.5514 - val_accuracy: 0.7486 - lr: 6.4569e-05 - 172ms/epoch - 7ms/step\n",
      "Epoch 290/500\n",
      "\n",
      "Epoch 290: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5560 - accuracy: 0.7149 - val_loss: 0.5514 - val_accuracy: 0.7486 - lr: 6.3927e-05 - 173ms/epoch - 7ms/step\n",
      "Epoch 291/500\n",
      "\n",
      "Epoch 291: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5560 - accuracy: 0.7149 - val_loss: 0.5514 - val_accuracy: 0.7486 - lr: 6.3291e-05 - 170ms/epoch - 7ms/step\n",
      "Epoch 292/500\n",
      "\n",
      "Epoch 292: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5560 - accuracy: 0.7153 - val_loss: 0.5514 - val_accuracy: 0.7486 - lr: 6.2661e-05 - 169ms/epoch - 7ms/step\n",
      "Epoch 293/500\n",
      "\n",
      "Epoch 293: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5560 - accuracy: 0.7153 - val_loss: 0.5514 - val_accuracy: 0.7486 - lr: 6.2038e-05 - 168ms/epoch - 7ms/step\n",
      "Epoch 294/500\n",
      "\n",
      "Epoch 294: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5560 - accuracy: 0.7149 - val_loss: 0.5514 - val_accuracy: 0.7486 - lr: 6.1420e-05 - 171ms/epoch - 7ms/step\n",
      "Epoch 295/500\n",
      "\n",
      "Epoch 295: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5560 - accuracy: 0.7153 - val_loss: 0.5514 - val_accuracy: 0.7486 - lr: 6.0809e-05 - 174ms/epoch - 7ms/step\n",
      "Epoch 296/500\n",
      "\n",
      "Epoch 296: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5560 - accuracy: 0.7153 - val_loss: 0.5514 - val_accuracy: 0.7486 - lr: 6.0204e-05 - 173ms/epoch - 7ms/step\n",
      "Epoch 297/500\n",
      "\n",
      "Epoch 297: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5559 - accuracy: 0.7153 - val_loss: 0.5513 - val_accuracy: 0.7486 - lr: 5.9605e-05 - 170ms/epoch - 7ms/step\n",
      "Epoch 298/500\n",
      "\n",
      "Epoch 298: val_accuracy did not improve from 0.75229\n",
      "25/25 - 0s - loss: 0.5559 - accuracy: 0.7156 - val_loss: 0.5513 - val_accuracy: 0.7486 - lr: 5.9012e-05 - 168ms/epoch - 7ms/step\n"
     ]
    }
   ],
   "source": [
    "BATCH_SIZE = 128 #24 #4\n",
    "history = model.fit(x, y, callbacks=[callback_mc, callback_es, callback_lr], batch_size=BATCH_SIZE, epochs=500, validation_split=0.15, verbose=2)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 99,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAABaEAAAFqCAYAAAADXpY3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAAD5RElEQVR4nOzdd1hU19YG8HcYeu9dKYoIdkEQUMCGLWqsmChqjKAxMRrUGKPGGI2aaBTFFqIG21UTa6Imigas2GvsDRUBAZXemfP9QZjPcagKDML7e555bjizZ5+1B657zjp71hYJgiCAiIiIiIiIiIiIiKgaKCk6ACIiIiIiIiIiIiKqu5iEJiIiIiIiIiIiIqJqwyQ0EREREREREREREVUbJqGJiIiIiIiIiIiIqNowCU1ERERERERERERE1YZJaCIiIiIiIiIiIiKqNkxCExEREREREREREVG1YRKaiIiIiIiIiIiIiKoNk9BEREREREREREREVG2YhCYiIiIiIiIiIiKiasMkNBERERERERERERFVGyahiYiIiIiIiIiIiKjaMAlNRERERERERERERNWGSWgiIiIiIiIiIiIiqjZMQhMRERERERERERFRtWESmoiIiIiIiIiIiIiqDZPQRERERERERERERFRtmIQmIiIiIiIiIiIiomrDJDQRERERERERERERVRsmoYmIiIiIiIiIiIio2jAJTURERERERERERETVhkloIiIiIiIiIiIiIqo2TEITERERERERERERUbVhEpqIiIiIiIiIiIiIqg2T0ERERERERERERERUbZiEJiIiIiIiIiIiIqJqwyQ0EREREREREREREVUbJqGp1ouKioJIJEJUVJSiQyEiIqIawvmfiIiIarPw8HCIRCLExMQoOhSidwKT0PTGRCJRhR7h4eGKDrVMc+bMgUgkQpcuXRQdSp2xZcsWtGzZEurq6rCxscHs2bORn59f7uuKEw6lPQIDA2Xaz58/H++//z4sLS0hEokwbty4Evst/nBQ0uPevXsybUeNGlViO2tra7l+s7OzMX/+fDg7O0NTUxOWlpbo168fzp8/L9e2orG+bt68eRCJRGjatGmJz2/btg3u7u7Q19eHoaEhPD098dtvv1WobyKiN/Euz//ffvstRCIREhISFB3KG3v27BkCAgJgZGQEbW1tdO7cGRcuXKjQa6trPrS1tS2x7fDhw+XaPnjwAEOHDoWRkRE0NDTQrl077NmzR65dREQE3nvvPTRo0ADq6uowNzdHjx49cOzYsXLH2a1btzLn2vT0dEybNg329vZQV1eHlZUVBg0ahKysLGmb4r+V0h5btmwpNw4iIipf8dx0+vRpRYfyznl9btLV1YWPjw/279//xn3u27cP3377bdUFSfQKZUUHQO+uTZs2yfwcFhaG06dPY/369TLHPT093+o83t7eyM7Ohqqq6lv1U5otW7bA1tYWUVFRePr0KaysrKrlPPXFhg0bMGrUKPTu3RsTJkzAtWvXMG/ePDx58kTub+N1Tk5Ocn9XALBnzx7s3LkT3bt3lzk+Y8YMmJqaol27dhWaaL/99ls0atRI5pi5ublcOxUVFblYtbS05NoNHToU+/fvx+jRo/HFF1/g2bNnWL16NTp06IAzZ86gVatWbxwrADx58gQLFiwo8dwAsHTpUgQHB8PPzw/z589Hfn4+Nm/eDH9/f7x48aLCiW4iosqoK/P/uyg7OxudO3dGQkICgoODoa+vj1WrVsHX1xdnzpyBs7Nzhfqp6vkQAFq2bImpU6fKHLO3t5f5OTY2Fh4eHpBIJJg4cSIMDQ2xbds29O/fH9u3b8eQIUOkbW/evAk1NTWMHz8epqamePHiBbZs2YJOnTphz5496NOnT4lx7Nq1C9HR0aWOPTU1FT4+PoiNjUVQUBAaN26MpKQkHD9+HLm5udDU1AQADBgwAI0bN5Z7/YIFC3D79m0uXiAiIgQEBGDo0KFQU1NTWAydO3fGRx99BEEQ8OjRI6xevRp9+vTBX3/9JXf9XBH79u3Dzz//zEQ0VQ+BqIqMHDlSUFNTK7ddZmZmDURTMadPnxYACIcOHRI0NTWFH3/8UdEhlao2vW+lycnJEUxMTIQuXbrIHJ89e7YAQLh48eIb9evm5ibo6ekJ2dnZMscfPHgg/W8AwtixY0t8/a+//ioAEKKjo8s9V0X/jh89eiQAEL744guZ45cvXxYACF9++eUbxfqqIUOGCF26dBF8fHwER0dHueft7OwEFxcXQSKRSI9lZWUJFhYWgpubW7n9ExFVhXdp/i+ej+Lj4xUdyhtZsmSJAEA4duyY9FhycrJgZGQk9OvXr9zXV8d8KAiCYGNjI3Tv3r3cduPHjxfEYrFw7do16bGCggLBxcVFsLCwEPLy8sp8fWZmpmBubi73OaNYdna2YGtrK8ydO7fUufaTTz4RDAwMhIcPH5Yb7+tevnwpqKmpVWisRERUMZWZm6pbVlaWokOolJLmuhs3bggAhJ49e75Rn2PHjhWYKqTqwnIcVK1GjRoFdXV1PHr0CO+//z709PTQq1cvAMDVq1cxatQoNGrUCOrq6jAxMcEHH3yAJ0+eyPRRUk3I4n6fPXsGf39/6OrqwsDAAEFBQcjJyalwfJs3b4aNjQ26du2KPn36YPPmzSW2S01NxdSpU2Fvbw81NTVYWVnhww8/xNOnT6Vt8vLyMG/ePDRt2hRqamowMzNDv379cP369VLHUUwkEsncaSz+CuiNGzcwcuRIGBkZoVmzZgCAR48eYfz48WjatCk0NTWhr6+PPn36SM/zqrJikkgkaNiwIfr16yf3usLCQlhYWGDQoEEAgPv37+P+/fvlvp+RkZFISkrCZ599JnP8008/hUgkeqMyEXfv3sXZs2cxaNAgqKuryzxnZ2dX6f7S09NRWFhYbjuJRIK0tDQIglDi82lpaQAAS0tLmePFPxevpHrTWI8ePYqdO3di6dKlpbZJS0uDubk5RCKR9JiGhgYMDAzkzk9EVJNq+/xfnhMnTqBz587Q1taGjo4OunXrhjNnzsi0KSgowLx589CkSRNoaGjA2NgYnp6e2LFjh7TNs2fPMGbMGDRo0ABqamqwtLTEe++9h2vXrknbpKam4tatW0hNTS03ru3bt6NVq1bo2LGj9JiRkRE++OADHDhwAOnp6RUeY1XNh6/Kz89HZmZmqc8fP34cLVq0QPPmzaXHxGIxhg4divj4+HLrf2tqasLQ0LDU9+qHH36ARCLB5MmTS3w+JSUFv/76K4KCgmBra4u8vDzk5uaWO65iv//+O3Jzc0ssM0JERNUrPj4eQUFBsLS0hJqaGhwcHPDjjz/KzU+LFy+Gl5cXjI2Noa6ujhYtWmDdunVy/dna2qJHjx6IjIxE+/btoa6ujh9++AExMTEQiURYuHAhNm7cKL2WbtmyJQ4fPizTR0k1oX19fdG0aVPcvXsXPXr0gJaWFszMzDB9+nRIJBKZ1798+RIfffQR9PX1oauri0GDBiE+Pl4uP1AZTk5OMDY2lrt+/+OPP/Dee+/BysoKampqsLGxwbRp02TmwVGjRuHnn38GIFvq49XxFZeD1NTUhJ6eHvr06YMbN268UaxU/zAJTdVOIpHAz88P2tra+PHHHxEQEACgqNbfrVu3MHz4cISGhmL06NE4cOAAOnXqhOzs7Ar3q6qqih9//BHvv/8+fvnlF3z33XcViqugoADbt2+Hv78/RCIRPvzwQ1y9elXmwhAAMjMz4ePjgyVLlsDX1xchISEYP348Hj16JK2fKJFI0LdvX8yaNQvNmzfHTz/9hMmTJyMvL6/CdRpLMmTIEDx//hxz587FxIkTAQDnzp3D0aNHMWDAAISEhGDSpEk4d+4cvL29ZWpclheTkpISAgIC8Ndff+H58+cy5z18+DASEhKkv6suXbpU6GunFy9eBAC4ubnJHDcxMYG9vb30+coovjFQFRd83bp1g66uLjQ0NNCzZ89SJ8u8vDzo6upCT09PmtxISUmRadOkSRNYWlpi0aJF2LNnD2JjY3Hx4kWMHDkSZmZmGDNmzBvHWVhYiAkTJiAwMBAtWrQotV2nTp3w119/ISQkBA8fPsTdu3cxbdo03L17F19++eUbn5+IqCrU1vm/PMeOHUOXLl3w6NEjzJw5E9OnT8ft27fh4+Mjk4ieM2cOvvnmG/j4+GD58uWYOXMmHBwcZNoMGjQIO3bswMiRI7Fq1Sp8/vnnkEgkuH37trTN7t274eTkhN27d5c77itXrsjNsQDg7u6O/Px8/PvvvxUaY1XOh8WOHj0KTU1NaGtro0GDBvjxxx/lLrbz8vJKvElafKykz0ypqalITk7GjRs3MGXKFNy4cQN+fn5y7R49eoQffvgBP/74IzQ0NEqM8cSJE8jJyUGjRo3Qv39/aGhoQENDAx06dMDVq1dLfM2rNm/eDC0tLfTv37/ctkREVHUSExPRvn177Nu3D0FBQVi+fDnc3d0xbdo0fPHFFzJtly5dCicnJ8yaNQs//vgjjI2NMWbMGISFhcn1e+/ePQwcOBDe3t5Yvnw52rdvL31ux44d+OabbzBy5Ej88MMPSEtLQ//+/fHixYty401NTUXXrl3RqFEj/PTTT/Dw8MDChQuxdu1aaZvi6/UNGzbA398fCxcuhCAI6N2791u8U0XnfvnyJQwNDWWOr1+/HsrKypgwYQKWL18OX19fLF68GB999JG0zdixY9G5c2cAReXXih8mJiYAim72fvDBB7C2tsaiRYvw9ddf4+rVq/Dy8sLDhw/fKm6qJxS7EJvqkpK+tjly5MgSSxYIQslfyz1+/LgAQNi8ebP0WGRkpABAiIyMlOt3xowZMq/v16+fYGxsXKF4//zzT5kSEbm5uYKBgYFcGYXir+6+GlOx4jIIxV8hmjdvXqltShpHMQDC7Nmz5c45YMAAubYlvW93794V1NTUZM5fkZhu374tABBWrlwp8/zw4cMFIyMj6ddibWxsBBsbG7l+Xvfpp58KAITCwkK55zp27Cg0b9683D5e17hxY6Fhw4YyJSdKgjJKXGzfvl0YNWqUEB4eLuzevVuYNWuWoKWlJejp6Ql3796VafvVV18J06ZNE7Zt2yZs27ZN+OijjwSRSCS0bdtWyMnJkWkbHR0tNGrUSAAgfTRt2lS4d+/eG8cqCIIQGhoq6OvrC0lJSYIgCKWW40hISBA6d+4sc35dXV3hwIEDZZ6fiKgqvUvzf0XKcbi4uAiGhoZCYmKi9FhsbKygra0teHl5SY+1bt1a6N27d6n9pKSkCACERYsWlRlT8Xz966+/ltkuKSlJACB88803cs8dOXJEACDs2LGjzD6qaz7s06eP8MMPPwh79uwR1q1bJ/j4+AgAhPHjx8u069u3r6CjoyO8fPlS5viQIUMEAMJnn30mF7OXl5d0jlNXVxfGjx8v5ObmyrUbOHCgzO+npLm2uJyJkZGR0L59e+F///ufsHr1asHc3FwwMjIS4uLiSn3vHj9+LIhEImH48OGltiEiosqrSDmOwMBAwdTUVEhISJA5PnXqVEFJSUmmxFJJnzO6du0qNG7cWOaYjY2NAEDYu3evzPGHDx8KAAR9fX2ZzwKXLl0SAAgrVqyQi/3V8xfPgb/88otMv61atRJcXV2lP+/atUsAICxcuFCmXUBAgFx+oDQAhJEjRwpJSUlCYmKicP78eaFHjx4CAGHp0qUybUt6X+bOnSuIRCLhyZMn0mOlleN49OiRoKysLBdXXFycoKenJ4wePbrceImYhKYqU9ZF6OsXNq9LT08XkpOThaSkJEFfX1/morWsi9CnT5/K9FN8cZGWllZuvP7+/kKTJk1kjo0ZM0awtraWSaI2a9ZMcHZ2LrOv3r17C/r6+nIXZa96kyR0REREmefNzMyUvm8tWrQQ+vfvX6mYBEEQ2rdvL7Rv3176c0ZGhqClpSV34VgRo0ePFlRUVEp8rlu3bkKjRo0q1V90dLQAQPjqq6/KbVteYrekvpWUlIRhw4aV2/aHH34o8YPEzZs3hb59+wrBwcHC7t27hZUrVwo2NjaCo6Oj3AekisaalJQkGBgYCEuWLJEeKy0JnZaWJgQFBQlDhw4Vtm3bJmzatEnw8fERtLW1hePHj5c7LiKiqvAuzf/lJaHj4+NLTZ4HBQUJIpFIePHihSAIguDt7S3Y2toKt2/fLrGvnJwcQUVFRejdu7fw/PnzMuOqiMePHwsAhO+//17uuZMnTwoAhE2bNlW636qYD18nkUiE3r17CyKRSOb9OXjwoABA6NKli3D27Fnh3r17wnfffSeoqqoKAISPP/5Yrq9z584JBw8eFH755RfBw8NDGDlypNzv+ciRI4KSkpJw/vx56bGS5trvvvtOACCYmJgIGRkZ0uNnz54VAAjTp08vdUwLFiwQAAh///13mWMnIqLKKS8JLZFIBAMDA2H06NFCUlKSzOPw4cMCACE8PFzudXl5ecLz58+FpKQkYf78+QIAISUlRfq8jY2NYG1tLfe64iR0YGCg3HO6urpCcHCwXOyvJ6HV1dWFgoICmdd+/vnngqGhofTnwMBAQUlJSW5OO3fuXKWS0K8/VFVVhZkzZ5a6iKuwsFBISUkRkpKShKNHj8ol4ktLQi9dulQAINy8eVPu9+Dn5yfY2tqWGy8Ry3FQtVNSUoKtra3c8ZcvX2Ls2LEwMjKCjo4OjI2NYWJigpSUlFK/6vkqFRUVuXq8BgYGAFDuV2TS09Pxxx9/oGvXroiJiZE+OnbsiNjYWBw9elTa9v79+zK1C0ty//59NGnSpMp3xX1953oAyMnJwZdffglLS0toaWlJ37dr167JvG8VjWnkyJE4ffq0tGbU7t27kZmZKf3adGVoaGggPz+/xLqROTk5pX49tjRVWYrjde3bt0eHDh3k6nqVZNKkSVBRUZFpm5KSAm9vb7Rv3x4//fQT3n//fYwfPx6RkZGIiYnBvHnz3iiuGTNmwMTERK6udkkGDhyImJgYbN26Ff7+/hg+fDgOHz6Mhg0b4pNPPnmj8xMRVZXaOP+Xp7jmYdOmTeWec3Z2hiAIePz4MYCichwpKSlwdHREs2bNEBwcjHPnzknbq6mpYeHChfj7779hZmaGDh06YP78+dLXV1bxHFpSDePietiVnWeBt58PSyISiTB58mQIgoB//vlHetzPzw9r1qzB2bNn4ebmhsaNG2P16tVYtmwZAEBHR0euL1dXV/j5+WHMmDH4559/cPr0aZmvDhcUFODzzz/HiBEj4OLiUmZcxe9Pnz59oKWlJT3erl072Nvb48SJE6W+dsuWLTA3N0fXrl3LPAcREVWtpKQkvHz5EuvXr4eJiYnMo/jf5MTERGn7vXv3wtXVFRoaGjAyMoKJiQm+/vprAJDbU8De3r7U89rY2MgdMzAwqNBnDWtra4jF4jJf++jRI5ibm8vNfU2aNCm3/1e99957iIiIwIEDBzB79mwAReN8dd8gALh+/Tp69eoFbW1t6Ovrw8TEBD4+PgBQoc9fd+7cAVBUc/r138OhQ4dkfgdEpVFWdABU96moqEBZWf5PbejQoTh27BimTJmCNm3aQEdHByKRCEOHDpWrIVgSJaXS76GUlAR91Y4dO5CdnY1Vq1Zh1apVcs9v3rwZnTp1kv78+j/gJZ2vvDalPV/WpkAlXUxOnDgRa9euxYQJE+Dl5QU9PT0oKSlh0qRJMu9bRWICAH9/f0yaNAmbN2/G7NmzsXnzZjRu3FimHlZFWVhYACjaNOL1BEFcXFyJSfXSFBQU4LfffkPr1q2lmzJWNRsbG0RHR5fbTlVVFebm5jIfGnbt2oWkpCS8//77Mm3t7OzQsmVLHD9+vNLx3LlzB2vXrsXSpUvx6NEj6fHs7Gzk5+fj3r170NPTg4mJCR48eICIiAi5v19lZWX07t0bixYtQkpKCvT19SsdBxFRVaiN8//beL1vX19fPHjwAH/++ScOHTqEjRs3IiQkBN9//z2mT58OAAgODkb//v2xd+9eREREYO7cuZg/fz727t1bob0WXmVoaAg1NTXEx8fLPRcXFwdAfrPcinqb+bCsPgH5GwNjx47FiBEjpDWY27Rpg8jISADlX3irq6ujb9++WLx4MbKzs6GhoYHw8HDcuXMHq1evlu7VUSwtLQ337t2Dubk5tLW1pe+PqampXN+mpqZ4+fJliee9fPky/v33X0yaNEkuqUBERNWr+LPBBx98gNGjR5fYxsHBAQBw8uRJ9O/fHx06dMDPP/8MCwsLqKqq4sCBA1i6dKnc54yybt6W9u99RT5r1ORcYWVlJU3G9+zZE2ZmZhg/fjw6deok3cMgNTUVnTp1gqamJubPn49GjRpBQ0MDT58+xahRoyr0+au4zV9//VXi5zvOj1QRTEKTQqSkpODQoUP49ttvpXfrgKKVPKVdAFSlzZs3o2nTpliwYIHcc1u3bsXOnTuxcuVKqKuro1GjRnKbFb6ucePGOHXqFPLy8qCqqlpim+JVWq/fZXx1p9mK2L59O0aMGIGQkBCZ4y9fvoSxsXGlYiqOq2/fvti8eTPGjh2Lw4cP45tvvqlUTMWKVyCdPXtWJjmbnJyMBw8eYPDgwRXu6+DBg0hKSsJXX331RrFUxIMHD6SbLJQlJycH8fHx6Nixo/TYs2fPABQly19XUFBQ4vHyxMXFQSKRYOLEidKNKF/l4OCAsWPHYs2aNeWev7TniIgUSdHzf3mKV27funVL7rlbt25BJBKhYcOG0mMGBgYYMWIERowYgezsbPTs2RNz5szBl19+Kb0Ys7Ozw6RJkzBp0iQ8efIEbdq0wcKFCyudhFZSUkLr1q1x9uxZuefOnDkDFRWVcr+5VZq3mQ/L6hNAif1qaGjA3d1d+vOhQ4cAoEKrjLOzsyEIAtLT06GhoYHY2Fjk5+fD29tbru3WrVulj6FDh0o/pzx9+lSu7dOnT9G4ceMSz7llyxYAeKNviRER0dsxMTGBrq4uCgoKyp0nfv/9d6irq+PQoUNQV1eXHi++2Vmb2NjY4PDhw0hPT5dZDV284vhNBQUFISQkBF9//TX69esHJSUlREZGIikpCVFRUdLVz0DRZtGvK20hW/GCsoYNG8LZ2fmtYqT6i+U4SCGKVzG9fhexpLuTVe3p06eIiorCoEGD8P7778s9xo0bh9TUVPz5558Aina2v3HjBrZt2ybXV3H8gwYNwsuXL7FkyZJS29ja2kIsFstNgCtWrKhU/GKxWO5927p1q3QVVLGKxFRs5MiRuHfvHiZOnIjCwkK5i6z79+9Ly3WUxdfXF8bGxli5cqXM8RUrVkAQBJkkdFZWFm7duoXk5OQS+9q8eTPEYjE++OCDcs9bnpJWbB05cgQnT55Ejx49pMdyc3ORlZUl13b+/PkoKCiQaevo6AgA+N///ifT9urVq7h27Vq5XwkuSbNmzfD777/LPZydnWFpaYnff/8dY8eOBVCUkFZSUsK2bdtk/j+TlZWF3bt3o2HDhjI3JYiIagNFzv8VYW5uDhcXF2zcuFFmfoqLi8OWLVvg6ekpvan8/PlzmddqaGjAyclJOpdkZWUhOztbpk2DBg3kVtympqbi1q1bcl8RLsngwYNx5coVmbIRz58/x9atW9GjRw+Zi9jHjx/LJdOrYz5MSUmR+30WFBRgwYIFEIvF5SYMbt++jbCwMPTr10+6kg1AiV/rffHiBXbv3i19HwFgyJAhJc6dANCtWzf8/vvv6NChA4CiubtVq1b4448/ZN6Lw4cP48mTJ+jWrZvcOSUSCbZu3QonJye0bdu2zLEQEVHVE4vFGDRoEHbv3o2LFy/KPZ+amor8/HxpW5FIJPOZoriUR23Ts2dPSCQSuW+2Ll++/K36FYvFmDx5Mm7duoVdu3ZJjwGyn78kEkmJuYLiclWvLw4YNGgQlJWVMXv27BI/syUlJb1V3FQ/cCU0KYSuri58fX3x448/Ii8vDzY2Njhx4gSOHj0KIyOjaj33li1bIJFI0Ldv3xKf79ixI/T19bF582YMHjwYU6dOxc6dOzFs2DBERESgXbt2SElJwV9//YXvvvsOPj4+CAgIwObNmzF9+nRcvHgRPj4+yMnJQWRkJPz9/REQEABdXV188MEHWLlyJUQiERwdHREZGSldKVRRffv2xcaNG6Grq4vmzZvj8uXL2L59u1w9q4rEVKx79+4wMzPDb7/9hg4dOsDOzk6mr+LVWuWt2lZXV8cPP/yAjz/+GH369EG/fv1w9epVrFy5EiNGjJC5eDt79iw6deqE2bNn49tvv5XpJyMjA3/88Qc6d+4sLfFRkk2bNsmUrbh48aK0FnNAQID0q8AdOnRAmzZt0LJlS+jr6+Py5ctYt24dzMzMZM4dHx8PDw8PDBgwAE2aNIFIJMLhw4fx559/wsfHRyYh3qdPHzRv3hwLFy7E48eP0bFjR8TFxWHFihVQVVXF1KlTKx2riYkJBg0aJDfOFStWoLCwUOY5Y2NjBAYG4ueff4a3tzeGDBmC/Px8rF+/HjExMbXygxYRkSLn/1eFhIRAW1tb7vjUqVOxZMkSdO3aFe3bt0dgYCAEQcDq1auRn5+PxYsXS9s6OTnB29sb7dq1g7GxMa5cuYK1a9eid+/e0NHRweXLl9G5c2cMHjwYzZo1g5qaGg4cOICbN29i0aJF0n52796Njz76CL/++itGjRpVZtyffPIJ1q5di379+mHy5MnQ09PDqlWrkJOTg/nz58u0HTFiBI4ePSpzwVkd8+GePXvw008/oXfv3rCzs8PLly+xbds2XLlyBV9//bXMZ4pHjx5h0KBB6Nu3L6ysrHDnzh2sWbMGpqamWL16tUz8Xl5eaNWqFVxdXWFsbCyd2549e4bt27dL2zk7O5e6Isve3l5uXl26dCm6desGLy8vBAUFIS0tDUuWLEHjxo3x6aefyvURGRmJp0+fYvz48WX8ZoiI6G2Fh4eXuOdAYGAgFi5ciKNHj8LLywsff/wxWrRogbS0NPz777/YuXOntPRSnz59sGTJEnTr1g0BAQF48eIFfvnlF5ibmyMhIUEBoypdv3794OHhgenTp+Phw4do2bIljhw5Is0PVKS0ZmlGjBiBWbNmYcGCBRg0aBC8vLxgZGSEkSNHYsKECVBRUcGOHTuQkZEh91pXV1cAwGeffYaePXtCWVkZffr0gZ2dHX788UcEBwejffv2GDBgAAwNDfHo0SMcOHAA7u7uWLNmzRvHTPVEjW6DSHXayJEjBTU1tXKPFYuLixMGDx4sGBoaCjo6OkLv3r2Fu3fvCjY2NsLIkSOl7SIjIwUAQmRkZLn9lrQ77etatGghWFpalrpbrCAIwtChQwUVFRUhOTlZEARBePHihfD5558L1tbWgoqKimBlZSV8+OGHwtOnT6Wvyc7OFmbNmiU0atRIUFFREczMzIR+/foJ169fl7Z5/vy54O/vL2hrawu6urrCBx98ICQmJsrtfjt79mwBgBAfHy8XW2pqqhAYGCiYmpoKmpqagre3t3D27FnBx8dH8PHxkWlbkZiKBQcHCwCEn3/+We45GxsbwcbGptT363UbN24UmjdvLqiqqgrW1tbCzJkzhdzcXJk2xb/Xknb93bBhgwBA2LBhQ5nn8fHxKXFH4Nf/XmbMmCG0adNG0NfXF1RUVIQGDRoIgYGBQmxsrEx/L1++FAICAgQHBwdBS0tLUFNTE5ycnIQ5c+YI2dnZcud/+fKl8OWXXwpNmzYV1NXVBX19feG9994TLl68+MaxljZOR0dHueMFBQXCmjVrhLZt2wp6enqChoaG4O7uLvz2229l9kdEVJXelflfEP5/fi3t8fLlS0EQBOHYsWOCr6+voKmpKWhpaQldunQRoqOjZfr6/vvvBXd3d8HAwEBQV1cXHBwchJkzZwrp6emCIAhCcnKy8NlnnwlOTk6Ctra2oKOjI7i4uAjr1q0rMfZff/21zNiLxcfHC8OGDRMMDAwETU1NwdfXVzh79qxcu+J551XVMR9euHBB6Nu3r2BtbS2oqqoK2tragoeHh7B582a5mF68eCG8//77goWFhfT8EyZMkH7eetWPP/4oeHh4CEZGRoKysrJgamoq9OvXTzh27FiF3icAwtixY0t8LiIiQmjfvr2grq4uGBgYCMOGDRPi4uJKbPvRRx8JIpFIiImJqdB5iYiocornwdIely5dEgShaF6dNGmSYGtrK6ioqAgmJiaCl5eXsGjRIplrzQ0bNghNmzYV1NTUhEaNGgk//fSTsH79ernPCTY2NkL37t3l4nn48KEAQFiwYIHcc69/Vinp80dp127Fn0Fe9fz5c2HEiBGCrq6uoKOjIwwcOFC4c+eOAEBYuHBhue9dWXPdnDlzBADC33//LQiCIJw+fVrw8vISNDU1BVNTU+GTTz4Rrl69KvcZpKCgQPj8888FMzMzQSQSyY1v3759gq+vr6CjoyNoaGgIjRs3FkaNGlXiZxGi14kEoRp3cCGid8b06dOxdOlSxMfHS79qTEREREREREQ149KlS2jbti02b96MYcOGKTocoirFmtBEhLy8PGzYsAF9+/ZlApqIiIiIiIiomr2+dwQALFmyBEpKSjIbCBLVFawJTVSPJSYm4vDhw9i7dy/i4+MRHBys6JCIiIiIiIiI6rwJEyYgNTUVXl5eEIlE2L9/PyIiIvDJJ5/A2tpa0eERVbkaXwm9atUq2NnZQV1dHS4uLjh+/Hipbb/99luIRKISH8U7Zu/atQt+fn4wMTGBjo4O3N3d8ccff8j0Ex4eXmIfOTk51TpWotruxo0bGDZsGCIjI7FkyRK0b99e0SERERERERER1XmdO3dGTEwMvv32W0ydOhUxMTH4/vvvERoaqujQiKpFjdaE3r59O4YPH45Vq1ahQ4cOWLVqFX799VfcuHEDDRs2lGufkZEht1vn0KFDIRKJEBkZCQCYOHEiLCws0LlzZxgaGmLLli347rvvEBUVhY4dOwIoSkJ/+umnuH//vkxf5ubm1TRSIiIiIiIiIiIiIgJqOAnt7u6Oli1b4pdffpEec3BwwKBBg7BgwYJyX//kyRPY2tpi06ZN+PDDD0tt5+bmho4dO+Knn34CUJSE/uyzz+QS2kRERERERERERERUvWqsJnReXh4uXLiAKVOmyBz38/PDqVOnKtTHunXroK+vj4EDB5bZLj09XW5ztezsbNjY2KCwsBCtW7fG3Llz0aZNm3LPaWxsDFtb2wrFV5rMzExoaWm9VR/vgvowzvowRoDjrEvqwxiBNxtnTEwMkpOTqykiUgTO2RVXH8ZZH8YIcJx1SX0YI8A5m4pwzq64+jDO+jBGgOOsS+rDGIGqn7NrLAmdnJyMwsJCmJmZyRw3MzPD4cOHy329RCLB+vXrMWLECKipqZXabuXKlYiNjUVAQID0mKOjI9avX49WrVohPT0dy5Ytg5eXF65cuQIHBwe5PsLCwhAWFgYAUFZWxuLFiys6zBJlZGRAW1v7rfp4F9SHcdaHMQIcZ11SH8YIvNk4X78pSu8+W1tbnD9//q36iIqKgq+vb9UEVIvVh3HWhzECHGddUh/GCLzZOF1dXasnGFIYztkVVx/GWR/GCHCcdUl9GCNQ9XN2jSWhi4lEIpmfBUGQO1aSv/76C0+ePMGYMWNKbbNz505MnToV27Ztg42NjfS4h4cHPDw8pD97enqidevWCA0NxfLly+X6CQoKQlBQEICiN+9t/7D4x1l31IcxAhxnXVIfxgjUn3ESERERERERvYuUaupExsbGEIvFSEhIkDmemJgotzq6JGFhYfD09ESzZs1KfH7nzp0ICAjAxo0b0bdv3zL7EovFcHV1xd27dys+ACIiIiIiIiIiIiKqtBpLQquqqsLFxQUREREyxyMiIuDp6Vnma+Pi4rB//34EBgaW+Pxvv/2G4cOHIzw8HIMGDSo3FkEQcPXqVVhYWFR8AERERERERERERERUaTVajiM4OBgBAQFwc3ODl5cX1qxZg7i4OIwbNw4AMH36dJw9exZHjhyRed369euhpaWFIUOGyPW5bds2BAQEYPHixfD29pautFZVVYWhoSEAYM6cOWjfvj0cHByQlpaG5cuX4+rVq1i9enU1j5iIiIiIiIiIiIiofqvRJLS/vz+eP3+OefPmIT4+Hs2bN8eBAwek9Zvj4+Nx//59mdcIgoB169Zh2LBh0NTUlOtzzZo1KCgowKRJkzBp0iTpcR8fH0RFRQEAUlJSEBQUhISEBOjp6aFNmzY4duwY3Nzcqm2sRERERERERERERKSAjQnHjx+P8ePHl/hceHi43DGRSISHDx+W2l9xorksS5cuxdKlSysaIhERERERvQWJRILk5GSkpKSgsLDwrfvT09PDzZs3qyCy2qs+jBEoeZzq6uqwtraGioqKgqIiIqrbqnpeLkt9mM/qwxiBqp+zazwJTUREREREdVtsbCxEIhFsbW2hoqICkUj0Vv2lp6dDR0eniqKrnerDGAH5cQqCgOfPnyM2NhZ2dnYKjKz2WrVqFRYtWoT4+Hg0a9YMISEh6NixY6ntr127hs8++wxnz56FoaEhxo4di1mzZsn8//Do0aMIDg7G9evXYWlpiS+//FJaJhMArl+/jtmzZ+PixYt4+PAhZs+ejW+//fatYyMixajqebks9WE+qw9jBKp+zq6xjQmJiIiIiKh+yMzMhJWVFVRVVav1QpfefSKRCEZGRsjJyVF0KLXS9u3bMXHiRHz99de4dOkSPD090bNnTzx+/LjE9mlpaejWrRvMzMxw7tw5LF++HIsWLcKSJUukbR4+fIhevXrB09MTly5dwvTp0zFhwgTs3LlT2iYrKwu2traYN29eqYmGysZGRIrDeZmqwtvO2UxCExERERFRlVNS4qUGVQwTIqVbsmQJRo0ahcDAQDg5OSE0NBQWFhZYvXp1ie23bNmCrKwsbNiwAc2bN8fAgQMxbdo0LFmyBIIgACjaV8nS0hKhoaFwcnJCYGAgRo4cicWLF0v7adeuHRYvXowPP/ywxL2Z3iQ2IlIszstUFd5mzmY5DiKiKvLkRRZyCwohEolgY6iJrPxCJKblwFBLDYZaqgCA1Ox86KgpQ0lJhKy8AhRKBOio/38tpaT0XBhqqUKsJPsPe2ZuATZGP0LP5uY4eT8ZDQw04d3EBAAQl5KNPZefok0DA7jbGUJJSYTo+88RceMZXj7LQ6HZMxy5lYjIW4lobKqNsd6N0MHBGACQnJGL8JMxyCuUwMXGAE9fZsPeRAu+jqbYdzUO8/bdhHcTY7zX0hJWBhqwM9KC0muxPc8oilkkEiE7rxASQYCmqhhp2QXQ06z62o6FEgH/Pk1Fqwb6Vd431W8rI+9haUQm7voITIgQEZHC5eXl4cKFC5gyZYrMcT8/P5w6darE10RHR6Njx47Q0NCQHuvevTtmzZqFmJgY2NnZITo6Gn5+fjKv6969OzZs2ID8/PwK1fl8k9iq0k+HbuPnqEwoHfnrjfsw1lbDH591kH5OJyKi6sUkNBHRWwg/+RDxaTnQVVfBooO3pccNtVSRkVOAvEIJlESARyMjWOhpYMeFWFjoqcNSXwP/Pk1FoURAC2s9qCgpISU7D3eeZcBERw12RlqwNdaEvqYqHj/PQlJGLi48eokfD97Cf4tY0LqBPlTFSriZkIb0nAIAgJmuGjo5mmLnxVgoiUTIK5Bg973z0FARo4ODMW7EpWH4ujNo01AflnoauJeYgbuJ6VAWKyHs2ANp/H7OZjh1/zn0NFSw/2o8fjsfCwDo3dICX/Vois1nHuFRcha01JSx82IsujczQ0cHE6z45x4KJBLYGWvhXMxLOJrpwEBLBW62hrAz0QIAmOtqwMZIEweuxeP0g+do3UAfVgb/f6EEAHEpOTh5LxkSQYCrjSEev8hCQmrRV34evcjEs7RcHJ3qCxsjrWr73VL9oyIWoUACZOUVQkuNH5GIiEixkpOTUVhYCDMzM5njZmZmOHz4cImvSUhIgLW1tVz74ufs7OyQkJCArl27yrUpKChAcnIyLCwsqiW2sLAwhIWFASiqTxsVFVXueUqjnFoAbwsBKqriN3p9gURAxKNszN0ahX6Na3cSOiMj463eq3dBfRgjoNhx6unpIT09vUbOVVhYWGPnUpT6MEag9HHm5OS80d8yr7CI3gE5+YXYGB2D7s3Mcer+cziYasPV1lDRYdU5giBIV+/GvszCvqvxeJaWg6uxqcgvlGCkhy3uJKZDIhHgYmOIi49fyiRuuzqZoV9rS+TkF+LkvWQYaauhVQN93H2Wjj+uxOHkvecY7GKNjNwCpGTlY2i7BlBTEePfp6kQBMBcTwN9Wlri1rN0JKfn4sC1BOTkF8JYWw2J6TmY2dsJN+LS4NHICI+eZ+HCo5cAAO8mJpjQuTHuPsvAH1fisOviUzQx08H/Atsj8thxGNi1QDtbA2iqKiMnvxDLjtzF5ccpOBvzAqnZ+dg42h1udoY4H/MC5nrq2HM5DpuiYyBWEmH72PYw1lZD9P3nOH43GetPPsSh6wkQhKLVIwlpOfBzNkPkrSQcvP4MjUy0oKasihtxaQjsaIfbzzKQmp2P0Mh70uT5q6z0NXD4ZmKJv4/mVroQi0RYGXUPhpqqcDDThggiuNoYokdzc5jpqlfL3wHVX9pqRSu/MnILmIQmoiozatQoJCcnY9++fRV+ja+vL5o3b44VK1ZUY2T0rnj92zmCUPY3dkpq//rxirSp6tiCgoIQFBQEAHB1dYWvr2+lzvUqXwBRUVFv1cfo8HM49iQFC0Z2hLrKmyWza8LbjvNdUB/GCCh2nDdv3qyxjfTqw6Z96enp+Omnn7Bjxw78+++/ig6n2pT2u1RXV0ebNm0q3R+vsKjOi32ZhZx8CRqbatfI+fILJTjz4AWSM3Klx8z11NHe3kj6syAIuPY0FQ+SMmFloIF2toa4n5SB5UfuoqGhJhqZaMPWWAt3nqXjxN1kKCuJsOvSUyz4q2gVrJqyEvq3scKDpExoqYnh62gKPQ0V5BVKcOpeMuJS/r9IvIaqGF2dTDHYtUGFP1xdSSrAP3v/xTfvOUNZXH7dqLMPX8BMV63Cq1KP3HyGnRdj4W5nhF4tLGCioyZ97smLLFx8/BLqKmJ0bmoKlQqcvyokZ+Tiq53XEHk7EdN7NsXiQ7eRky+BjpoyrA01kZqVh8m/X4GqWAkQAb8cfwgAGNDWCjaGWjh6JxE/DWkFPY2iJNZg1wYy/Qd3a4LMvEJoVyKxlZNfiPxCCbTVlJGSlQ+Dcr4q2NRcF31aWSIjtwAqYhHUlMXQV1OCz39lOwBAXUWMaT2aAigqa5GR8/8lMzwbG0tjndC5MXLyC6WlQjo1NYVPExM8S89BTl4h5r7fHBZ66tIxvczMQ2p2PqwMNKAkKio18mqZkReZeUjLzocA4GZ8Gp68yEI3ZzPYm2gjKT0XmbkFMmPRUlOW/l2kZuVDS01cob9ForehrV70/8/0nAKY6So4GCKqceUl30aOHInw8PBK97ts2TJpgq+idu3aVaGSCG/r22+/rfMX0O8yY2NjiMViJCQkyBxPTEyUW4FczNzcvMT2wP+viC6tjbKyMoyMjFARbxJbbRPkbY+hYaex82IshrnbKDocIirBm9zIrSlTpkzBhAkTqv08UVFR6NSpk/RnQ0NDtGrVCnPnzoWXl1el+0lKSoKxsXF1hFouJqHpnZedVwiRCNIE673EdHwUfg5NzXXh08QEiw/dRm6+BBs/dkO7/1YPv8zMg76mCiQCMHPPNdyIT8fCAS3Q0FAT4adiYKmvjvUnYtCqgR6+69tcrgauIAj4bOsl/PPfCk4DTRV0b26OpuY6WBJxB8/ScvG6wS7WOBfzArbGWniYnIlHz7Okz7nYGODfp6lQVhIhO78QkleuU5REgEQoen2hREAbGwNsio7BrktP0cpaDzHPszD7j+vS9gaaKnA014EIRTHHvszCrL3Xsen0I3g2MsbpB88BAL1bWKBTU1Nk5RXiwLV4HL75DB952aGbkxlWX85FTuEjPHmRhTvPMjCgrRUibjyDk4UuPOyNkJaTj6y8Qmw/9wQdGhtj+/knAIpKOPg1M8fN+DTEp2bj36dpCGhvg4zcAvz9bwIaGGrAWFsN2849gY66Mg5cS8CcP6/Dq7ExHEx1cPnJS1x8nCIdS0trPbRuoI+T95LRylof8we0wMl7yTjz8AUKJQKURECbhgZ4lpaD2P9qGQ9t1xBiJRGS0nNhpKWKtJx8JGfk4mpsKv68EodbCelobqWHf5+mwkQ1H8czbkAiCPjjchzScwtgqqOGeftvwkRHDQcneUgT62k5+bgRl4bWDfQhVhLhXMwLWOlrSJ+f2NWhzL9TkUhUqQQ0UPQ3Xfx3XV4C+lUVPY9YSVRqzWYVsZLcDQAlJRFWfti2xHMZaKnKxPhqAhooKk9SXG/Pzlj2ZoWJjprMjYjXVUddaaKS6Pz395zx2k0RIqof4uPjpf+9b98+BAYGyhx7tcYugArXztXT06t0LIaG/MYbAaqqqnBxcUFERAQGDx4sPR4REYGBAweW+BoPDw9MmzYNOTk5UFdXl7a3tLSEra2ttM2ePXtkXhcREQFXV9cK3/x4k9hqG3c7Q7S01sPa4w+l1xBERHl5eVBVLf/6W1tbG9raNbPYEQCuX78OQ0NDJCUlYd68eejduzfu3LkDU1PTGovhbTEJTe+E4g3fGpsWfQ0gO68QZx4W1audtP0ycvIL0buFJeJSsnEvKQNp2QW48iQFETeewUxXDYaaqghYdwYTOjsgNTsfa48/gGcjY6gqK+GfW4nQUVNG3xUnYG+sjdvPiurd6Kgp49rTVGTlFWLe+81x5UkqVl7OwT3xAygribD/ajz6tLKEhZ46YpIzseX0Y+QVStDUXAdz+zWHg1lRrIIgYNHB2/j9QiycLHTxMDkTDQw08alvY7jYGmDPpafYdzUeg1ysMbGLA1TESniRlYdLj1MgVgJcGhoi4uYzDG/fEGrKRQnJ4oS0lpoyBEHA05Rs5BcKEAGwMtCQSx5G3k7EnD+uY8eFWDQ1L4rrp4g7+CniDgBAVVkJlnrqWHDgJtYdfwCRqKi0xOGbz2Clr4HQf+7BVEcNf16Jw+5LT6X9WulrYPv5J+jqZIoWVvpYGXUPh248g7qKEvQ0VGCuq47vD9yESAS42hjg1P3nyM4vxDifRviimwNikrPw55U47L8Wj0uPU9DAUBNf9nBEJ0dT3HmWjh/+uoXdF5/CzkQLuy49xb5r8cgrkEBVWQmqYiXkFUqkK5I1VcXIyivE+hNFP99PyoSJjhpeZOah8L+svpW+Blr8l4BuYaWHSw8Tsf1cUQK9sak2fhjYEgIETNp2Gd+85yyzsltXXUVmNbtnI8XcOSSi6lO8Ejojh0loovrI3Nxc+t/6+voyx2JiYmBhYYH//e9/+OWXXxAdHY1Fixbhgw8+wGeffYbjx4/j+fPnsLe3x5QpU/DRRx9J+3p9FZevry+cnZ2hr6+PsLAwKCkpYcSIEZg1a5b0Na+X47C1tcWYMWPw5MkTbN26Fbq6upg4cSKmTp0qfc2dO3cQGBiIM2fOwMbGBkuXLsWQIUOwYsUKjBo16o3ek2vXruGLL77AyZMnoaGhgb59+2LZsmXSxPq1a9cwadIknDt3DoIgwN7eHiEhIejUqRPy8/MxefJk7NixA8+fP4epqSmGDRuGGTNmvFEs9VVwcDACAgLg5uYGLy8vrFmzBnFxcRg3bhwAYPr06Th79iyOHDkCAPjwww8xZ84cjBo1CjNnzsSdO3ewcOFCzJ49W7raf9y4cVixYgUmTZqEsWPH4uTJkwgPD8fWrVul583Ly8ONGzcAFNX+TEhIwOXLl6GtrY3GjRtXKLbaTiQSIcjbHp/97xIO33yG7s3My38REdUqN27cwNSpU3Hs2DFoaGigS5cuWLp0qXT+PnfuHGbMmIGLFy8iLy8PLVu2xKJFi+Dh4SHtQyQSYcWKFThy5AgOHjyITz75BNra2tixYwdmzpyJGTNmIDExEV26dMHatWulq4hf/zZR8XzfrVs3/Pjjj8jKysL777+PlStXQlNTEwCQmZmJTz75BLt27YKWlhYmTZqEkydPwtjYuNxvW5mamsLY2Bjm5uaYOXMmfvvtN5w5cwZ9+vQBAGzevBnLli3DrVu3oKGhAR8fH4SEhMDKygoxMTHS1dQmJkXflC7+hpcgCFi0aBF+/vlnxMXFoXHjxpg2bRqGDx9edb+o/zAJTbVWXoEEm04/woOkDOy4EAsVsRLG+dhj7YmHyMgpQMF/iUUtVTHM9dSxIToGJv/Vzl070hU+TUxx8fFLWBtoQKwkwtTfr0o3juvS1BSn7j+HqrISvurZFENcG+DrXddw6EYCfhzYEg0MNeFsoYv1Jx9i+T93se9KPPIKJdBQBs7tvwkAcLbQRYh/a+kd87ScfPwbmwoXWwNpsrjY8g/a4FzMC7jbGcndYZ/s54jJfo4yxwy0VNHI5P/vqH3cwU7m+VfLaohEIlgbaJb5XnZyNEWnqbJ3x56mZOPio5dQVVaCRyMjCALQJ/QElETAVFd1DHuvDS49ToGbrSHOxrxAM0tdJGfkITO3AHoaKkjKyEUra32cefgcrjaGUFVWwoC2VniemYdW1noQiUQQBAHnH71EAwNNmOupI/ZlFtKyC+BsWfQ9d0dzHTiaO2JKd0e5mJ0sdNGvtZX05/UnHuJ6XBp6tzRHh8YmUFVWQkGhBOcfvYSxthoamWhh96Wn2Hmx6G+lfxsr3IxPh42RJhzNdWBtoIk2DfRlVrWXVpPr70neZb6fRFQ3aUtXQucrOBKiumnOn9dxIy7tjV5bWFgIsbjyNVudLXUxu0+zNzpnSaZPn47Fixdj3bp1UFFRQU5ODtq2bYtp06ZBV1cXhw8fxtixY9GwYUN06dKl1H62bNmCiRMn4tSpU7h8+TI+/PBDODs7Y/To0aW+ZunSpZgzZw6mTp2Kv/76C59//jk6dOgADw8PSCQS9O/fH+bm5jh9+jSys7MxadIk5ObKfzuvorKystCjRw+0a9cOZ8+exYsXLxAYGIjRo0dj586dAIoSnq1atcLZs2ehrKyMa9euSVffLl++HLt378a2bdtga2uL2NhY3L59u6xTUgn8/f3x/PlzzJs3D/Hx8WjevDkOHDgAG5ui8hHx8fG4f/++tL2enh4iIiLw6aefwtXVFQYGBpg8eTKCg4Olbezs7HDgwAF88cUXWL16NSwtLbF8+XKZFcxxcXEy9T7v37+Pn3/+GT4+PtLNqMqL7V3Qo5k5GhhqIOzYAyahqd55m3m5LGXN2VU5L8fHx8Pb2xsff/wxFi9ejPz8fMyYMQN9+/bF6dOnoaSkhPT0dAQEBGDZsmXSZHOvXr1w9+5dmZIUc+bMwfz587F48WKIRCJs2LABMTEx2L59O3bv3o3MzEwMHToUM2bMwM8//1xqTMePH4eFhQUOHz6MJ0+eYMiQIWjSpAmmT58OAJg8eTKOHj2K3bt3w9LSEnPnzsXx48fRv3//Co87KysLv/76KwDIfHslLy8Pc+bMQdOmTZGcnIxp06bhgw8+wLFjx9CgQQPs3LkTAwcOlK6oLv6G18yZM7Fjxw6sXLkSjo6OiI6ORmBgIAwMDODtXbW5ESahqdrdjE+Dpb4G9DRUkJqdj2N3kqClJoZPE1NE3krE/mvxcLbQxegOdtIEbXpOPoaGncb1uDRoqymjQ2NjnI15gcWH7sDVxgBudoZoZ2uIe4kZaGdniBZWesjJL4Smqlimdm67VzbvC/+oHWJfZkNZLIKFngZy8guhJBJBVblo1fDq4W2RnlsA3VfKCHzRrQm8Ghvj8M1nMNBUhX3BYzi0aofDN5+hc1NTmYSyrrqKtKbu61TESrVu5ayVvgas9GW/VnpwkjeUxSKcPH4Maspi6crf4v99tcRCA8OixPer42pgqCk9DhQlyF/9HVgbaAIGbxbv6NcS8QCgLFaSWZ08oK01BrS1lmtHRFQRxUnodK6EJqJSTJgwAYMGDZI59upq5KCgIPzzzz/YunVrmUloZ2dnfPfddwCAJk2a4JdffsHRo0fLTEL7+fnhs88+k8axfPlyHDlyBB4eHoiIiMDt27dx6NAhWFkV3cRfunRppWpFvm7Lli3IyMjApk2bpJsShYWFoVOnTrh37x4aN26MR48eYcqUKWjatGi/ieIVsgDw6NEjNGnSBB07doRIJELDhg3h6emJ9PT0N46pvho/fjzGjx9f4nMlrZxr0aIFjh07VmafPj4+uHjxYqnP29raVqiWeVmxvQuUxUr42MsO3/55AxcevYCLDUvhEL0rVq9ejVatWuGHH36QHtu4cSMMDQ1x/vx5uLm5oXPnzjKvCQ0Nxc6dO/H333/LrPT19/fHmDFjZNoWFBQgPDxc+u2foKAgafK3NLq6uli9ejWUlZXh5OSEwYMH48iRI5g+fToyMjKwfv16bNy4Ed26dQMArFu3DtbWFcthFJdUysrKgiAIcHV1lfms8epnCHt7e6xevRpOTk6IjY2FtbW1tNRX8YpqoGhl9pIlS3Do0CF07NgRQNGNyrNnz2LlypVMQtO75eLjlxi8JhotrPTwywhXBKw7g1sJRR88LfTUEZ+aAx01Zey+9BSLD92GWEkEM111tLDSw/W4NKwZ3hY9mlsAAI7dScLB6wmY2dsZGqpFd9U6Nf3/1b1ar9SmLYlIJJJJkL6+SZ9IJJJJQBdzszOEm13R/1mjop7A3kQbQSY1V/enJhW/r0RE9ZGOOmtCE1Wnt1n5VNru7DXN1dVV5ufCwkIsXLgQ27dvx9OnT5Gbm4u8vLwSv2n1qpYtW8r8bGlpiaSkpEq/pnjDuVu3bsHS0lKagAaAdu3aQUnpzTf1vXnzJlq2bCnzvnt6ekJJSQk3btxA48aNERwcjDFjxmDDhg3o0qULBg4cKE1Ijxo1Ct26dUOTJk3g5+eHXr16oWfPnm8cD1F1GdKuAZYevouwYw/wcwCT0FR/VOU3hV5VU3P2hQsXcOzYsRLrMt+/fx9ubm5ITEzErFmzEBkZiWfPnqGwsBDZ2dl4/PixTPvX53cAsLGxkdnX4dV5tzTOzs5QVv7/VKulpSXOnDkjjSk/Px9ubm7S57W0tNC8efMKjTcyMhJ6enq4dOkSpk+fjg0bNsishL548SLmzJmDy5cv48WLF9IbiY8fPy410X3jxg3k5OSgR48eMhs05+fnS5PeVYlJaKpyOfmF2BT9CMfuJuHGfyuZLz9JgceCI1BSEmHN8LZIzc7Hish7mN6zKT7uYIeIG89w8fFLCAKw53Ic/rgSh0Eu1tIENAB4NzGBdxMTBY6MiIjqsuKbmawJTUSl0dKS3Vx38eLF+Omnn7Bs2TK0aNEC2tra+Prrr8u9SH198zeRSASJRPLGrxEEQebisSqU1Wfx8W+//RbDhg3DX3/9hYMHD2LOnDlYs2YNRo8ejbZt2yImJgZ///03/vnnH4wcORKtWrXCrl27qjROorelqaqMgPY2WBl1Dw+SMmBfRxccEdU1EokEvXv3xuLFi+WeMzMzA1BU9/jZs2dYunQpbG1toaamhi5duiAvL0+m/evzO1A9c3XxsTdhZ2cHY2NjNGnSBDk5ORgwYACuXLkCNTU1ZGZmonv37ujatSs2bdoEU1NTJCcno2PHjnJjfVVxbH/++ScaNmxY5liqApPQVGW23szFH4mXYaKthp+PPUBTcx00s9LDVD9HRN1ORFxqDj50a4gW1kV3kvzb/f8feM8WFujZoijhPKRdA/x89AG+7CFfJ5iIiKi6qIiVoKrEldBEVHEnTpxAnz59EBAQAKDoAvPOnTvSjQ1ripOTE54+fYq4uDhYWloCAM6fP1/uxXJZnJ2dsX79epkVbadOnYJEIoGTk5O0nYODAxwcHPD555/jk08+wdq1a6VfCdbR0cHgwYMxePBgjBo1Cu3bt8f9+/fRtm3btxgtUdUb6WmLsGMPsO7EQ3zfv4WiwyGiCmjbti1+++032NjYlJowPXHiBJYvX47evXsDAJ49e4b4+PiaDFOqcePGUFFRwdmzZ2FnV1RuNCsrC//++y8aNWpUqb4CAgLw3XffYeXKlQgODsatW7eQnJyM+fPnS/t+/aavqmpR1YDCwkLpMWdnZ6ipqeHRo0dypUsAVHkJLSahqUqci3mBg48KgEdPIVYSoW8rSyz/4P83sihOPFdEEzMd/DSkVXWESUREVCZ1ZRHSmYQmogpq0qQJtm/fjhMnTsDY2BihoaF4+PChzIZuNaFbt25wdHTEyJEjsXjxYmRnZyM4OBjKysrlrrjKycnB5cuXZY5pampi2LBhmD17NkaMGIHvvvsOL1++xNixYzFgwAA0btwY2dnZmDJlCgYPHgxbW1s8e/YMJ06cgLu7OwBgyZIlsLCwQOvWraGiooL//e9/0NXVlSkZQlRbmOioYUBbK+y4EIsvujWBsbaaokMiov+kpaXJzVP6+vr49NNP8csvv8Df3x/Tpk2DiYkJHjx4gN9++w0//fQTdHR00KRJE2zevBnu7u7IzMzEl19+KU3G1jRtbW2MHj0a06ZNg7GxMSwsLDBv3jxIJJJKr45WUlLCpEmTMHfuXOmGyGpqalixYgU+/fRT3Lx5E7NmzZJ5jY2NDUQiEfbv348+ffpAQ0MDOjo6mDJlCqZMmQJBEODt7Y2MjAzpxo4ffPBBVb4FePMiYfTOKpQIyHzLC2xBEHDx8Ut8+8d1eC44gg9/OQ0DNREam2qjUCJgfKfK3cUhIiKqDTSUWY6DiCpu5syZcHNzQ8+ePeHt7Q0tLS0MGzasxuNQUlLC7t27kZubCzc3N4wcORIzZsyASCSCurp6ma+9f/8+2rRpI/P48MMPoampiYMHDyItLQ1ubm7o168fPDw8sH79egCAWCzGy5cvMXLkSDg6OqJ///7w8PDAkiVLABStgl60aBHc3NzQtm1bXL58GX/99Rc0NTXLCodIYcZ0tEdugQQbox8pOhQiesXx48fl5qkpU6bA0tISJ0+ehJKSEnr06IFmzZrh008/hZqaGtTUim4krV+/HhkZGXBxccHQoUMxevToaql1XFGLFy9Gx44d0bdvX3Tq1AktW7aEq6truXN1SUaPHo2CggIsW7YMJiYm2LBhA/bs2QNnZ2fMmTNHOh8Xs7Kywpw5czBjxgyYmZlJNzueO3cuvv32WyxevBjNmjVDt27dsHPnTumK6qokEiqy5W095urqivPnz79VH1FRUeVuTlJTsvMK8VH4WdxOSMfWoPZoaq4r1yY1Ox8PkjLQpqFBiX1E3k7EN3v/xZMX2VBVVkInRxM0MNBEA0k83N3a4frTNAx0qdjunu+a2vS7rE4cZ91RH8YIvNk4q+Lfd6pdquJ36jv/L9hbGmP9qHZVFFXtVB/+bagPYwRq7zhv3rwpU7LhbdWWjQmrU1WP8cqVK2jdujXOnz8PFxeXKuv3bZU2zrL+Zjhn1z219Tp7zIbzOP/oBU5O6yzdK0LRauu/81WpPowRUOw4q3peLgvn7IrLzc2FjY0Npk6dismTJ1dBZFWrqufs2vGvKtWYGbuv4czDFzDQVMXwtWexYXQ7fLXzGqb1aIoODsYoKJTg4/BzOP/oJQa5WGN2H2e8zMzHwesJMNZRRVZeIeb8cQN2xlpYPLgV/JqZQVe9qPZOVFQimprrlpjYJiIiehdwJTQRvat2794NLS0tODg4ICYmBsHBwWjVqhXrLxNVwvhOjTBg1TNsPfsYYzraKzocIqpjLl26hJs3b8LNzQ3p6en44YcfkJ6eDn9/f0WHViOYhK5HUrLy8OfVOIz0sMUQ1wZ4L/Q4hqyJRmZeIWbuuQZfR1Oci3mB63Fp6N7MDLsuxuLgvwlytTFbWethw2g36Gsqpo4OERFRdWFNaCJ6V6Wnp2PatGl48uQJDAwM4Ovri6VLl1a6ziRRfda2oQE87I0QduwBhre3gbqKWNEhEVEds2TJEty+fRvKyspo3bo1jh07BmvrullN4HWsCV1H/XbuCXqEHEP0/ecAgKy8Avx5JQ75hQIGuVjD2VIXw9xtkJlXiI4Oxoh5noWN0THQUBEjuFsT/Bzgit/HecK7iQmm92yKE9M6Ydd4T+z51At7PvViApqIqB5YtWoV7OzsoK6uDhcXFxw/frzUtt9++y1EIlGJj8TERABFOzT7+fnBxMQEOjo6cHd3xx9//CHTT3h4eIl95OTkVOtYi2koi5CRm18j5yIiqkojRozAnTt3kJ2djbi4OPzvf/+DmZmZosMieud81rkxEtNzseNCrKJDIaI6pk2bNjh//jzS09Px8uVLREZG1qqSWdWtxpPQVX1BCwBHjx6Fi4sL1NXVYW9vjzVr1sj1tXPnTjg7O0NNTQ3Ozs7YvXt3tYyvNniekYu5+2/gzrN0fLj2NAI3nkfLbw9h1t7raGyqjWaWReUyvuzhiLnvN8cvI1zx48CW2PmJJ3Z84onPuzgAAFxsDLByWFuM9WkEawNNtG1ogNYN9LmagoioHti+fTsmTpyIr7/+GpcuXYKnpyd69uyJx48fl9h+ypQpiI+Pl3n4+PjA19cXpqamAIrm686dO2P//v24dOkSevXqhf79+8t9FtDU1JTr600263gTLMdBRERUv3k2MkLrBvpYc/Q+Cgolig6HiKjOqNEkdHVc0D58+BC9evWCp6cnLl26hOnTp2PChAnYuXOntJ/o6Gj4+/tj2LBhuHz5MoYNG4bBgwfjzJkzNTLumlQoEfDN3uvIzivE3k874EO3hoi48QxdnEzRt5Ulpvg1kSaRddRVEPDfV4yGtGtQ6kaERERU/yxZsgSjRo1CYGAgnJycEBoaCgsLC6xevbrE9tra2jA3N5c+8vPzcfz4cQQGBkrbLFu2DF999RXc3NzQuHFjzJ49Gy4uLtizZ49MXyKRSKYvc3Pz6hyqjKKV0AXgvs1Eb4//P6KK4t8K1SYikQifdmqM2JfZ+ONKnKLDIaoy/LeWqsLb/B3VaE3oVy9oASA0NBR///03Vq9ejQULFsi119bWhra2tvTnJ0+e4Pjx49i0aZP02Jo1a2BpaYnQ0FAAgJOTE86cOYPFixdj4MCBAICQkBB06tQJM2bMAADMmDEDkZGRCAkJwdatW6ttvDWpUCJg7r4bOPvwBW7Ep2F6z6ZoYa2HFtYtMNnPEQaaKlzBTEREFZKXl4cLFy5gypQpMsf9/Pxw6tSpCvWxbt066OvrS+fi0qSnp8PAQPYmaHZ2NmxsbFBYWIjWrVtj7ty5aNOmTeUG8YbUlYH8QgG5BRLWgSR6CyoqKsjOzoampqaiQ6F3QH5+PpSVuV0R1R5dmpqiqbkOVkXdx/utraCkxGtperdxXqaq8jZzdo3N9NV1QRsdHQ0/Pz+Zdt27d8eGDRuQn58PFRUVREdHY8KECXJtVqxY8YajqV0SUnOw+fQjhJ+KQesG+pjZ20lmJ19DLdZvJiKiiktOTkZhYaFcLVEzMzMcPny43NdLJBKsX78eI0aMgJqaWqntVq5cidjYWAQEBEiPOTo6Yv369WjVqhXS09OxbNkyeHl54cqVK3BwcJDrIywsDGFhYQCA2NhYREVFVXCUJVMqzAMgwqF/jkFXre5ecGZkZLz1e1Xb1YcxArV3nGKxGJmZmbCysoKqqupbL4YoLCxEenp6FUVXO9WHMQLy45RIJHj27BmSk5Px9OlTBUZG9P+UlEQY36kxPt96CYduJKBHcwtFh0T0VkxNTfH06VNYWVlBQ0ODixTpjRTP2Xp6em/0+hpLQlfXBW1CQgK6du0q12dBQQGSk5NhYWGBhISEEs+bkJBQ4rmq+oK2qi8OTjzNR3YB0M1GBbdeFGLh2aLNmjwsxBjbLB8ofIyoqJJLnFSn2noRVJXqwxgBjrMuqQ9jBOrPOGva6x9OBUGo0AfWv/76C0+ePMGYMWNKbbNz505MnToV27Ztg42NjfS4h4cHPDw8pD97enqidevWCA0NxfLly+X6CQoKQlBQEADA1dUVvr6+5cZXllNxhwHkooWLG+yMtd6qr9osKirqrd+r2q4+jBGo3eNMS0tDYmIi8vPffrPPnJycGqsNryj1YYxAyePU0tJC+/btoaRU41sWEZWqdwsLLDl0Gysi76F7M3Mm7eidpqtbtDdYXFxclczLZakP81l9GCNQ+pxtbGz8Rv3V+HeequOCtqQ+Xz9emfNW9QVtVV8cfLc4CnGp2Zg+tBP+2PsvdNSf4YeBLdG5qalCvzpcmy+Cqkp9GCPAcdYl9WGMQP0ZZ00xNjaGWCyWu1mbmJgod1O3JGFhYfD09ESzZs1KfH7nzp0ICAjAxo0b0bdv3zL7EovFcHV1xd27dys+gLeg+d8no9Ts6v1wTlQf6OrqSi9631ZUVFSNleVRlPowRqD+jJPefWIlET7xbYRpO6/h6J0k+DqaKjokordSlfNyWerDv/P1YYxA1Y+zxm41V9cFrbm5eYl9Kisrw8jIqMw2FTlvbfMyMw8PkjORky/BnktPcfDfBPRuYYFeLSxYu5KIiKqEqqoqXFxcEBERIXM8IiICnp6eZb42Li4O+/fvl9mQ8FW//fYbhg8fjvDwcAwaNKjcWARBwNWrV2FhUTNfg9VWKbpB/TIrr0bOR0RERLVX/zbWsNBTx6rI+4oOhYjonVdjSejquqD18PCQK+cREREBV1dXqKioSNu8yXlro8tPUgAAKmIR5h+4icy8QrzfxkqxQRERUZ0THByM8PBwrF27Fjdv3sTEiRMRFxeHcePGAQCmT5+OLl26yL1u/fr10NLSwpAhQ+Se27ZtG4YNG4aFCxfC29sbCQkJSEhIwIsXL6Rt5syZg4MHD+LBgwe4fPkyPv74Y1y9elV63uqmrVqUhE5hEpqIiKjeU1VWQpC3Pc7GvMDZhy/KfwEREZWqRotuVccF7bhx4xAbG4tJkybh5s2bWLt2LcLDw2U2QJw4cSL++ecfLFiwALdu3cKCBQsQGRmJSZMmVdtYq4ogCLjyJEVaYuTS45dQEgHB3RxhrK2GSV0d4GZrqOAoiYiorvH390dISAjmzZuH1q1b48SJEzhw4IC0fnN8fDzu35ddFSQIAtatW4dhw4aVuPP2mjVrUFBQgEmTJsHCwkL6GDBggLRNSkoKgoKC4OTkBD8/Pzx9+hTHjh2Dm5tb9Q74P8UroVOyWI6DiIiIgKHtGsJYWxWh/9RMaTAiorqqRmtC+/v74/nz55g3bx7i4+PRvHnzt76gtbOzw4EDB/DFF19g9erVsLS0xPLlyzFw4EBpG09PT2zbtg0zZ87E7Nmz0ahRI2zfvh3u7u7VO+AqsP3cE3y16xreb22Ju4kZePwiC03NdfGJbyN84ttI0eEREVEdNn78eIwfP77E58LDw+WOiUQiPHz4sNT+KrJ55NKlS7F06dKKhljlNFUAkQh4ySQ0ERERAdBQFSPI2x7zD9zC+ZgXcOUiMCKiN1LjGxNW9QUtAPj4+ODixYtlthk0aFCFak/WNjsvxkJFLMKey3FoaKgJE2019GllqeiwiIiI6iQlkQi66iosx0FERERSw9vbIOzYAyw9fAdbxrRXdDhERO+kGk9CU8U9eZGFczEvMcWvCVo3MEBbG31oqvJXRkREVJ0MNFW4EpqIiIikNFWVMc6nEebtv4mzD1/AzY6roYmIKqtGa0JTxcWlZCP4t8sQiYD321ihg4MxE9BEREQ1QF9TlSuhiYiISMYwdxsYa6thacQdRYdCRPROYhK6ljl4PQGn7idj1K9ncTM+HUuGtIK1gXwtbCIiIqoeRSuhmYQmIiKi/6ehKsYnvo0Q/eA5Tj94ruhwiIjeOUxC1yJpOfkYv+UiPvzlDO48y8CqYW3Rv421osMiIiKqV4pWQrMcBxEREcka5t4QpjpcDU1E9CaYhK5FTtxNRqFEQI9m5pjZ2wneTUwUHRIREVG9o6+pwiQ0ERERyVFXKVoNfebhC0Tf52poIqLKYBK6Fom8lQg9DRWs+LANxnS0V3Q4RERE9ZKBpioycguQVyBRdChERERUy3zg1hBmumpYevgOBEFQdDhERO8MJqFrCYlEQNSdJHR0MIaymL8WIiIiRTHQVAEApGSzLjQRERHJUlcRY7xvY5zlamgiokphtrOWiE/LQVJ6LtrbGyk6FCIionpNX1MVAFiSg4iIiErk364BzHXVuRqaiKgSmISuJRJSswEAVgYaCo6EiIioftP/byX0y0yuhCYiIiJ56ipijO/UCOdiXuLEvWRFh0NE9E5gErqWSEjNBQCY66orOBIiIqL6zeC/ldAvuRKaiIiISuHfrgGs9DWw6OBtroYmIqoAJqFriYS0HABMQhMRESmaiY4aACApI1fBkRAREVFtpaYsxqSuDrgam4q//01QdDhERLUek9C1REJqNtSUlaRfASYiIiLFMNJShUgEJKUzCU1ERESlG9DWGo1NtbH40G0UFEoUHQ4RUa3GJHQtkZCWC3M9dYhEIkWHQkREVK8pi5VgpKXKJDQRERGVSawkwhQ/R9xPysSui08VHQ4RUa3GJHQt8Sw1B2YsxUFERFQrGGurISk9R9FhEBERUS3XvZkZWjXQR8jhO8jJL1R0OEREtRaT0LVEfFo260ETERHVEiY6alwJTUREROUSiUSY1t0Rcak52Hz6kaLDISKqtZiErgUEQcCz/8pxEBERkeKZ6qgzCU1EREQV4tnYGB0djLEy8h7Sc/IVHQ4RUa3EJHQt8DIrH3kFEq6EJiIiqiVMdNSQlJELQRAUHQoRERG9A6Z2d8TLrHysPf5Q0aEQEdVKTELXAgmpRTUnuRKaiIiodjDRUUN+oYCULK5mIiIiovK1tNZHrxbmWHv8AZ5n8NtURESvYxK6Fkj6b4Iy0VFTcCREREQEAKb/zclJvIgkIiKiCgru5ojs/EKsjLyv6FCIiGodJqFrgReZRRe4RlqqCo6EiIiIgP+/MZyYxiQ0ERERVUxjU20MdmmAzacf4cmLLEWHQ0RUq9R4EnrVqlWws7ODuro6XFxccPz48TLbC4KAkJAQNG3aFGpqarCwsMBXX30lfX7UqFEQiURyDy0tLWmb8PDwEtvk5ORU2zgr43lGHgDASIsroYmIiGoDE+lK6NrxWYGIiIjeDZO6OUAkAhYdvK3oUIiIapUaTUJv374dEydOxNdff41Lly7B09MTPXv2xOPHj0t9zeTJk7Fq1Sr88MMPuHnzJg4cOABvb2/p88uWLUN8fLzMw97eHkOGDJHpR1NTU66dunrtqMH8IjMPykoi6GooKzoUIiIiqcrcOP72229LvOErEomQmJgobXf06FG4uLhAXV0d9vb2WLNmjVxfO3fuhLOzM9TU1ODs7Izdu3dXy/jKYsqV0EREVEtUdiHXtWvX4OPjAw0NDVhZWeG7776T22i3KubjwsJCzJo1SxqbnZ0dZs6ciYKCgrcf9DvMQk8DgR3t8ceVOFx+kqLocIiIao0aTUIvWbIEo0aNQmBgIJycnBAaGgoLCwusXr26xPa3b99GaGgo9u7di379+sHe3h5t2rRBr169pG309PRgbm4ufdy/fx8PHjxAYGCgTF8ikUimnbm5ebWOtTJeZObBQEsVIpFI0aEQEREBqPyN4ylTpsjd7PXx8YGvry9MTU0BAA8fPkSvXr3g6emJS5cuYfr06ZgwYQJ27twp7Sc6Ohr+/v4YNmwYLl++jGHDhmHw4ME4c+ZMjYy7mLaaMlTFSniRmVej5yUiInpVZefjtLQ0dOvWDWZmZjh37hyWL1+ORYsWYcmSJdI2VTUf//DDD1i5ciWWL1+OW7duYdmyZVi5ciUWLFhQfW/IO2KcbyMYa6vi+/035G4AEBHVVzWWhM7Ly8OFCxfg5+cnc9zPzw+nTp0q8TV79+6Fvb09/v77b9jb28PW1hYjR46UWVH1ul9++QXNmjWDp6enzPHs7GzY2NjA2toa7733Hi5duvT2g6oizzPzWA+aiIhqlcreONbW1pa50Zufn4/jx4/L3BRes2YNLC0tERoaCicnJwQGBmLkyJFYvHixtE1ISAg6deqEGTNmwMnJCTNmzICvry9CQkKqe8gyRCIRDLVU8ZxJaCIiUqDKzsdbtmxBVlYWNmzYgObNm2PgwIGYNm0alixZIk2GVtV8fOrUKfTp0wd9+vSBra0t+vbti759+9b4jePaSFtNGV90a4JzMS9x8HqCosMhIqoVaqz+Q3JyMgoLC2FmZiZz3MzMDIcPHy7xNQ8ePMCjR4+wbds2aV3nKVOmoE+fPoiOjoaSkmwOPTU1Fb///jvmz58vc9zR0RHr169Hq1atkJ6ejmXLlsHLywtXrlyBg4OD3HnDwsIQFhYGAIiNjUVUVNRbjBzIyMgos4+HcdlQUcJbn0fRyhtnXVAfxghwnHVJfRgjUH/GWVOKbxxPmTJF5nhZN45ft27dOujr62PgwIHSY9HR0XI3o7t3744NGzYgPz8fKioqiI6OxoQJE+TarFix4g1H8+YMtVS5EpqIiBTmTebj6OhodOzYERoaGtJj3bt3x6xZsxATEwM7O7sqm487dOiAVatW4datW2jatClu3LiBf/75B9OnT3/bodcJ/q4NEH4yBgv/uoXOTc2gqlzjW3IREdUqNV6E+PWSE4IglFqGQiKRIDc3F5s2bUKTJk0AAJs2bYKjoyPOnTsHd3d3mfabN29GYWEhAgICZI57eHjAw8ND+rOnpydat26N0NBQLF++XO68QUFBCAoKAgC4urrC19e30uN8VVRUVJl9zDkfhaaWuvD1bftW51G08sZZF9SHMQIcZ11SH8YI1J9x1pQ3uXH8KolEgvXr12PEiBFQU/v/TXcTEhLQtWtXuT4LCgqQnJwMCwsLJCQklHjehISSVxFV541jUV42YuLr5g2O+nDjpj6MEeA465L6MEag/oyzKrzJfJyQkABra2u59sXP2dnZVdl8PG3aNKSnp8PZ2RlisRgFBQWYMWMGxo8fX2JsNb3YqzZ4r0EBll7IxZzNR9DNVuWN+ngXxvm26sMYAY6zLqkPYwSqfpw1loQ2NjaGWCyWu4hMTEyUm9yKWVhYQFlZWZqABgAHBwcoKyvj8ePHcknoX375BQMHDoShoWGZsYjFYri6uuLu3btvOJqq9Twjl+U4iIio1qnMjeNX/fXXX3jy5AnGjBlToT5fP16Z81bnjePdCZdw6XFKnbzBUR9u3NSHMQIcZ11SH8YI1J9xVqXKzsdvOtdWpM2rx7Zv346NGzfif//7H5o1a4bLly9j4sSJsLOzw8cffywXV00v9qoNfAQB51LPYv/jVHw5xAt6mpVPRL8L43xb9WGMAMdZl9SHMQJVP84a+z6IqqoqXFxcEBERIXM8IiJCrn5zMS8vLxQUFOD+/fvSYw8ePEBBQQFsbGxk2p49exZXrlyR25CwJIIg4OrVq7CwsHiDkVSt/EIJ0nIKYKilVn5jIiKiGvAmN45fFRYWBk9PTzRr1kzmuLm5eYl9Kisrw8jIqMw2FTlvVWM5DiIiUqQ3mY9Lm0eB/18RXVXz8dSpUzFlyhQMHToULVq0QEBAAIKDg7kx4StEIhG+7uWE1Ox8rIy6p+hwiIgUqkaLEgUHByM8PBxr167FzZs3MXHiRMTFxWHcuHEAgOnTp6NLly7S9l27dkXbtm0xevRoXLp0CZcuXcLo0aPh7u4OV1dXmb7DwsLg4OAAHx8fufPOmTMHBw8exIMHD3D58mV8/PHHuHr1qvS8ivTyv4tbQ22uhCYiotrhTW4cF4uLi8P+/ftLvCns4eEh9/XhiIgIuLq6QkVFRdrmTc5bHYy0VJGRW4DcgsIaPzcREdGbzMceHh44fvw4cnJyZNpbWlrC1tZW2qYq5uOsrCyIxWKZNmKxGBKJpHIDreOcLXUxqK01wk/G4MmLLEWHQ0SkMDWahPb390dISAjmzZuH1q1b48SJEzhw4IB0VXN8fLzMqmclJSXs27cPpqam8Pb2Rvfu3WFtbY29e/fKbEqYnp6Obdu2YcyYMSV+LSklJQVBQUFwcnKCn58fnj59imPHjsHNza36B12O5/8loY1ZjoOIiGqRyt44LrZ+/XpoaWlhyJAhcs+NGzcOsbGxmDRpEm7evIm1a9ciPDxcZsOliRMn4p9//sGCBQtw69YtLFiwAJGRkZg0aVK1jbU0xd9S4mpoIiJSlMrOxx9++CE0NTUxatQo/Pvvv9i1axcWLlyI4OBg6bVyVc3Hffr0wcKFC7F//37ExMRg9+7dWLJkCfr3718zb847ZLKfI8RKIiz8+5aiQyEiUpga35hw/PjxpW5UEB4eLnfMwsICv//+e5l96ujoICMjo9Tnly5diqVLl1YqzppSfGFryCQ0ERHVIv7+/nj+/DnmzZuH+Ph4NG/evMwbx0BRuat169Zh2LBh0NTUlOvTzs4OBw4cwBdffIHVq1fD0tISy5cvx8CBA6VtPD09sW3bNsycOROzZ89Go0aNsH37drl9IGqCoVbRarDnGXmw0NOo8fMTERFVdj7W09NDREQEPv30U7i6usLAwACTJ09GcHCwtE1VzcehoaGYNWsWxo8fj8TERFhYWCAwMBDffPNNDbwz7xZzPXUEedtj2ZG7GOnxAm52Ze9jRURUF9V4EppkFa+ENmI5DiIiqmUqe+NYJBLh4cOHZfbp4+ODixcvltlm0KBBGDRoUIXjrC5cCU1ERLVBZefjFi1a4NixY2X2WRXzsY6ODkJCQhASElJmP1RknE8j/H7+CWb/cR37JnSAWKn8zZ6JiOqSGi3HQfIycwsAANpqld8ll4iIiKpP8beUmIQmIiKit6WhKsaM3s64GZ+GrWcfKzocIqIaxyS0ghUUFm3aoCzmXVAiIqLaxOi/JPRzJqGJiIioCvRqYY729oZYfOg2UrL4+YKI6hcmoRWsQCIAAJT5VRwiIqJaRU9DBWIlEV5k5io6FCIiIqoDRCIRZvdphrTsfCyNuKPocIiIahST0ApWUPhfElrMXwUREVFtoqQkgoGmCl5k5is6FCIiIqojnCx0Mby9DTadfoRbCWmKDoeIqMYw86lgXAlNRERUexlqqXIlNBEREVWp4G5NoKuhgm//uA5BEBQdDhFRjWASWsGkNaGZhCYiIqp1ipLQrNlIREREVUdfUxVT/Bxx+sELHLiWoOhwiIhqBJPQCla8ElrMJDQREVGtY6Slxo0JiYiIqMp94NYQTha6mH/gJrLzChUdDhFRtWMSWsEKJBIoK4kgEjEJTUREVNtwJTQRERFVB7GSCHP6NsPTlGysPnpf0eEQEVU7JqEVrKBQgLKYCWgiIqLayFBLFSlZ+dLyWURERERVxc3OEP1aW2JN1H08TM5UdDhERNWKSWgFK5AIUFbir4GIiKg2MtJWBQC8zMpXcCRERERUF83o7QQ1FSXM2vMvNykkojqN2U8FKyiUcCU0ERFRLWWgWZSEZkkOIiIiqg6mOuqY2t0RJ+4l48+r8YoOh4io2jAJrWBFK6GZhCYiIqqNjLSKktDPM3MVHAkRERHVVcPcbdDSWg9z991AWg6/fUVEdROT0ApWUMhyHERERLWVYXE5jkxeEBIREVH1ECuJ8P37LfA8Ixc/Hbyt6HCIiKoFs58Kli9hOQ4iIqLaylCruBwHV0ITERFR9WlhrYeA9jbYePoRrsamKDocIqIqxyS0ghWyHAcREVGtVVwT+jlrQhMREVE1m9zdEcbaapix+18USrhJIRHVLUxCK1hBoQBlMX8NREREtZGKWAl6GircmJCIiIiqna66Cma954xrT1Ox+fQjRYdDRFSlmP1UsAKJhCuhiYioyrz//vvYt28fJBKJokOpM4y0VLkSmoiIiGpEn5YW6OhgjMUHbyMxLUfR4RARVRkmoRWsaCU0k9BERFQ1tLS04O/vD2tra3z99de4e/euokN65xlqqeJFBpPQREREVP1EIhG+69ccuYUSfPvndUWHQ0RUZZiEVrACiQCxEn8NRERUNbZs2YL4+HjMmjULhw8fhqOjI7y9vbFx40ZkZ2crOrx3kr6mClKz8xUdBhEREdUTdsZamNjFAQeuJeB8QoGiwyEiqhI1nv1ctWoV7OzsoK6uDhcXFxw/frzM9oIgICQkBE2bNoWamhosLCzw1VdfSZ+PioqCSCSSe9y6dUumn507d8LZ2RlqampwdnbG7t27q2V8lVUgkUCF5TiIiKgK6erq4pNPPsHZs2dx7do1uLi4YOzYsTA3N8fYsWNx8+ZNRYf4TtFRV0F6LpPQREREVHOCvO3hbKGLTTfzkJrFzyFE9O6r0ST09u3bMXHiRHz99de4dOkSPD090bNnTzx+/LjU10yePBmrVq3CDz/8gJs3b+LAgQPw9vaWa3f9+nXEx8dLHw4ODtLnoqOj4e/vj2HDhuHy5csYNmwYBg8ejDNnzlTLOCsjn+U4iIiomsTFxWHv3r3Yt28flJWVMWjQIDx58gQtW7bE4sWLFR3eO0NHXRlp2VyFRERERDVHRayEHwe1RHqegPkHuICAiN59NZqEXrJkCUaNGoXAwEA4OTkhNDQUFhYWWL16dYntb9++jdDQUOzduxf9+vWDvb092rRpg169esm1NTU1hbm5ufQhFoulz4WEhKBTp06YMWMGnJycMGPGDPj6+iIkJKS6hlphhRIByizHQUREVSQ/Px87duxAr169YGNjgz179uDLL79EfHw81q1bhwMHDmDLli2YN2+eokN9Z+iqqyAjtwCCICg6FCIiIqpHmlvpoYetCraff4KT95IVHQ4R0VupsexnXl4eLly4AD8/P5njfn5+OHXqVImv2bt3L+zt7fH333/D3t4etra2GDlyJBITE+Xaurq6wsLCAl26dEFkZKTMc9HR0XLn7d69e6nnrUkFhRKuhCYioipjYWGBsWPHolGjRrhw4QLOnj2LwMBAaGtrS9t069YNBgYG5fZV1SW0Ro0aVWIJLS0tLWmb8PDwEtvk5Chud3gddWUUSgRk5RUqLAYiIiKqn95vrAI7Yy1M33UNWXn8ZhYRvbuUa+pEycnJKCwshJmZmcxxMzMzHD58uMTXPHjwAI8ePcK2bdukF6VTpkxBnz59EB0dDSUlJelK6nbt2iEvLw+bNm1Cly5dEBUVJS3bkZCQUOJ5ExISSjxvWFgYwsLCAACxsbGIiop6q7FnZGSU2kdKWjZEuaK3PkdtUNY464r6MEaA46xL6sMYgfozzopYunQpBg8eDHV19VLbGBgY4OHDh2X2U1xCa9WqVejQoQNWrVqFnj174saNG2jYsGGJr5k8eTL27duHRYsWoUWLFkhNTUV8fLz0+WXLlmHhwoUyr/Hy8pIrs6WpqYn79+/LHCtrPNVNR10FAJCWkw8ttRr76EREREQEVbEICwa0wNCw01hy6A5mvues6JCIiN5IjV9JiUSyq34FQZA7VkwikSA3NxebNm1CkyZNAACbNm2Co6Mjzp07B3d3dzg6OsLR0VH6Gg8PD8TExGDx4sUyF7WVOW9QUBCCgoIAFK2w9vX1rfQ4XxUVFVVqH+qXjsHcWAu+vi5vdY7aoKxx1hX1YYwAx1mX1IcxAvVnnBUREBAAAMjOzpYmchs1agQNDY1K9fNqCS0ACA0Nxd9//43Vq1djwYIFcu2LS2hdvXoVTk5O0uNt2rSR/reenh709PSkP588eRIPHjzApk2bZPoSiUQwNzevVLzVSUe96ONSek4BLPTKaUxERERUxdrbG2GYe0OsP/kQ77WyROsG+ooOiYio0mqsHIexsTHEYrHc6uPExES5VcrFLCwsoKysLE1AA4CDgwOUlZXL3MzQ3d0dd+/elf5sbm5eqfPWpAKJBGKW4yAioiqSm5uLSZMmwdDQEK1atULLli1haGiIiRMnVrikRXWX0Cr2yy+/oFmzZvD09JQ5np2dDRsbG1hbW+O9997DpUuXKhR3ddHVKFoJnZ7DnemJiIhIMb7q2RSmOuqYtuMq8gokig6HiKjSamwltKqqKlxcXBAREYHBgwdLj0dERGDgwIElvsbLywsFBQW4f/8+GjVqBKCoREdBQQFsbGxKPdfly5dhYWEh/dnDwwMRERGYOnWqzHlfv+hVhAKJABUlJqGJiKhqfPLJJzh06BDWrl0LDw8PAEV7I0yfPh3p6elYv359uX1UVwmtV6WmpuL333/H/PnzZY47Ojpi/fr1aNWqFdLT07Fs2TJ4eXnhypUrcHBwkDtvTZTQupdSVAv6xNmLSH9YN8px1IcSNvVhjADHWZfUhzEC9WecRFVNR10F3/dvjo83nEfoP3cx2c+x/BcREdUiNXolFRwcjICAALi5ucHLywtr1qxBXFwcxo0bBwCYPn06zp49iyNHjgAAunbtirZt22L06NEICQkBAEyaNAnu7u5wdXUFAISEhMDW1hbNmjVDXl4eNm/ejD179mDnzp3S806cOBHe3t5YsGAB+vfvj927dyMyMhInTpyoyeGXqKBQgFipxhakExFRHff7779j165d6Natm/SYvb09TE1NMXDgwAoloYtVdQmtV23evBmFhYXS8iHFPDw8pMlzAPD09ETr1q0RGhqK5cuXy523JkpoWSemY97pY7B1cIJva6u36r+2qA8lbOrDGAGOsy6pD2ME6s84iapDFyczDHKxxqqo++jiZMayHET0TqnR7Ke/vz9CQkIwb948tG7dGidOnMCBAwekq5rj4+NlNiJSUlLCvn37YGpqCm9vb3Tv3h3W1tbYu3evdEVVXl4epkyZgpYtW6Jjx444ceIE9u/fjwEDBkj78fT0xLZt27Bhwwa0bNkSGzduxPbt2+UuiBWhQCKBCstxEBFRFdHS0oKVlXyi1MrKqsJ1oWuihNYvv/yCgQMHwtDQsMxYxGIxXF1dZcps1TRd9eJyHNyRnoiIiBTrmz7OMNNRw+TfLiMnv1DR4RARVViNL8EdP348YmJikJubiwsXLshsHhgeHo6YmBiZ9hYWFvj999+Rnp6OxMREbNmyReYC+Msvv8S9e/eQnZ2NFy9e4Pjx4+jVq5fceQcNGoRbt24hLy8PN2/elElSK1JBoQBlJqGJiKiKTJgwAXPmzEF2drb0WHZ2NubOnYsJEyZUqI9XS2i9qqxSVq+W0CpWWgmts2fP4sqVK9JND8siCAKuXr0qU2arpukwCU1ERES1hK66Cn4c1Ar3kzKx+OBtRYdDRFRhdaOw4TusQCJAmeU4iIioipw+fRpHjx6FlZUVWrZsCQC4du0aCgoKkJmZib59+0rb/vHHH6X2Ux0ltIqFhYXBwcEBPj4+cuedM2cO2rdvDwcHB6SlpWH58uW4evUqVq9e/Vbvy9tQV1GCspIIadyYkIiIiGqBDg7GCGhvg3UnH6Kbsxnc7Y0UHRIRUbmYhFawgkIJlLkxIRERVRFjY2O5DX/t7Owq3Y+/vz+eP3+OefPmIT4+Hs2bN69QCa3PP/8c3t7e0NDQQLdu3bBkyRKZTQnT09Oxbds2fPPNNyXWl05JSUFQUBASEhKgp6eHNm3a4NixY3Bzc6v0GKqKSCSCjroy0pmEJiIiolpieq+mOHY3CVN2XMFfE72hrcb0DhHVbvxXSsEKJALELMdBRERV5Ndff62yvsaPH4/x48eX+Fx4eLjcseISWmXR0dFBRkZGqc8vXboUS5curVScNUFXQ4XlOIiIiKjW0FRVxk+DW2Hwz9GYf+Am5vdvoeiQiIjKVKE6EHv27EFhIQveV4cCiQAVluMgIqIq9uDBA+zbtw/79+/HgwcPFB3OO09HXRlp2VwJTURERLWHq60hgjra439nHuPonSRFh0NEVKYKZT+HDRsGKysrTJs2Dbdvs/B9VREEAYUSAWKW4yAioiqSlpaGwYMHo3Hjxnj//ffRr18/ODg4YMiQIUhPT1d0eO8sHTWuhCYiIqLa54tuTeBgqo0vd1zBy8w8RYdDRFSqCiWhExISMGfOHBw9ehTOzs7o0KEDfv31V2RmZlZ3fHVagUQAAKiwHAcREVWRiRMn4urVq4iMjER2djays7Nx5MgRXL16FZMmTVJ0eO8sXQ1lJqGJiIio1lFXEWOpf2u8yMzD9F3XIAiCokMiIipRhZLQOjo6GDt2LE6fPo1r167B3d0d06dPh4WFBQIDA3H69OnqjrNOKigsmhyUxSzHQUREVeOPP/7A2rVr4ePjAxUVFaioqMDX1xdhYWHYs2ePosN7Z+moqyCNGxMSERFRLdTcSg9Tuzvi7+sJ2H7uiaLDISIqUaWzn87Ozvjiiy8QFBSEvLw8bN++HR07doS7uzuuXr1aHTHWWQUSCQBAmeU4iIioimRnZ8PIyEjuuKGhIXJychQQUd2graaMjFyuhCYiIqLaaUwHe3g1NsKcP2/gflLpm0ATESlKhZPQ+fn5+O2339CjRw/Y2dnhn3/+wZo1a/Ds2TM8evQITZo0gb+/f3XGWudIV0IzCU1ERFXEy8sLs2bNQlZWlvRYZmYmZs+eDU9PTwVG9m7TUBUjJ5+bNBMREVHtpKQkwk+DW0NNRQmTtl1GXoFE0SEREclQrkijCRMmYOvWrRCJRAgICMCSJUvg7OwsfV5DQwPff/89bG1tqyvOOin/v5XQYpbjICKiKrJkyRL07NkTVlZWaNmyJUQiEa5cuQItLS0cPHhQ0eG9szRVxMgvFJBfKIEK520iIiKqhcz11PHDwJYYu+kCfoq4jek9nRQdEhGRVIWuom7cuIEVK1bg6dOncgnoYpaWloiMjKzyAOuywuKNCbkSmoiIqkiLFi1w9+5d/Pjjj3B1dUXbtm2xaNEi3L17F82aNVN0eO8sDVUxACCbq6GJiKiGrVq1CnZ2dlBXV4eLiwuOHz9eZvtr167Bx8cHGhoasLKywnfffSe3Wd3Ro0fh4uICdXV12NvbY82aNXL97Ny5E87OzlBTU4OzszN2794t1yY+Ph4jR46EiYkJ1NXV4ezsjKNHj77dgOmtdG9mjg/cGiLs2AOcupes6HCIiKQqtBL6yJEj5XekrAwfH5+3Dqg+KS7HIWYSmoiIqkB+fj4aNGiAI0eOIDAwUNHh1CnSJHReIXTVVRQcDRER1Rfbt2/HxIkTsWrVKnTo0AGrVq1Cz549cePGDTRs2FCufVpaGrp16wZvb2+cO3cOt2/fxqhRo6ClpYXJkycDAB4+fIhevXph9OjR2Lx5M06cOIHx48fDxMQEAwcOBABER0fD398fc+bMwYABA7Br1y4MHjwYJ0+ehLu7OwAgJSUFXl5e6NChA/bv3w8TExM8ePAApqamNfcGUYlmveeEMw+fI/i3K/hrYkcYaKkqOiQiooqthJ4xY0aJd0bXrFmDWbNmVXlQ9UVB8Upofq2XiIiqgIqKClRUVCAS8eZmVdNQ+f8kNBERUU1ZsmQJRo0ahcDAQDg5OSE0NBQWFhZYvXp1ie23bNmCrKwsbNiwAc2bN8fAgQMxbdo0LFmyRLoaes2aNbC0tERoaCicnJwQGBiIkSNHYvHixdJ+QkJC0KlTJ8yYMQNOTk6YMWMGfH19ERISIm3z448/wsLCAhs3boSbmxvs7OzQpUsXODmxBISiaaoqY/nQNniemYsvd16VWwlPRKQIFcp+btq0CW3atJE77uLigo0bN1Z5UPVFQWFRTWhlMZMFRERUNSZMmIAFCxagoKBA0aHUKcVJ6CwmoYmIqIbk5eXhwoUL8PPzkznu5+eHU6dOlfia6OhodOzYERoaGtJj3bt3R1xcHGJiYqRtXu+ze/fuOH/+PPLz88ts8+p59+zZA3d3d/j7+8PU1BStW7fGihUrmPCsJZpb6WFaj6aIuPEM60/GKDocIqKKleNITEyEiYmJ3HEjIyM8e/asyoOqL4pXQiuzHAcREVWR48eP4+jRo7CyskLz5s2hpaUl8/wff/yhoMjebawJTURENS05ORmFhYUwMzOTOW5mZobDhw+X+JqEhARYW1vLtS9+zs7ODgkJCejatatcm4KCAiQnJ8PCwgIJCQklnjchIUH684MHD7Bq1Sp88cUX+Oqrr3D58mVMmDABAPDZZ5/JxRYWFoawsDAAQGxsLKKioirwLpQuIyPjrft4F7zNOBsJAtqYijF//w2Ikh/AXl9ctcFVEf4u65b6MM76MEag6sdZoSR0w4YNcfz4cdjb28scP3bsmNwERxVXXBNaWYnlOIiIqGoYGxtL6zlS1WE5DiIiUpTXy2wJglBm6a2S2r9+/E3bvHpMIpHA1dUVCxYsAAC0adMGd+/excqVK0tMQgcFBSEoKAgA4OrqCl9f31LHUBFRUVFv3ce74G3H2dY9H72WH8e6W8CBz72gp1n79rbg77JuqQ/jrA9jBKp+nBVKQo8dOxZffPEF8vLy0LlzZwBFmxVOnz4d06ZNq7Jg6pt8SVE5DjHLcRARURX59ddfFR1CnaSpWvSRiSuhiYiophgbG0MsFsusPgaKvqn8+irlYubm5iW2B/5/RXRpbZSVlWFkZFRmm1fPa2FhAWdnZ5k2Tk5OWLZsWUWHSDVAT1MFK4e1xeA1pzBlxxWEBbhw/xAiUogKLcGdPHkyxo4di88//xxNmjRBkyZNMHHiRAQGBuLLL7+s7hjrrMLijQm5EpqIiKpI586dkZKSInc8LS1NeiOZKk9DtWiuzspjrW0iIqoZqqqqcHFxQUREhMzxiIgIeHp6lvgaDw8PHD9+HDk5OTLtLS0tYWtrK23zejmPiIgIuLq6QkVFRdqmvPN6eXnh9u3bMm3u3LkDGxubyg2Uql3rBvr4qqcTIm48w7oTDxUdDhHVUxXOfi5YsADJyck4ffo0oqOjkZSUhIULF1ZnbHVe/n8bE4pZE5qIiKpIVFQU8vLy5I7n5OTg+PHjCoiobtD4byV0DldCExFRDQoODkZ4eDjWrl2LmzdvYuLEiYiLi8O4ceMAANOnT0eXLl2k7T/88ENoampi1KhR+Pfff7Fr1y4sXLgQwcHB0tWv48aNQ2xsLCZNmoSbN29i7dq1CA8Px5QpU6T9TJw4Ef/88w8WLFiAW7duYcGCBYiMjMSkSZOkbb744gucPn0a33//Pe7du4fff/8dy5cvx6efflozbw5VymgvW/g5m2HhX7dw8fFLRYdDRPVQpZbgamlpoV27dnBzc4O2tvYbnXDVqlWws7ODuro6XFxcyr0gFgQBISEhaNq0KdTU1GBhYYGvvvpK+vyuXbvg5+cHExMT6OjowN3dXW7TpfDwcIhEIrnHq3eHFUG6EprlOIiI6C1dvHgRFy9eBABcvXpV+vPFixdx7tw5hIWFwcrKSsFRvruKa0JnsSY0ERHVIH9/f4SEhGDevHlo3bo1Tpw4gQMHDkhXG8fHx+P+/fvS9np6eoiIiEBcXBxcXV3x6aefYvLkyQgODpa2sbOzw4EDB3Ds2DG0bt0a33//PZYvXy6zp4Snpye2bduGDRs2oGXLlti4cSO2b98Od3d3aZt27dphz549+O2339C8eXPMmDEDc+fOxfjx42vgnaHKEolEWDSoFcz11DHhf5eQkiW/aIGIqDpVqCY0AERGRmLr1q14/Pix3Aqrf/75p0J9bN++HRMnTsSqVavQoUMHrFq1Cj179sSNGzfQsGHDEl8zefJk7Nu3D4sWLUKLFi2QmpqK+Ph46fNHjx5F586dMW/ePBgaGmLLli3o378/oqKi0LFjR2k7TU1NmckZANTV1Ss6/Goh3ZhQzHIcRET0dlxdXaU3Wf38/OSe19DQQGhoqAIiqxs0Vf/bmJAroYmIqIaNHz++1MRueHi43LEWLVrg2LFjZfbp4+MjvXldmkGDBmHQoEFltunduzd69+5dZhuqPfQ0VbDyw7YYtOYUJm67jPWj2vGb2URUYyqUhA4PD8e4ceOkyd1+/frhzp07ePjwIYYPH17hky1ZsgSjRo1CYGAgACA0NBR///03Vq9eLd1R91W3b99GaGgorl69CicnJ+nxNm3aSP/79U0PZs+ejf3792PPnj0ySWiRSARzc/MKx1oTCv5bCa3Mf/SJiOgtPXz4EIIgwN7eHmfPnoWJiYn0OVVVVZiamkIsFiswwnebmrISRCIghyuhiYiI6B3WqoE+Zvdphpl7/sWyw3cQ7Oeo6JCIqJ6o0BLcxYsXY8WKFdi6dStUVFSwYMECXLp0CcOHD69wWY68vDxcuHBBbnWWn58fTp06VeJr9u7dC3t7e/z999+wt7eHra0tRo4cKd3dtzTp6ekwMDCQOZadnQ0bGxtYW1vjvffew6VLlyoUd3Uq+K8mtDLLcRAR0VuysbGBra0tJBIJXF1dYWNjI31YWFgwAf2WRCIRNFTELMdBRERE77xh7g0x2MUay/+5h4gbzxQdDhHVExVaCf3gwQN07doVAKCmpoaMjAwAwGeffQZfX98KbVCYnJyMwsJCmJmZyRw3MzOT25n31fM+evQI27Ztk9Z1njJlCvr06YPo6GgoKcnn0FeuXInY2FgEBARIjzk6OmL9+vVo1aoV0tPTsWzZMnh5eeHKlStwcHCoyFtQLfK5EpqIiKrBkydPcPz4cSQmJkIikcg892pNSKocDRUxy3EQERHRO08kEmHu+81x+1k6grdfxt7PvGBv8mb7fhERVVSFktBGRkZIT08HAFhZWeHff/9Fy5Yt8fz5c2RnZ1fqhMU78hYTBEHuWDGJRILc3Fxs2rQJTZo0AQBs2rQJjo6OOHfunMymCACwc+dOTJ06Fdu2bZNu1AAAHh4e8PDwkP7s6emJ1q1bIzQ0FMuXL5c7b1hYGMLCwgAAsbGxiIqKqtQYX5eRkVFiH//GFQAALpw7h1itd78udGnjrEvqwxgBjrMuqQ9jBOrPOCtiy5YtGD16NJSVlWFiYiIzx4pEIiah34KGqhjZXAlNREREdYC6ihirh7ugT+gJjN10AXs+9YKWWoW3DSMiqrQK/QvTsWNHHDp0CC1atMCQIUPw+eefIyIiAkeOHEG3bt0qdCJjY2OIxWIkJCTIHE9MTJRbHV3MwsICysrK0gQ0ADg4OEBZWRmPHz+WSULv3LkTAQEB2LhxI/r27VtmLGKxGK6urrh7926JzwcFBSEoKAhA0UZPvr6+FRliqaKiokrsI/H8E+DqVXh6tEcDQ823OkdtUNo465L6MEaA46xL6sMYgfozzor45ptvMHnyZMydO5clOKoYV0ITERFRXWKlr4HQD9ogYN0ZTN1xBSs/bFvqIkEiordVoeW3K1aswAcffAAAmD59OqZOnYrnz59jyJAhWLt2bYVOpKqqChcXF0RERMgcj4iIgKenZ4mv8fLyQkFBAe7fvy899uDBAxQUFMisdP7tt98wfPhwhIeHl7t7L1C0+vrq1auwsLCoUOzVpfC/chwq4nd/FTQREdUOz549w5gxY6okAb1q1SrY2dlBXV0dLi4uOH78eJntBUFASEgImjZtCjU1NVhYWOCrr76SPh8VFQWRSCT3uHXrlkw/O3fuhLOzM9TU1ODs7Izdu3e/9ViqgoYqa0ITERFR3eLV2BjTejTFgWsJCDv2QNHhEFEdVu5K6IKCAmzbtg3vv/8+AEBJSQnTpk17o5MFBwcjICAAbm5u8PLywpo1axAXF4dx48YBKEpwnz17FkeOHAEAdO3aFW3btsXo0aMREhICAJg0aRLc3d3h6uoKANi2bRsCAgKwePFieHt7S1daq6qqwtDQEAAwZ84ctG/fHg4ODkhLS8Py5ctx9epVrF69+o3GUVW4MSEREVW1Xr164cyZM7C3t3+rfrZv346JEydi1apV6NChA1atWoWePXvixo0baNiwYYmvmTx5Mvbt24dFixahRYsWSE1NRXx8vFy769evS+doADAxMZH+d3R0NPz9/TFnzhwMGDAAu3btwuDBg/+vvTsPi6ps/wD+nZUdZF9EWRQQxAVBCVDEDVOzcnupjPCtRKMF10rtl1mWWaQoqbxuoWZqpmalWbigoLijmFtuaAiI4Aayz5zfH+jkyCIqMDDz/VzXXHrOec45983ROcw9z3ke7N27t8owXI2NPaGJiIhIG0UGuyI98zZmbzsDT3tTBLtbP3onIqLH9MgitFQqxeTJkzFo0KCnPllYWBjy8/Mxc+ZMZGdnw9vbG1u3blX1as7Ozlbr9SwWi/Hbb7/hvffeQ3BwMAwMDNCvXz/MmTNHNSlhfHw8KioqMG7cOIwbN061b8+ePVXjg966dQuRkZHIycmBmZkZfHx8sGfPHnTr1u2pc3oaFZyYkIiI6lm/fv3wwQcf4OTJk+jQoQNkMpna9qFDh9bpOHPmzMGoUaMwevRoAEBcXBy2bduGRYsWYdasWVXanz17FnFxcUhPT4enp6dqvY+PT5W2NjY2sLKyqva8sbGx6NWrF6ZNmwYAmDZtGnbt2oXY2FisWbOmTrE3FAO5BPmFZRqNgYiItMNPP/2ETz75BH/99ZemQyGCSCTCV8M74sL1Qrz9w1H8/HYQ2nCiQiKqZ3UaE/qZZ57BkSNH1IbAeFJRUVGIioqqdltCQkKVdfb29li/fn2Nx6vLRFRz587F3Llz6xpio6lQ3CtCczgOIiKqJ2PGjAEAfPHFF1W2iUQiKBSP7slbVlaGI0eOYNKkSWrrQ0NDsW/fvmr32bx5M1xdXbFt2zYMGjQISqUSPXv2xNdffw0bGxu1tn5+figtLYWXlxc++ugj9OrVS7UtNTUV7777rlr7/v3749tvv31k3A3NUC5BJntCExFRHS1ZsgR//vknZDIZoqOj4e/vj927d2PcuHE4e/YswsPDNR0ikYqRnhRLI/zwwrd78eaKw9gUFYgWhnJNh0VEWqRORejRo0dj0qRJuHLlCnx9fWFkZKS2vUuXLg0SnLYrV94bjoM9oYmIqJ4o791bnkZeXh4UCkWViYNtbW2xffv2ave5ePEiLl++jLVr1yIhIQEikQiTJk3C4MGDkZqaCrFYDHt7eyxatAhdu3ZFWVkZVq1ahT59+iApKQnBwcEAgJycnGrP+/DExvctXrwYixcvBgBkZmbW6cvp2hQWFtZ4jNv5pbh5R/HU52gKastTW+hCjgDz1Ca6kCOgO3nGxMRg6tSp6NixI06fPo3Nmzdj+vTp+Prrr/HOO+/g7bffrvGpICJNcTQ3xP/CffHKkgN4+4ejSPhvN85hRUT1pk5F6FdeeQVA5ZjOD6trryqqSqHgcBxERNR0PTw7uiAINc6YrlQqUVpailWrVsHd3R0AsGrVKnh4eODQoUPw9/eHh4cHPDw8VPsEBAQgIyNDNa/Dk5w3MjISkZGRACp7WIeEhDx2ng9KSkqq8Rjbb53A6ds5T32OpqC2PLWFLuQIME9togs5ArqT57JlyxAfH4/XX38dSUlJ6N27N/7880+cO3cOLVq00HR4RDXyc7bA50O8MfmndHz22yl8+oK3pkMiIi1Rp6+0Ll26VOPr4kXOnvqkyu+NCS1hEZqIiJ5SYGAgbt26pVqeMmUKbty4oVrOy8urcULBh1lZWUEikVTpfZybm1ull/J99vb2kEqlqgI0ALi5uUEqleLKlSs1nsvf3x/nzp1TLdvZ2T3WeRuTgUyCorIKTYdBRETNwOXLl9G3b18AQEhICGQyGT7//HMWoKlZGOHXCpHBrliZehmr9l/WdDhEpCXqVIR2cnKq9UVPRqFUQioW1di7i4iIqK7279+PsrJ/J81bsGCBWlFaoVDg6tWrdTqWXC6Hr68vEhMT1dYnJiYiMDCw2n2CgoJQUVGhNsHwxYsXUVFRUevvCseOHYO9vb1qOSAg4LHO25gM5FKUlCuhvPclMhERUU1KSkqgr6+vWpbL5bC2ttZgRESP54Nn26F3Oxt88stJ7Dufp+lwiEgL1Gk4jo0bN9a6fejQofUSjK6pUAiQSliAJiKi+icIT1conTBhAsLDw9GtWzcEBQUhPj4eWVlZGDt2LIDKntYHDx7Ejh07AAB9+/ZFly5d8PrrryM2NhYAMG7cOPj7+8PPzw8AEBsbC2dnZ7Rv3x5lZWX4/vvv8fPPP2PDhg2q80ZHRyM4OBizZs3CkCFDsGnTJuzatQspKSlPlU99MJBJAAAlFQoYyuv0KxQREemw+Ph4GBsbAwAqKiqwbNkyWFpaqrWpbshLoqZAIhZh3kudMWzRPry1+ig2vBWItjbGmg6LiJqxOn2CGj58eLXr7/fg5ZjQT6ZCKUAq5iD/RETU9ISFhSE/Px8zZ85EdnY2vL29sXXrVlWv5uzsbLVez2KxGL/99hvee+89BAcHw8DAAP369cOcOXMgvnevKysrw6RJk3D16lUYGBigffv22LJlCwYOHKg6TmBgINauXYuPPvoI06dPR5s2bbBu3Tr4+/s37g+gGkZ6lUXowtIKFqGJiKhWrVu3xnfffadatrOzww8//KDWRiQSsQhNTZqJvgzLIrpiyMK9GPXdQWyKCoK1iZ6mwyKiZqpOn6CUSqXackVFBdLS0jB58mR8/vnnDRKYLqhQKNkTmoiI6oVIVHV4p6cd7ikqKgpRUVHVbktISKiyzt7eHuvXr6/xeO+//z7ef//9R553+PDhNX4BrklmBjIAwO2ictiY6D+iNRER6bKMjIxHbq/LPZFI01pZGGJZRFe8tHg/3lxxCGsin+GX8UT0RJ7onUMqlaJr16744osv8NZbb+H48eP1HZdOKFcKkHJSQiIiqgeCIODVV1+Fnl5l75SSkhKMHj0ahoaGAIDS0lJNhqcVzA3lAICbReUajoSIiJq727dvqw1HRdSUdWrVAvNf9sGYVYfx3po0/C/cDxLWMojoMT3V11ctWrRQexSXHo9CweE4iIiofkRERKgtv/rqq1XavPbaa40Vjlb6twhd9oiWRERERNqln5ctPnm+PT7efBIzfj2JGc+3f+qn7ohIt9SpCH306FG1ZUEQkJ2djdmzZ8PHx6dBAtMF5Uolvz0kIqJ68eC4k9QwWhhWDsdxi0VoIiIi0kGvBTgj82YxFu+5iFbmhhgd7KrpkIioGalTEdrPzw8ikQiCIKitf+aZZ/ih9ykolAJkHBOaiIioWTA34nAcREREpNs+fLYdrt4sxudbT8OhhQEGdbTXdEhE1EzUqQh96dIltWWxWAxra2vo63NSnqdRoRAglXA4DiIioubASC6BTCLicBxERPRIzz//fK3b79y500iRENUvsViEb/7TCdfulGD8umMwN5QhsK2VpsMiomagTkVoJyenho5DJ5UrlJyYkIiIqJkQiURoYSjHrbvsCU1ERLWztLR85HYXF5dGioaofunLJFgW0RX/+V8qRq88jDWRz6CjYwtNh0VETVyditDTpk1Dq1atMHbsWLX18fHxuHr1Kj777LMGCU7bKZQCpByOg4iIqNkwN5SxJzQRET0Sh60kbWdmKMPKN7ph2KJ9GPXdIawfG4A21saaDouImrA6jQWxatWqaicg9PX1xcqVK+s9KF1RrhQgEXM4DiIiouaihaEctzgmNBERERFsTfWx6g1/iEXAa8sOIud2iaZDIqImrE4V0NzcXFhbW1dZb2lpiWvXrtV7ULpCoVRCxuE4iIioHu3evRsHDhxQLSckJKB79+4YM2YMCgsLNRiZdjA3lOFWMXtCExEREQGAi5UREv7bDbeLyxG+7ABu8YkxIqpBnYrQrVu3RnJycpX1e/bsgaOjY70HpSvKFQIkLEITEVE9GjduHHJycgAAZ8+exZgxY9CxY0ekpqZi8uTJGo6u+TM3lOMme0ITERERqXi3NMOS1/xw+UYR/ptwCEVlFZoOiYiaoDoVoceMGYPx48djyZIluHDhAi5cuIDFixdj4sSJiIyMbOgYtZZCKUAm4XAcRERUfy5cuIAOHToAADZs2IB+/fph4cKFWLJkCX799VcNR9f8VQ7HUQZBEDQdChEREVGTEdDGEnEv++D4P7cQufIISsoVmg6JiJqYOk1MOHHiROTl5eG9995DWVnloxVyuRzR0dF4//33GzRAbVahUEKqX6dLQEREVCcikQgKReUv/Tt27MCQIUMAAHZ2dsjPz9dkaFrB3FCGcoWAu2UKGOvxHk5ERER0X//2dvh6eCdMXH8cUauPIv5VX8il7HhHRJXq/G4wa9Ys5OXlYf/+/UhNTcX169fx5ZdfNmRsWq9cIUDK4TiIiKgede3aFZ999hlWrVqF5ORkDBgwAACQkZEBOzs7DUfX/JkbygEAN+9yvEMiIiKihw3zdcTnQ7yx80wuotemoUKh1HRIRNRE1KkInZOTg8zMTBgZGaFr167o1q0bjI2NkZmZ+dgTEy5cuBAuLi7Q19eHr69vtWNNP0gQBMTGxqJdu3bQ09ODvb09PvzwQ7U2u3fvhq+vL/T19eHq6or4+Pgqx9mwYQO8vLygp6cHLy8vbNq06bHibggKpQCpmN8KEhFR/YmNjcWxY8fwzjvvYNq0aWjTpg0AYP369QgMDNRwdM1fC0MZAOAmJ90hIiIiqtZIfyd8/JwXfv8rBxPXH4dCyWHMiKiORejw8HD8/vvvVdb/8ccfCA8Pr/PJ1q1bh+joaEydOhVpaWkIDAzEgAEDcOXKlRr3mThxIhYuXIjZs2fj9OnT2Lp1K4KDg1XbL126hIEDByIwMBBpaWmYMmUK3n33XWzYsEHVJjU1FWFhYRg5ciSOHTuGkSNHYsSIEThw4ECdY28I5UolJBL2hCYiovrj7e2N9PR03L59G9OnT1etj4mJQUJCguYC0xIOLQwAAJk3izUcCREREVHT9Xp3F7z/rAc2H8vClI3pULIQTaTz6lSEPnTokFrh974ePXrg8OHDdT7ZnDlzMGrUKIwePRqenp6Ii4uDvb09Fi1aVG37s2fPIi4uDps3b8YLL7wAV1dX+Pj4YODAgao28fHxcHBwQFxcHDw9PTF69GhEREQgJiZG1SY2Nha9evXCtGnT4OnpiWnTpiEkJASxsbF1jr0hKJQCZByOg4iI6pFSqYRS+e9jjzk5OVi6dCmOHj0KmUymwci0g6u1EQDgQm6hhiMhIiIiatqiQtrivT5u+PFwJqb/cpITOxPpuDoVoSsqKlBaWlplfUlJSbXrq1NWVoYjR44gNDRUbX1oaCj27dtX7T6bN2+Gq6srtm3bBldXVzg7OyMiIgK5ubmqNqmpqVWO2b9/fxw+fBjl5eW1tqnpvI2lQiFAwuE4iIioHg0aNAhxcXEAgMLCQvj5+WHy5Mno2bMnVq5cqeHomj9DuRQtWxjgwnUWoYmIiIgeZXxfN4wJdsWq/Zcx49dTLEQT6bA6Tevu7++PRYsWVemxvGDBAnTt2rVOJ8rLy4NCoYCtra3aeltbW2zfvr3afS5evIjLly9j7dq1SEhIgEgkwqRJkzB48GCkpqZCLBYjJycHffv2rXLMiooK5OXlwd7eHjk5OdWeNycnp9rzLl68GIsXLwYAZGZmIikpqU451qSwsLDaY9wtLsH13BwkJd18quM3FTXlqU10IUeAeWoTXcgR0J086+LIkSP46quvAAAbN26EqakpLl26hNWrVyMmJgavvfaahiNs/lytjXDh+l1Nh0FERETU5IlEInw4oB2UgoAlyZdQoVTi0+e9IeZT4UQ6p05F6M8//xy9e/fG8ePH0adPHwDAzp07cfToUezYseOxTigSqb/RCIJQZd19SqUSpaWlWLVqFdzd3QEAq1atgoeHBw4dOgR/f/8aj/nw+sc5b2RkJCIjIwEAfn5+CAkJqWN21UtKSqr2GJLkRLR2tENISIenOn5TUVOe2kQXcgSYpzbRhRwB3cmzLgoKCtCiRQsAwJ9//okhQ4ZAJpOhd+/eePvttzUbnJZoY22MHw//U+vvEkRERERUSSQSYepAT4jFIvxv90UolMDnL7IQTaRr6jQWxDPPPIPU1FS4uLhg48aN2LBhA1xdXZGamoqioqI6ncjKygoSiaRK7+Pc3NwqvZTvs7e3h1QqVRWgAcDNzQ1SqVQ1maGdnV21x5RKpbC0tKy1TU3nbSzlCiWkHI6DiIjqUevWrbF3717cvXsXf/zxB/r16wcAuHHjBgwNDTUcnXZoY2OMojIFcu6UaDoUIiIiomZBJBLhw2fb4e1ebbDm4BV8yMkKiXROnSugnTp1wurVq3Hy5En8+eefcHd3x5AhQ9C/f/867S+Xy+Hr64vExES19YmJiQgMDKx2n6CgIFRUVODChQuqdRcvXkRFRQWcnJwAAAEBAVWG80hMTISfn59qAqaAgIDHOm9jUSgFSPnNHxER1aMJEyYgPDwcjo6OaNmypWpi4T179qBDB+148kbT2qgmJ+SQHERERER1JRKJMCnUQzVZ4eSf0qFgIZpIZ9S5CK1QKLBp0yYMGjQILi4u+Pnnn/HWW2/h/PnzdT7ZhAkTkJCQgKVLl+L06dOIjo5GVlYWxo4dCwCYMmWKargPAOjbty+6dOmC119/HWlpaUhLS8Prr78Of39/+Pn5AQDGjh2LzMxMjBs3DqdPn8bSpUuRkJCASZMmqY4THR2NnTt3YtasWThz5gxmzZqFXbt2Ydy4cXWOvSGUKwVIJCxCExFR/RkzZgxSU1OxfPlypKSkQHzviZs2bdrgs88+03B02qGtjTEA4Oy1Ag1HQkRERNS8iEQiTOjnjvF93bHhaCYmrT/OQjSRjnhkEfrs2bOYPHkyHBwcMHHiRPj4+EAQBKxatQrvv/8+XFxc6nyysLAwxMbGYubMmejcuTNSUlKwdetWVa/m7OxstV7PYrEYv/32G2xsbBAcHIz+/fvD0dERmzdvVn2odnFxwdatW7Fnzx507twZn3/+OebPn49hw4apjhMYGIi1a9dixYoV6NixI1auXIl169apxpTWFIVSgIzDcRARUT3z8/PDkCFDYGxsrFo3aNAgBAUFPdZxFi5cCBcXF+jr68PX1xfJycm1thcEAbGxsWjXrh309PRgb2+PDz/8ULV948aNCA0NhbW1NUxMTODv749ffvlF7Rj3JyJ++FVS0nSGvrA21oOVsRyns+9oOhQiIiKiZim6rxsm9/fAprSrWHCsFKUVCk2HREQNrNaJCXv06IG//voLw4cPx48//oiePXsCAGbPnv3EJ4yKikJUVFS12xISEqqss7e3x/r162s9Zs+ePXH06NFa2wwfPhzDhw+vc5wNTRAEKJQCJByOg4iI6tmWLVswe/ZsnDp1CiKRCF5eXvjggw8wcODAOh9j3bp1iI6OxsKFC9G9e3csXLgQAwYMwKlTp9C6detq95k4cSJ+++03fP311+jQoQNu376N7Oxs1fbdu3ejd+/emDlzJiwsLLB69WoMGTIESUlJ6NGjh6qdoaGh2pfSAKCvr/+YP4WGIxKJ4OVgxiI0ERER0VN4u1dbGMolmPHrKbyRcBj/C/eFkV6tZSoiasZq/d+dmpqKt99+G6NHj4a3t3djxaQTKu49biLjcBxERFSPli5diqioKIwcORIREREAgOTkZAwZMgSLFi3C66+/XqfjzJkzB6NGjcLo0aMBAHFxcdi2bRsWLVqEWbNmVWl/9uxZxMXFIT09HZ6enqr1Pj4+qr/PmzdPbZ/p06djy5Yt+Pnnn9WK0CKRCHZ2dnVPWgO87E2xPOUSyiqUkEv5VBMRERHRk/hvkAuuZpzH8r/y8OqyA0gY1Q1mhjJNh0VEDaDWT02HDx9GRUUFevToAR8fH8ydOxc5OTmNFZtWq1BUFqGlEn5wJSKi+jN79mzMmTMH3333Hd544w288cYbSEhIQExMDL788ss6HaOsrAxHjhxBaGio2vrQ0FDs27ev2n02b94MV1dXbNu2Da6urnB2dkZERARyc3NrPVdBQQHMzc3V1hUXF8PJyQmOjo547rnnkJaWVqe4G5OXgynKFEpcuF6o6VCIiEjLPe7wWCdOnEDPnj1hYGCAli1b4tNPP4UgqI+5u3v3bvj6+kJfXx+urq6Ij4+vcpwNGzbAy8sLenp68PLywqZNm2o85xdffAGRSIR33nnnyZIknda9pQwLR3bByat3ELY4FbkFTWcYNiKqP7X2hO7cuTMWLFiAb775BuvXr8eyZcvw/vvvQ6lUYsuWLbC3t6/ywZHqplypBABIORwHERHVoytXruDZZ5+tsn7AgAFqk/bWJi8vDwqFAra2tmrrbW1tsX379mr3uXjxIi5fvoy1a9eqxnWeNGkSBg8ejNTUVNVcDg9asGABMjMzER4erlrn4eGB5cuXo1OnTigoKMC8efMQFBSE48ePw83NrcoxFi9ejMWLFwMAMjMzkZSUVKcca1JYWFinYxQWVt7HN+48gKCWza+3Tl3zbM50IUeAeWoTXcgR0J0868vjDo91584d9OvXD8HBwTh06BDOnj2LUaNGwcjICBMnTgQAXLp0CQMHDsTrr7+O77//HikpKYiKioK1tbVqbqXU1FSEhYVhxowZGDp0KDZu3IgRI0Zg7969VeZW2r9/P5YsWYKOHTs2/A+EtNaz3vZYNkqKyJVH8J/4VHz/pj8czQ01HRYR1aM6Dbajr6+P8PBwhIeH4/z581i6dCnmzp2Ljz76CL1798bvv//e0HFqHcX9ntAsQhMRUT1q3bo1EhMT0bZtW7X1f/75p2oi4LoSidTvUYIgVFl3n1KpRGlpKVatWgV3d3cAwKpVq+Dh4YFDhw5V+cC6YcMGTJ48GWvXrlWLKyAgAAEBAarlwMBAdO7cGXFxcZg/f36V80ZGRiIyMhJA5YSMISEhj5Xjw5KSkup0DIVSwMyDf6DM2B4hIc1vyLK65tmc6UKOAPPUJrqQI6A7edaXxx0ea/Xq1SgqKsKKFStgYGAAb29vnD59GnPmzMGECRMgEokQHx8PBwcHxMXFAQA8PT1x4MABxMTEqIrQsbGx6NWrF6ZNmwYAmDZtGnbt2oXY2FisWbNGdb7bt29j5MiRWLZsGT799NOG/nGQluvhZo3v3+yG/353CMMW7cOK17uhnZ2ppsMionry2GNBtG3bFl9++SX++ecf/Pjjj5DL5Q0Rl9a73xNawuE4iIioHk2aNAnR0dEYPXo0vvvuOyQkJODNN9/E+PHj69wT2srKChKJpMoQXLm5uVV6R99nb28PqVSqKkADgJubG6RSKa5cuaLWdsOGDQgPD8fKlSvx/PPP1xqLRCKBn58fzp07V6fYG4tELIJP6xY4lHFT06EQEZGWepLhsVJTU9GjRw8YGBio1vXv3x9ZWVnIyMhQtXn4mP3798fhw4dRXl5ea5uHzxsZGYnhw4ejd+/eT5Qj0cN8nSywbkxlh4QRi1KReiFfwxERUX154mlHJRIJXnjhBbzwwgv1GY/OUNyfmJA9oYmIqB6NGTMGNjY2+Oabb7Bx40YAlT2cfvzxxzrfs+VyOXx9fZGYmIgRI0ao1icmJqp6SD0sKCgIFRUVuHDhAtq0aQOgcoiOiooKtZ7OP/74IyIiIrBixQoMHz78kbEIgoD09HR06tSpTrE3pq7OFpi34xzulJTDVL/5DclBRERN25MMj5WTkwNHR8cq7e9vc3FxQU5ODvr27VulTUVFBfLy8mBvb4+cnJxqz/vgF9RLlizB+fPnsWrVqjrlo6khtJo7Xcizuhzf9xHjm8NlCF+6H6M76sHf/onLV02GLlxLQDfy1IUcgfrPs/n/L26m7k9MKGERmoiI6kl5eTmmTZuGt99+GykpKU91rAkTJiA8PBzdunVDUFAQ4uPjkZWVhbFjxwIApkyZgoMHD2LHjh0AgL59+6JLly54/fXXERsbCwAYN24c/P394efnBwBYu3YtwsPDERMTg+DgYNUHWblcDgsLCwDAjBkz8Mwzz8DNzQ137tzB/PnzkZ6ejkWLFj1VPg2hm7MFBAE4knETvdrZaDocIiLSUo8zPFZN7R9e/6Rt7q87e/Yspk6diuTk5Do/Ha2pIbSaO13Is6Yc+/Qsw5srDmPR8ZuwatUGb3R3afzg6pEuXEtAN/LUhRyB+s+TY0FoSLmicjgOGYfjICKieiKTybBw4ULVB8mnERYWhtjYWMycOROdO3dGSkoKtm7dqurVnJ2djQsXLqjai8Vi/Pbbb7CxsUFwcDD69+8PR0dHbN68WTUpYXx8PCoqKjBu3DjY29urXkOHDlUd59atW4iMjISnpydCQ0Nx9epV7NmzB926dXvqnOqbT2tzSMUiHMy4oelQiIhICz3J8Fh2dnbVtgf+7RFdUxupVApLS8ta29w/RmpqKvLy8uDt7Q2pVAqpVIrdu3dj4cKFkEqlKC0tfcKsif7VwlCO79/0x7Pt7fDZb6fw+ZZTUCqf/vdcItIMVkA15P5wHOwJTURE9al///7YuXNnvRwrKioKGRkZKC0txZEjRxAcHKzalpCQoBpb8j57e3usX78eBQUFyM3NxerVq9U+JCclJUEQhCqvBx/xmjt3Li5fvozS0lLk5ubijz/+UJuosCkxkEvQxckcf/yVUy+FfyIiogc9ODzWgxITExEYGFjtPgEBAUhOTkZJSYlaewcHBzg7O6vaPDycR2JiIvz8/CCTyVRtajvviy++iBMnTuDYsWOql5+fH1566SUcO3aMc0dRvdGXSbBgZBe8FuCEJcmX8O7aNJSUKzQdFhE9AQ7HoSHl94bjkElYhCYiovrTp08fTJ06Fenp6fD19YWRkZHa9gd7HdPTC/NrhYnrjyP1Yj4C21hpOhwiItIyjzs81iuvvIIZM2Zg1KhR+Oijj/D333/jyy+/xPTp01VDaYwdOxbffvstxo0bhzFjxmDv3r1ISEjAmjVrVOeNjo5GcHAwZs2ahSFDhmDTpk3YtWuXarivFi1aoEWLFmqxGhkZwcLCAt7e3o3wkyFdIhGLMOP59mjZwgBfbjuDzJvFWPKaL2xM9DUdGhE9BhahNeR+T2ipmJ3RiYio/rzzzjsAgPnz51fZJhKJoFCw50h9GtTRHp9tOYXV+6+wCE1ERPUuLCwM+fn5mDlzJrKzs+Ht7V3r8FhmZmZITEzE22+/DT8/P5ibm2PixImYMGGCqo2Liwu2bt2K8ePHY9GiRXBwcMD8+fPVJh8ODAzE2rVr8dFHH2H69Olo06YN1q1bB39//8ZLnugBIpEIY3q2gbOVEcatPYYXv92LpRFd4eVgqunQiKiOWITWkHJl5ZjQEvaEJiKieqS8d3+hxqEvk2CojyO+338Zt4vKYWYo03RIRESkZaKiohAVFVXttoSEhCrrOnTogD179tR6zJ49e+Lo0aO1thk+fDiGDx9e5zgfHF6LqKH0b2+H9WMD8OaKwxgRvw/zX/ZBH8/qx0gnoqaF3XA15H5PaBl7QhMRETVrQ7u0RJlCid9OZGk6FCIiIiKt593SDJvfCYKrtTHeXHkYS5Mvcn4OomaAFVANKVfc6wnNiQmJiKge/P7773B2dsbt27erbLt9+zacnZ3x559/aiAy7dfewRRuNsbYdPSqpkMhIiIi0gm2pvr4cUwA+nvZYeaW05i66S9VnYWImiYWoTWkghMTEhFRPfr2228xefJkmJmZVdlmZmaGDz74APPmzdNAZNpPJBJhmK8jDl++ibM5BZoOh4iIiEgnGMglWDiyC6JC2mDNwSsYufQArheUajosIqoBi9Aacn84DvaEJiKi+pCeno6+ffvWuL137944fvx4I0akW8L8WkFfJsZ3ey9pOhQiIiIinSEWi/D+s+0QG9YZ6Zm3MDguBcf+uaXpsIioGixCa8j9x0RkEl4CIiJ6etevX4e4lnkGRCIR8vPzGzEi3WJuJMfQLo7YmHYV+YXsgUNERETUmF70aYkNbwVCKhHhP/GpWHfoiqZDIqKHsAKqIfd7Qks5HAcREdUDR0dHpKen17g9PT0dLVu2bMSIdM9/A51RVqHEmoP80ENERETU2No7mOHXd7qjm4sFPthwAtM2nUBZBceJJmoqWITWkPL7RWgOx0FERPVg0KBB+L//+z8UFxdX2VZUVISPP/4YgwYN0kBkusPN1gTB7tZYmXqZH3iIiIiINMDcSI4Vr3fD2J5tsPrAFby8ZD+u3SnRdFhEBBahNUahrPxwKq3l0WkiIqK6mjZtGm7fvg03NzfMnj0bmzdvxubNm/Hll1/C3d0dt2/fxtSpUzUdptZ7PcgZuQWl2HIiS9OhEBEREekkiViEDwe0w7ev+OB09h08F5eCAxc5LB2RpjV6BXThwoVwcXGBvr4+fH19kZycXGPbjIwMiESiKq9t27ap2owaNaraNkZGRqo2CQkJ1bYpKdHct2HlCk5MSERE9cfGxgb79u1Dx44dMXXqVAwZMgRDhgzBtGnT0LFjR+zduxe2traaDlPrBbtZo421EZalXIIgCJoOh4iIiEhnPdfRAZuigmCsJ8XLS/Zjwa7zUCr5+xmRpkgb82Tr1q1DdHQ0Fi5ciO7du2PhwoUYMGAATp06hdatW9e437Zt29CpUyfVsoWFherv8+bNw5dffqnWPigoCMHBwWrrDA0NceHCBbV1+vr6T5POU6m4V4TmxIRERFRfnJycsHXrVty8eRPnz5+HIAhwc3ODubm5pkPTGWKxCP8NcsFHP/+FQxk30c3F4tE7EREREVGD8LAzwS/vBGHqpr/w9R9nsf9iPmLDOsPSWE/ToRHpnEatgM6ZMwejRo3C6NGj4enpibi4ONjb22PRokW17mdpaQk7OzvVSy6Xq7aZmZmpbbtw4QIuXryI0aNHqx1DJBKptbOzs2uQHOvq/nAc7AlNRET1zdzcHF27dkW3bt1YgNaAoV1aooWhDEuSL2o6FCIiIiKdZ6Ivw/yXOuOLIR1w4NINDJyfzOE5iDSg0YrQZWVlOHLkCEJDQ9XWh4aGYt++fbXuO3ToUNjY2CAoKAg//fRTrW2XLFmC9u3bIzAwUG19cXExnJyc4OjoiOeeew5paWlPlkg9KVf1hGYRmoiISJsYyqV47RknbD99DReuF2o6HCIiIiKdJxKJ8Ip/a/wcFQQjeeXwHN/uPMfhOYgaUaMNx5GXlweFQlFlPEpbW1ts37692n2MjY0RExODoKAgSKVS/PLLLwgLC8OKFSvw6quvVml/+/ZtrF+/Hl988YXaeg8PDyxfvhydOnVCQUEB5s2bh6CgIBw/fhxubm5VjrN48WIsXrwYAJCZmYmkpKQnzLpSYWFhlWOcvVQOAEjdtxcGUu0oRFeXp7bRhRwB5qlNdCFHQHfypObjtUBn/G/PRSzcdQHf/KfTo3cgIiIiogbn5WCKX97tjqkbTyDmz79x4NINfPOfTrAx0dxwrUS6olHHhAYqv316kCAIVdbdZ2VlhYkTJ6qW/fz8kJeXh6+++qraIvT3338PhUKB8PBwtfUBAQEICAhQLQcGBqJz586Ii4vD/PnzqxwnMjISkZGRqnOGhITUOb/qJCUlVTnGKZwHzp5Fr57B0JdJnur4TUV1eWobXcgRYJ7aRBdyBHQnT2o+rIz1EBHojCXJF/FGdxd4OZhqOiQiIiIiAmCsJ8W8lzojoI0lPvnlJAbEJmP2sI7o68VJvIkaUqMNx2FlZQWJRIKcnBy19bm5uVV6R9fG398f586dq3bbkiVLMGzYMLWJC6sjkUjg5+dX43Eag+LecBxSjglNRESkld4OaQszAxk+++0UBIGPehIRERE1FSKRCC93a43f3u0OW1N9vLnyMKZuOoGisgpNh0aktRqtCC2Xy+Hr64vExES19YmJiVXGb67NsWPHYG9vX2X9wYMHcfz48SoTElZHEASkp6dXe5zGUn5v3CFOTEhERKSdzAxlmNzfA6kX87H+SKamwyEiIiKih7jZmuDnt4Mwpqcr1hy8gkHzU3D8n1uaDotIKzVaERoAJkyYgISEBCxduhSnT59GdHQ0srKyMHbsWADAlClT0KdPH1X7FStW4IcffsDp06dx9uxZxMTEYMGCBXj33XerHHvx4sVwc3NDz549q2ybMWMG/vjjD1y8eBHHjh3DG2+8gfT0dNV5NaFCoYRULKpxKBIiIiJq/l7u2hrdnC0wa+tpFJayZw0RERFRUyOXijFlgCd+ePMZlJYrMGzRPny78xwUnLSQqF416pjQYWFhyM/Px8yZM5GdnQ1vb29s3boVTk5OAIDs7GxcuHBBbZ+ZM2fi8uXLkEgkcHd3x/Lly6uMB11QUIC1a9fi448/rraoe+vWLURGRiInJwdmZmbw8fHBnj170K1bt4ZL9hEUSoG9oImIiLScWCzCtEGeeGHBXqzYl4G3e7XVdEhEREREVI2ANpb4PToYH23+CzF//o2ks9cRM6ITnK2MNB0akVZo9IkJo6KiEBUVVe22hIQEteWIiAhEREQ88pgmJiYoLCyscfvcuXMxd+7cx4qzoZUrBMgkjdoRnYiIiDSgU6sW6NPOBov3XER4gBNM9WWaDomIiIiIqmFmKEPcyz7o084G/7f5Lzw7bw/e798OowKdIWZHQqKnwiqohiiUSkglfAMjIqKma+HChXBxcYG+vj58fX2RnJxca3tBEBAbG4t27dpBT08P9vb2+PDDD9Xa7N69G76+vtDX14erqyvi4+OrHGfDhg3w8vKCnp4evLy8sGnTpnrNSxPG9XXH7eJyJOzN0HQoRERERPQIL/q0ROL4nghsY4VPfzuFsMWpuJR3V9NhETVrLEJrSLlSgJTfohERURO1bt06REdHY+rUqUhLS0NgYCAGDBiAK1eu1LjPxIkTsXDhQsyePRunT5/G1q1bERwcrNp+6dIlDBw4EIGBgUhLS8OUKVPw7rvvYsOGDao2qampCAsLw8iRI3Hs2DGMHDkSI0aMwIEDBxo034bWwdEM/bxssST5Im4XlWs6HCIiIiJ6BDszfSyL8MM3IzrhbE4Bno3dg6XJFzlWNNETYhFaQxQKAVIxf/xERNQ0zZkzB6NGjcLo0aPh6emJuLg42NvbY9GiRdW2P3v2LOLi4rB582a88MILcHV1hY+PDwYOHKhqEx8fDwcHB8TFxcHT0xOjR49GREQEYmJiVG1iY2PRq1cvTJs2DZ6enpg2bRpCQkIQGxvb0Ck3uAn93FFUpsCX285oOhQiIiIiqgORSIRhvo5InNAT3dtaYeaW0/jP/1Jx8XrNQ8ISUfVYBdWQcqWSExMSEVGTVFZWhiNHjiA0NFRtfWhoKPbt21ftPps3b4arqyu2bdsGV1dXODs7IyIiArm5uao2qampVY7Zv39/HD58GOXl5bW2qem8zYmnvSleD3LGmoNXsO9CnqbDISIiIqI6sjXVx9IIP8wN64TzuYUYMC8ZC3adR1mFUtOhETUbjT4xIVWqUAiQcUxoIiJqgvLy8qBQKGBra6u23tbWFtu3b692n4sXL+Ly5ctYu3YtEhISIBKJMGnSJAwePBipqakQi8XIyclB3759qxyzoqICeXl5sLe3R05OTrXnzcnJqfa8ixcvxuLFiwEAmZmZSEpKesKsKxUWFj71MWrjpyfgNyMRxqw4gE8CDGBpoJn+AA2dZ1OgCzkCzFOb6EKOgO7kSUTaRyQSYYiPI4LaWGHGr6fw9R9n8XPaVXwxtAO6OltoOjyiJo9FaA1RKAX2hCYioiZNJFK/TwmCUGXdfUqlEqWlpVi1ahXc3d0BAKtWrYKHhwcOHToEf3//Go/58PrHOW9kZCQiIyMBAH5+fggJCaljdtVLSkp66mM8SttOhXjx27347rwMP40NhL5M0qDnq05j5KlpupAjwDy1iS7kCOhOnkSkvWxM9bFgZBcMO3MN//fzSYyIT8XL3Vrjw2fbwcxQpunwiJosDsehIeUKJWQS/viJiKjpsbKygkQiqdL7ODc3t0ov5fvs7e0hlUpVBWgAcHNzg1QqVU1maGdnV+0xpVIpLC0ta21T03mbozbWxpj3cmeczLqDKRtPqArxRERERNR89G5ni8QJwYgMdsWPh/9BnzlJ2HzsKn+3I6oBq6AaUlKhhJ4Gej4RERE9ilwuh6+vLxITE9XWJyYmIjAwsNp9goKCUFFRgQsXLqjWXbx4ERUVFXBycgIABAQEVBnOIzExEX5+fpDJZKo2j3Pe5qp3O1tM7OeOTWlXsSzlkqbDISIiIqInYCiXYupAT/zyThBatjBA9NpjeG35QVzgxIVEVbAIrSGFJeUw0eNoKERE1DRNmDABCQkJWLp0KU6fPo3o6GhkZWVh7NixAIApU6agT58+qvZ9+/ZFly5d8PrrryMtLQ1paWl4/fXX4e/vDz8/PwDA2LFjkZmZiXHjxuH06dNYunQpEhISMGnSJNVxoqOjsXPnTsyaNQtnzpzBrFmzsGvXLowbN65R828Mb/dqiwHedvhi62mknONEhURERETNVXsHM2yMCsKM59vj2D+30H/uHnyx9TQKSso1HRpRk8EitIYUllbAmEVoIiJqosLCwhAbG4uZM2eic+fOSElJwdatW1W9mrOzs9V6PYvFYvz222+wsbFBcHAw+vfvD0dHR2zevBliceWvGy4uLti6dSv27NmDzp074/PPP8f8+fMxbNgw1XECAwOxdu1arFixAh07dsTKlSuxbt061ZjS2kQkEiFmRCe42ZjgnTVH8c+NIk2HRERERERPSCIWISLQGbsmhWBol5ZYvOcien+zGxuPZkKp5BAdRKyCasjdUgWMWIQmIqImLCoqClFRUdVuS0hIqLLO3t4e69evr/WYPXv2xNGjR2ttM3z4cAwfPrzOcTZnRnpSLH7NF4PjUjB65WH89FYgv6QmIiIiasasjPXw1fBOeMXfCdM3/4UJPx7H9/sv4/mWCk2HRqRR7AmtIQUl5TDR54dMIiIiXedkaYRvX+mCc7mFiFp9FOUKpaZDIiIiIqKn1LlVC2yKCsJXwzricn4RZqSWYMrGdOQWlGg6NCKNYBFaAwRBwN0yBYz0ODEhERERAcHu1vhiiDf2/H0db68+irIKFqKJiIiImjuxWIT/dG2FnZNC0M9JivWHM9Hr6yTE7TiH4jL2jCbdwiK0BpSUK6FQCjDWk2k6FCIiImoiwrq2xieDvfDnqWuIWn0UpRX8YEJERESkDcwMZHjFUw+JE3qih5s1vkn8GyExu7D+8D9QcLxo0hEsQmtAQWnl7KjGHI6DiIiIHjAqyAWfvdAe209fw7s/pKGCQ3MQERERaQ0XKyPEh/ti/dgA2JkZYPJP6XguLgUp5/I0HRpRg2MRWgPullb2bDLmcBxERET0kPAAZ0y/1yN64vrjHJqDiIiISMt0dbbAz1GBiHvZBwUl5Xh12QG8tvwgTmTe1nRoRA2GXXE1oLCkAgA4HAcRERFV679BLigqU+DrP84i53YJ/hfuixaGck2HRURERET1RCQSYXAnB4S2t8XKfZexIOk8Bn+bgoEd7DChnzva2phoOkSiesWe0BqgGo5Dj98BEBERUfXe7tUWsWGdkXblFp7/di+2/ZWj6ZCIiIiIqJ7pSSUYHeyKPe/3QnQfN+w+ex2hc/dg4o/H8c+NIk2HR1RvWITWgH+H42ARmoiIiGr2ok9L/DDaH3KpGGO/P4IFu85rOiQiIiIiagCm+jKM7+eO5A96443uLvgtPQu9v0nC//38F67dKdF0eERPjUVoDSjkxIRERERUR37OFtgW3QMvdHbA13+cxUc/n0BxmULTYRERERFRA7AwkmPaIC/sntwL//FrhTUHr6DHV7swffNfyLpVrOnwiJ5YoxehFy5cCBcXF+jr68PX1xfJyck1ts3IyIBIJKry2rZtm6pNUlJStW3OnDmjdqwNGzbAy8sLenp68PLywqZNmxosx0cpvNcT2ogTExIREVEdSCVifDOiE0b3cMHqA1cQtjgV1wtKNR0WERERETUQOzN9fD6kA3ZODMFQn5ZYfeAKen69C1M2nuAwHdQsNWoRet26dYiOjsbUqVORlpaGwMBADBgwAFeuXKl1v23btiE7O1v16t27d5U2J0+eVGvj5uam2paamoqwsDCMHDkSx44dw8iRIzFixAgcOHCg3nOsi/sTE5pwYkIiIiKqI6lEjGmDvLAk3A/nrhVi4Pxk7Pn7uqbDIiIiIqIG1NrSEF8O64ikySEI69oKG45koldMEiavP46MvLuaDo+ozhq1CD1nzhyMGjUKo0ePhqenJ+Li4mBvb49FixbVup+lpSXs7OxUL7m86uzwNjY2am0kkn97GcfGxqJXr16YNm0aPD09MW3aNISEhCA2Nra+U6yTwtJySMQi6Ms4GgoRERE9nr5ettgYFQhzQxleW34Qn/12CiXlHJ6DiEhbPc7TxABw4sQJ9OzZEwYGBmjZsiU+/fRTCIKg1mb37t3w9fWFvr4+XF1dER8fX+U4j3qaeNasWejatStMTU1hbW2NwYMH46+//nr6hImoWo7mhpj5Ygfseb8XXn3GCb8crxwzetzaNJy7VqDp8IgeqdGqoGVlZThy5AhCQ0PV1oeGhmLfvn217jt06FDY2NggKCgIP/30U7Vt/Pz8YG9vjz59+mDXrl1q21JTU6uct3///o88b0O5W6qAkVwCkUikkfMTERFR8+Zpb4pf3umOiAAnLEu5hBcX7MXf/PBBRKR1Hvdp4jt37qBfv36wtbXFoUOHMH/+fHz99deYM2eOqs2lS5cwcOBABAYGIi0tDVOmTMG7776LDRs2qNrU5WnipKQkREVFYd++fdi5cyekUin69u2LGzduNNwPhIhgZ6aPT55vj+QPeuHNHq744+Q19Ju7B28kHMKBi/lVvnQiaioabWa8vLw8KBQK2Nraqq23tbXF9u3bq93H2NgYMTExCAoKglQqxS+//IKwsDCsWLECr776KgCoelJ37doVZWVlWLVqFfr06YOkpCQEBwcDAHJycqo9b05OTrXnXbx4MRYvXgwAyMzMRFJS0tOkjsLCQrVjnMsohQyKpz5uU/NwntpIF3IEmKc20YUcAd3Jk+hB+jIJZrzgjRAPG0z+6TgGx6Vg2iBPhD/jxC+6iYi0xINPEwNAXFwctm3bhkWLFmHWrFlV2q9evRpFRUVYsWIFDAwM4O3tjdOnT2POnDmYMGECRCIR4uPj4eDggLi4OACAp6cnDhw4gJiYGAwbNgyA+tPEADBt2jTs2rULsbGxWLNmDQDgjz/+UDv3qlWrYGZmhr1792Lw4MEN9jMhoko2JvqYOtATY3u2wcrUDKxMvYywxfvRqVULjAl2Rf/2dpCI+TshNR2NVoS+7+EPRYIg1PhBycrKChMnTlQt+/n5IS8vD1999ZWqCO3h4QEPDw9Vm4CAAGRkZCAmJkZVhH7c80ZGRiIyMlJ1zpCQkLonWI2kpCS1Y6z55zCsFEUICQmueadm6OE8tZEu5AgwT22iCzkCupMnUXV6tbPB79HBeP+n4/h480kknb2Or4Z3hJWxnqZDIyKip3D/aeJJkyapra/taeLU1FT06NEDBgYGqnX9+/fH//3f/yEjIwMuLi41Pim8YsUKlJeXQyaTITU1Fe+++26VNt9++22N8RYUFECpVMLc3PxxUyWip2BhJMe4vu4YE9wGPx3NxNLki4hafRROloZ4s7sLhvu2goFc8ugDETWwRitCW1lZQSKRVOl9nJubW6WXcm38/f3x3XffPbLN2rVrVct2dnZPfd76dLdUASM9vgEQERFR/bA20cPyUV2xMvUyPt96Gs/G7sHXIzqhl4eNpkMjIqIn9CRPE+fk5MDR0bFK+/vbXFxckJOTg759+1ZpU1FRgby8PNjb2z/208QAEB0djc6dOyMgIKDa7Q39xLG20oU8dSFHoHHybAVguh9w5Joefr9Ugv/bfBKzt55E79Yy9Golhbl+w4/KqwvXUxdyBOo/z0YrQsvlcvj6+iIxMREjRoxQrU9MTFQ98lMXx44dg729/WO1CQgIQGJiIiZPnqx23sDAwMfIoP4UlFbAzECmkXMTERGRdhKJRIgIdMYzrpaIXpuG/353CKMCnfHhgHbQl/HLbyKi5upxnuqtqf3D65+0TU3nnTBhAlJSUpCSkgKJpPp7TkM/caytdCFPXcgRaNw8ewOYJAg4lHETi/dcwK9ncrH1UgWe9bbDf4Oc0aW1eYMN36YL11MXcgTqP89GHY5jwoQJCA8PR7du3RAUFIT4+HhkZWVh7NixAIApU6bg4MGD2LFjBwBgxYoVkMlk8PHxgVgsxq+//ooFCxZg9uzZqmPGxsbC2dkZ7du3R1lZGb7//nv8/PPPapMqREdHIzg4GLNmzcKQIUOwadMm7Nq1CykpKY2ZvkpBSTkcWxg8uiERERHRY/KwM8HPbwfhq21nsXzvJez++zpeC3DCSH8nyKWNNic1ERE9pSd5mrimp4CBf3tE19RGKpXC0tKy1jbVnXf8+PFYu3Ytdu3aBVdX18fIkIgakkgkQjcXC3RzsUBG3l2s2n8ZPx7+B7+lZ8O7pSleC3DG850c2FmBGk2jfhIJCwtDbGwsZs6cic6dOyMlJQVbt26Fk5MTACA7OxsXLlxQ22fmzJnw8/ND165dsXbtWixfvhzjx49XbS8rK8OkSZPQsWNH9OjRAykpKdiyZQuGDh2qahMYGIi1a9dixYoV6NixI1auXIl169bB39+/cRJ/SF5BKayM5Ro5NxEREWk/fZkEHw/2wsrXu8HMQIYZv57CsEX7cD63UNOhERFRHT34NPGDanuqNyAgAMnJySgpKVFr7+DgAGdnZ1Wbh4fzSExMhJ+fH2QymapNXc4bHR2NH374ATt37kS7du2eKE8ianjOVkb4v+e8sH9KH8x80Rul5Uq8/1M6AmbtwOxtZ3D1VrGmQyQd0OgTE0ZFRSEqKqrabQkJCWrLERERiIiIqPV477//Pt5///1Hnnf48OEYPnx4neNsKCXlCtwpqYC1CScLIiIiooYV7G6NYHdr/HEyBx9uSMdzccmYNtATjvceuyYioqbtcZ8mfuWVVzBjxgyMGjUKH330Ef7++298+eWXmD59uurR+7Fjx+Lbb7/FuHHjMGbMGOzduxcJCQlYs2aN6rx1eZr47bffxqpVq/Dzzz/D3Nxc1XPa2NgYxsbGjfUjIqLHYKQnxavPOGGkf2ukXshHwr4M/G/3Bfxv9wWEeNjgpa6t0LudDaQSPj1H9a/Ri9C67npBKQDAxkRfw5EQERGRrujf3g4+rVpg8k/p+L/NJ9HRSoL2viWwMeXvI0RETVlYWBjy8/Mxc+ZMZGdnw9vbu9anic3MzJCYmIi3334bfn5+MDc3x8SJEzFhwgRVGxcXF2zduhXjx4/HokWL4ODggPnz56vN1XT/aeKPPvoI06dPR5s2bao8Tbxw4UIAQJ8+fdRinj59Oj755JOG+HEQUT0RiUQIbGuFwLZWyLxZhHWH/sG6Q/8g8kwubE318B+/VviPXyu0sjDUdKikRViEbmS594rQ7AlNREREjcnGVB8J/+2K7/dfxqe/nkTfObsxrq87XurWCoZy/kpIRNRUPc7TxADQoUMH7Nmzp9Zj9uzZE0ePHq21zaOeJhb4VA2RVnA0N8TEUA9E93HDzjO5WHvoHyzYdR7f7jqPHm7WeKVbK/TxtIWMvaPpKfFfUCO7ziI0ERE1EwsXLoSLiwv09fXh6+uL5OTkGttmZGRAJBJVeW3btk3VZtSoUdW2MTIyUrVJSEiots2DY1vSkxOJRAgPcMZnQQbo4GiGT387hcAvd+LrP87gdlG5psMjIiIiIg2RSsQIbW+H5aO6IuWD3oju44Zz1wow9vujCJi1A5/9dgqnsu5oOkxqxtjtpZFdL6j8EG1jyiI0ERE1XevWrUN0dDQWLlyI7t27Y+HChRgwYABOnTqF1q1b17jftm3b0KlTJ9WyhYWF6u/z5s3Dl19+qdY+KCgIwcHBausMDQ2rTFSsr89hI+qTnZEY37/hjyOXb2Jp8iUsTLqA1Qeu4OVurfFagBPszQw0HSIRERERaYhDCwOM6+uOd3u7YfffufjxUCZWpmZgWcoltLMzwXBfR7zQuSU7WNJjYRG6kV0vKIVYBFga8T8qERE1XXPmzMGoUaMwevRoAEBcXBy2bduGRYsWYdasWTXuZ2lpCTs7u2q3mZmZwczMTLW8d+9eXLx4EatWrVJrJxKJajwG1R+RSAQ/Zwv4OVvgVNYdzEn8G//bfQHLUi5hWBdHjPRvDe+WZo8+EBERERFpJYlYhN7tbNG7nS1u3i3Dr+lZ2HD0KmZuOY1Zv59BsJsVhvk6oq+nLfRlEk2HS00ci9CNLLegFJbGepCIRZoOhYiIqFplZWU4cuQIJk2apLY+NDQU+/btq3XfoUOHoqSkBG5ubhg/fnytY0kuWbIE7du3R2BgoNr64uJiODk5QaFQoHPnzvjss8/g4+Pz5AnRI3k5mGJphB8ybxZhwa7z2JSWiTUHr6CjoxlGBTpjUEd76En5wYKIiIhIV5kbyfFagDNeC3DG+dwCbDh6FZuOXsU7P6TBRF+K/u3tMLiTAyqUHC+eqscidCPLLSiFtTF7QRMRUdOVl5cHhUIBW1tbtfW2trbYvn17tfsYGxsjJiYGQUFBkEql+OWXXxAWFoYVK1bg1VdfrdL+9u3bWL9+Pb744gu19R4eHli+fDk6deqEgoICzJs3D0FBQTh+/Djc3NyqHGfx4sVYvHgxACAzMxNJSUlPmHWlwsLCpz5Gc1Bbnv0tgO7B+kjNqsDOK3cw4cfj+OTndPRqJUWv1lK00GseU4rwWmoXXchTF3IEdCdPIiJt1tbGBB882w6TQj2QeiEfm9Ku4o+/cvDTkUyYyIDnb5/A4E4O6OpswU6YpMIidCO7XlDK8aCJiKhZEInUf2EUBKHKuvusrKwwceJE1bKfnx/y8vLw1VdfVVuE/v7776FQKBAeHq62PiAgAAEBAarlwMBAdO7cGXFxcZg/f36V40RGRiIyMlJ1zpCQkDrnV52kpKSnPkZzUJc8B6Hymqecz8N3ezOw+UwutmZU4LmODvhvkDM6OrZojFCfGK+ldtGFPHUhR0B38iQi0gUSsQjd3azQ3c0KJeXe2PP3dSxLPIaNR69i9YErsDHRw6CO9hjcyQE+rVrU+FmCdAOL0I0st6AE7exMNB0GERFRjaysrCCRSJCTk6O2Pjc3t0rv6Nr4+/vju+++q3bbkiVLMGzYMLWJC6sjkUjg5+eHc+fO1fm8VH9EIhF6uFmjh5s1LuXdxYp9GfjpSCY2pV1Fl9YtEBHojP7t7TgGIBEREZGO05dJENreDvLr+ugW2B07Tufi1+NZWL3/Cr7bm4GWLQzwrLcd+re3g6+TOXtI6yAWoRuRQikgr7CMPaGJiKhJk8vl8PX1RWJiIkaMGKFan5iYiGHDhtX5OMeOHYO9vX2V9QcPHsTx48cRGxv7yGMIgoD09HR06tSpzuelhuFiZYRPnm+PiaHu+OlIJlbsy0D02mMw1pPiWW87vNi5JQLaWPIDBREREZGOM5RLMbiTAwZ3csCdknL8efIatqRnYVXqZSxLuQQrYzn6edkitL0dAttYcu4RHcEidCO6XlAKhVKAvZmBpkMhIiKq1YQJExAeHo5u3bohKCgI8fHxyMrKwtixYwEAU6ZMwcGDB7Fjxw4AwIoVKyCTyeDj4wOxWIxff/0VCxYswOzZs6sce/HixXBzc0PPnj2rbJsxYwaeeeYZuLm54c6dO5g/fz7S09OxaNGihk2Y6sxEX4b/BrkgIsAZ+y/m4+djV/H7icoxAG1M9PB8Jwf0ameDdnYmsOQ8GEREREQ6zVRfhuG+jhju64iCknIknb2ObSdz8MuxLKw5+A9M9KTo1c4G/dvbIcTDGkZ6LFVqK17ZRpR1uxgA4NBCX8OREBER1S4sLAz5+fmYOXMmsrOz4e3tja1bt8LJyQkAkJ2djQsXLqjtM3PmTFy+fBkSiQTu7u5Yvnx5lfGgCwoKsHbtWnz88cfVjgl369YtREZGIicnB2ZmZvDx8cGePXvQrVu3hkuWnohYLEJgWysEtrXCpy94Y+eZXGxKu4oVqRlYmnIJYhHQ090aw31boYe7FUz1ZZoOmYiIiIg0yERfpuohXVKuwL4Lefjjr2vYfvoafjmeBblUjABXS/RuZ4Pe7WzQysJQ0yFTPWIRuhFl3bpfhGZPaGp+lEol8vLycOvWLSgUCk2HUy/MzMxw+vRpTYfRoHQhR6D6PPX19eHo6AiZjIWvJxUVFYWoqKhqtyUkJKgtR0REICIi4pHHNDExQWFhYY3b586di7lz5z5WnKR5+jIJBnawx8AO9rhVVIa/rt7Bvgt52Hj0Kt7+4SjEIqBDSzMEtLFCYBtLdHW2gIGcj10SERER6Sp9mQS929midztbKJQCDmfcwB8nr2HX2VxM/+Ukpv9yEm1tjNG7nQ16edjAz9kcMolY02HTU2ARuhFl3yoBAA7HQc1SZmYmRCIRnJ2dIZPJtGJW24KCApiYaPdEobqQI1A1T0EQkJ+fj8zMTLi4uGgwMiLd08JQrpolfWKoBw5euoHUC3nYdyEfS5MvIn73BcglYnRwNIOThSFaWxqie1sr+LTmBDVEREREukgiFsHf1RL+rpb4eLAXLuXdxc4zudh1Jhff7b2ExXsuwkRfimA3a4R4WKOnhzVsTDjKQHPDInQjunqrGMZ6Upjq88dOzc/du3fh4eEBsZjfPFLTJxKJYGlpievXr2s6FCKdJhGLENDGEgFtLDEBwN3SChzKuIG95/NwPPM29l/Mx6ZjVxG7/RwsjOTo5myB9g6maN/SFN4OZrAx5YcLIiIiIl3jYmWEN7q74I3uLigsrcDe83nYdSYXu87mYsuJbABAOzsTdG9b2fGhm4sFDOWstTV1vEKNKPt2MezN9LWiBynpJhagqTnhey1R02OkJ0WIhw1CPGxU6+6UlGP32evYcfoa0v65hW0nc1TbrIz1KovSDqZo72AG75amaG1hyP/fRERERDrCWE+K/u3t0L+9HQRBwMmsO0g+l4eU89excv9lLE25BLlEjC5OLdDDzRrd21rBu6UZn7BrgliEbkRZt0o4HjQRERHRA0wfmKAGqCxKn866g5Oq123sPZ+HCqUAADDRk8LzgcK0h60J2tgYsfcLERERkZYTiUTwbmkG75ZmeCukDUrKFTh46QZSzuch+Vwevv7jLL7+4yzMDGQIbGOJoLZWeMbVEm2sjdiJoQngb+uNKPt2Mbxbmmo6DCIiIqImy1RfphoT8L6ScgX+vlagKkqfzLqDNQevoKRcqWrjaG4AR3MDOJgZwNPeFOX5CnS8WwYLI7km0iAiIiKiBqYvkyDY3RrB7tYAgLzCUuw9n4eUc3lIOZ+H3/+qfMLOylgP/i4W6OZiAX9XC7jbmEDMntKNjkXoRlJSrkBeYRkcOCkhUbM3atQo5OXl4bfffqvzPiEhIfD29sa3337bgJEREWknfZkEHR1boKNjC9U6hVLApby7OJ9bgHPXCnEutxDZt4ux90IeNqZdBQB8dSgRFkZytLE2gquVMTzsTNC5dQt42ZtCXybRUDZERERE1BCsjPXwQueWeKFzSwiCgIz8Ihy4mI8Dl27gwMV81XjS5oYydHW2qOz44GIBT3tTDt/RCFiEbiRXbxUDAIfjIGpEj3rc5pVXXsHq1asf+7jz5s2DIAiPtc/GjRshk8ke+1xPKjc3F61bt4a1tTUuX77M8byJSOtIxCK0tTFGWxtjPOutvi2/sBRrt6VAbuOCC9cLcfH6XWw/fQ3rDv+jamMkl6C1pRFcrYzgal35crEyhoulEUwNpHxkk4iIiKgZE4lEcLEygouVEV7q1hqCICDzZjH23y9KX8rHn6euAQBM9KXo0tocvk7m6NLaHJ1amcFEv/E+v+uKRi9CL1y4EF9//TWys7PRvn17xMbGokePHtW2zcjIgIuLS5X1v//+O5599lkAlYWd+Ph4pKWloaSkBF5eXpg2bRqef/55VfuEhAT897//rXKc4uJi6Os3zqzrp7PvAAA87Ewa5XxEBGRnZ6v+/ttvv2H06NFq6yoqKtTal5eX16lQbGZm9tixWFhYPPY+TyMhIQGDBw9GWloa/vjjDwwYMKBRz/+wsrIyyOV8JJ6IGoelsR7aW0kQEuyqtj7ndgmO/XMLf18rwM2iMmTk3cXJrNvYdjIHCuW/Xy7qy8SwM9WHQwsD1atliweWzQxgIGdPaiIiIqLmQiQSoZWFIVpZGGKEXysAQNatYhy8V5A+evkW5m7/G4IAiEWAu62Jqijt62QOJ0tOjv20GrVr3Lp16xAdHY2pU6ciLS0NgYGBGDBgAK5cuVLrftu2bUN2drbq1bt3b9W23bt3o3fv3tiyZQvS0tIwcOBADBkyBMnJyWrHMDQ0VDtGdnZ2oxWgAeBk1h1IxSK42Ro32jmJdJ2dnZ3q1aJFC7V1JSUlaNWqFdasWYPevXvDwMAA//vf/5Cfn4+XX34Zjo6OMDAwQPv27fHdd9+pHXfUqFF47rnnVMshISGIiorC1KlTYWVlBRsbG0yaNAlKpVKtzTvvvKNadnZ2xsyZMzFmzBiYmprC0dERX3/9tdp5/v77b/Ts2RP6+vrw8PDA1q1bYWxsjISEhEfmvnz5crz22mt46aWXsGzZsirbz5w5g+effx5mZmYwNjZGQEAATpw4odq+YsUKdOjQAXp6erC1tcWoUaNU20QiEX766Se14zk7OyMmJkatzYIFCzB06FAYGRlh6tSpUCgUeOONN+Di4gIDAwO4ubnhq6++Uvs51Xbu119/Xe3nDgBKpRKtW7fmMCdEVCd2Zvp41tsO7/Vxw/TB7fHdf7shaXIvnP70WWyfEIzF4b74aJAnXvV3QvuWZigpVyDlXB7idp7DBxtOIHzZQfT5Zjc8P96GLp8l4rm4ZESuPIxPfjmJJXsuYkt6No5euYl/bhShqKzi0QERERERkcY4tDDAiz4tMWtoR/wxPhjHp4di5evd8G5vN1ib6OGXY1mYuP44QmKS4DtzO95ccQgLdp3HX3kVuFVUpunwm51G7Qk9Z84cjBo1CqNHjwYAxMXFYdu2bVi0aBFmzZpV436Wlpaws7Ordtu8efPUlqdPn44tW7bg559/VuthLRKJajxGYziZdQdutibQk7LXDGmPGb+exKmsO416Ti8HU0wf3L7ejjdlyhTExMRg2bJlkMlkKCkpQZcuXfDBBx/A1NQU27dvx5gxY9C6dWv06dOnxuOsXr0a0dHR2LdvH44dO4ZXXnkFvr6+ePnll2vcZ+7cuZgxYwYmT56M33//He+99x66d++OgIAAKJVKDBkyBHZ2dti/fz+Ki4sxbtw4lJaWPjKn5ORk5Ofn49lnn4WzszP8/Pxw/fp1WFtXTtaQlZWF7t27IygoCImJiWjRogUOHjwIhUIBAPjf//6H6OhofPHFFxg0aBAKCwuxc+fOx/zJAjNmzMAXX3yBmJgYiEQiKJVKtGzZEj/++COsra1x8OBBREZGwtLSEm+88cYjzz169Gj06NED2dnZsLe3BwAkJiYiJycHL7300mPHR0R0n1wqRlsbE7S1qf6JtXKFEjm3S5B1qxhZt4uRdasEV28VI+tWMTLy72Lv+TzcLVNU2c9AJoGViRyWRnqwMtaDlbEclsZyWBnrwfLespWxHiyN5DA3lHOCHCIiIiINMtWXqU10qFAKOJ9biKNXbuLI5Zs4euUmtp/OBQDEHE5EawtDdHA0Q8eWZujo2ALeLU05jEctGq0IXVZWhiNHjmDSpElq60NDQ7Fv375a9x06dChKSkrg5uaG8ePHY/jw4bW2LygogLm5udq64uJiODk5QaFQoHPnzvjss8/g4+PzZMk8JkEQcCrrNkI8bBrlfERUd++++26V95TJkyer/h4ZGYmdO3dizZo1tRahvby88OmnnwIA3N3dsWTJEuzYsaPWInRoaKiqd/S7776L+fPnY8eOHQgICEBiYiLOnj2LP//8Ey1btgRQWbQOCgp6ZE5Lly5FWFgYZDIZnJ2d4e/vj5UrV2LixIkAgAULFsDIyAjr169XDZHh7u6u2v+zzz7DuHHjMGHCBNU6X1/fR573YWFhYXjzzTfV1t3/GQGVvaePHj2KNWvWqIrQtZ07ICAA7dq1w4oVK/Dhhx8CqOzx/fzzz8PKyuqx4yMiqiuZRKx6fLM6giDgTkkFsm8XI/tWCfIKS5FXWIb8wlLkFZYi/24Zrt4qxvHMW7hxt0xt6I/7xCLAwuiBwvSDfxrpqYrZ99dzYkUiIiKihiURi+BhZwIPOxO83K01AOB2cTlWb90DkaUzTly9heP/3MKW9H+H/XS1NlIVpTs4msHT3hTGepySD2jEInReXh4UCgVsbW3V1tva2mL79u3V7mNsbIyYmBgEBQVBKpXil19+QVhYGFasWIFXX3212n0WLFiAzMxMhIeHq9Z5eHhg+fLl6NSpEwoKCjBv3jwEBQXh+PHjcHNzq3KMxYsXY/HixQCAzMxMJCUlPWHWla7euIu8QhH07uY+9bGassLCQq3OD9CNHIHq8zQzM0NBQYHaugkhrRsxqn89HEddFBcXq+1bWFgIoLJ4/ODxFAoF5syZg40bNyIrKwtlZWUoKytD9+7dVe3Ky8tRUVGhWlYoFPD09FQ7jrW1NbKystTalJWVqZYFQYCHh4faPra2tsjMzERBQQGOHTsGe3t7mJqaqtq0a9cOYrEYJSUlNf4M7ty5g59++gm//vorCgoKoFAoMGLECCxYsACRkZEAgEOHDsHf3x+lpaVVelZfv34dV69eRUBAQK0/5+LiYrXtgiCgtLRUbV379u2rHGPZsmVYuXIlrly5gpKSEpSXl6NVq1YoKCio07nDw8OxdOlSvP3227hx4wY2b96M1atXQ6FQVLtPSUmJTvyfJSLNEolEMDOQwcxAhnZ2prW2VSoF3Couv1egLqssUt8rVOc9sO7KlSLkF5ZW28MaAIz1pLAylkOqKMHqK4dhZiBDi3sxmBnK0MJQDgtDOVoYymBxr6c1x7EmIiIiejpmBjJ4WUoQEtJGte7G3TKkZ97CiczbSL96G6kX8/HzsSzVdidLQ3jamcLLwRSe9qbwtDdByxYGOjfGdKOX4h/+AQuCUOMP3crKStVzDwD8/PyQl5eHr776qtoi9IYNGzB58mSsXbsWTk5OqvUBAQEICAhQLQcGBqJz586Ii4vD/PnzqxwnMjJSVazx8/NDSEjIY+X4sNgftwMoxQs9fdHNpXEnJ2tMSUlJT/2zaup0IUeg+jxPnz4NE5PmO7GmgYEBAKhyMDauHJ/d2tpaLa/Zs2fj22+/xbx589ChQwcYGxtj6tSpyM3NVbWTyWSQSqWqZYlEAkNDQ7XjyOVyiMVitTZyuVy1LBKJYGxsrLaPVCpVHVdPT09tf6Cy+A0A+vr6NV6L1atXo6ioCKGhoWrrFQoF0tPTERQUBIlEAplMVu0xioqKAKBKPg8SiURVYqioqICenp7aOisrK7XldevW4cMPP0RMTAwCAwNhamqKBQsWYNOmTTAxManTuUePHo3p06fj+PHjSEtLg5WVFV588UUUFRVVu4++vn6jPfVCRFQXYrEIFkZyWBjJ4Wb76PZFZRXIVxWry5B/98HidRnO/ZODf24U4a/ictwuLkdRDUVroHLCRQtDOSyM5bAw0oOFoQwW93pXWxjJYaIvhbGeFCb6MpjqS2GsL4WZgQwGMonOfUgiIiIiqisLIzlCPGzURkC4dqcEJzJv43T2HZzOuYNTWXfwx6kcCPceiDPVl94rSJvCy76yQN3Wxlirn3ZrtCK0lZUVJBIJcnJy1Nbn5uZW6R1dG39//yqThAGVBejw8HCsXLkSzz//fK3HkEgk8PPzw7lz5+p83qdxpaBy0i1P++ZbwCPSFSkpKRg8eLDqaQpBEPD333+rJjZsLJ6enrh69SqysrLg4OAAADh8+HCVSfwetmzZMrzzzjsYM2YMAODu3bswMjLChx9+iGXLliEoKAhdunTB999/j7KyMtVwHPfZ2tqiZcuW2LFjB/r161ftOaytrZGd/e/jRteuXVNbrklKSgr8/f3VJmi8cOHCY53bwsICQ4cOxfLly5GWloZRo0ZBItHemzQRkaFcCkMLaY1DgVR+cRysWi6rUOJ2cTluFZXhZlE5btwtw62iMtwoKsPNu2W4cbccN+6W4sbdMly8Xoibd8tq7G19n55UrOpNbWpQWaQ20ZfC9F6xWrVsIFMVso3uv+QSGOlJIZM06nzoRERERBpla6oPWy999PX6t+Z5t7QCZ3IKcDr7Dk5l38Hp7DtYd+gfFJdX/i4mFgFOlkZwszGGm60x3G1N0NbGGG2staM43WhFaLlcDl9fXyQmJmLEiBGq9YmJiRg2bFidj3P/EfUH/fjjj4iIiMCKFSseOV40UFlUSk9PR6dOneqewFO4fEcJZ0tDDk5O1Ay4u7tj3bp1SElJgZWVFeLi4nDp0qVG703br18/eHh4ICIiAjExMSguLsaECRMglUpr7I2Wnp6Ow4cPY9myZfD29gZQOfyIiYkJwsPD8cYbb2DevHmIiopCfHw8/vOf/2DatGkwNzfHoUOH4Onpic6dO2PatGkYP348bG1tMWjQIBQVFWHHjh2qJ1N69+6NBQsWIDAwEBKJBFOnToW+vv4jc3J3d0dCQgJ+//13tG3bFmvXrsXu3bvVxvB/1LmByt7Qzz77LMrLy/HTTz89zY+ZiEjryKViWJvowdpEr877lJQrcLOoDAUlFSgoKcedkgoUllSgoKRCVdC+cbcMN4vKcKe4Av/cKEJBSQXulJSjsLRC1aOnNgYyCUwNKgvXJvpSGOvLYCiTwEB+7yWTwFAugf69Pw3ubTOUS2Egk+D8TQVssu5UbntgHxa3iYiIqLkw0pPC18kcvk7/fgZWKAVczr+L09kFOHutAOeuFeBcbiF2nMlVzSMiFgGtLQzhZmsCd1tjuNmYwM22+RWnG3U4jgkTJiA8PBzdunVDUFAQ4uPjkZWVhbFjxwIApkyZgoMHD2LHjh0AgBUrVkAmk8HHxwdisRi//vorFixYgNmzZ6uOuXbtWoSHhyMmJgbBwcGqntZyuRwWFpVDX8yYMQPPPPMM3NzccOfOHcyfPx/p6elYtGhRo+R95Y4S3dqaNcq5iOjpfPTRR7h06RIGDBgAAwMDjBo1CiNHjsSpU6caNQ6xWIxNmzbhzTffRLdu3eDs7IxvvvkGQ4cOrbHgu3TpUri5uaFjx45Vtj333HNQKpVYs2YNIiMjsWfPHkyePBm9evWCSCRChw4dVGPhv/XWW5DL5fjmm2/wwQcfwMLCAgMHDlQd65tvvsEbb7yBkJAQ2Nra4quvvsLp06cfmdOYMWNw7NgxvPLKKxAEAcOGDcPEiROxfPlyVZtHnRsAQkJC4OjoCCcnJ7Rp0+bh0xAR0WPSl0lgb2YA+yf4dVWpFHC3rEJVlC4oqUBhaQXullagqFSh+vudknLcKb73Z0k5bheVIadcgaIyBUru/Vlcrqi9oH0gucoqmUT0UOFaCgOZuLJ4XUtxu7LA/eA+kn8L3A/soycVcygSIiIiajASsQiu1sZwtTbGIPzb6basQomM/Lv4+1oB/r5WiPO5lX/uOpOLigeK0y3NDeBiZQxXKyO4WhvBxary5WBmALG4af0O06hF6LCwMOTn52PmzJnIzs6Gt7c3tm7dqhq/OTs7W+3RbACYOXMmLl++DIlEAnd3dyxfvlxtPOj4+HhUVFRg3LhxGDdunGp9z549VZNR3bp1C5GRkcjJyYGZmRl8fHywZ88edOvWrcFzvl1cjuvFArwcap+khoga1vDhwyE88MnW2dkZd+7cqTKOsLm5OTZu3FjrsRISEtSWq5v47lFtMjIyquzzcBt3d3fs2bNHtXz8+HGUl5ejbdu21cZV3Rj39xkZGanGXAYqJw3cunVrje3feOMNvPHGG9Vuc3BwwO+//6627uEnWoRqqghyuRzLli3DsmXL1NZ//PHHdT43UDnZ4M2bN/Hpp5/W2IaIiBqHWCy6NxyHDA4weKpjCYKA0golissUKCpXoLjs3qtcgf2Hj8Lds72qWF1cplD7u9o+5RUoKqtAXmGpWoG7uEyh+tBW5/xElb249WQSyCQiyCRiyCViyCRiyKSVy/+uu7csfWhZIoZc+tDy/e3Sf5f/zqlA2cmcB/b/dx+59N9luUQM6YPbJOIm9yGTiIiIno5cKoa7rQncbdVrFveL0+euFeLvawW4lHcXF/MKcSTjhtoQa3pSMZwt1QvTlX83hrmhTCNfsjf6xIRRUVGIioqqdtvDRZuIiAhERETUerzqij8Pmzt3LubOnVvXEOvVqaw7AID2LEIT0WPatGkTjIyM4ObmhoyMDEyYMAGdOnVCly5dNB2aRiiVSly7dg1z586FgYGB2tBORETU/IlElb2a9WUSmD+0reiyFCHe9tXu9zjKFUq13tdFZRX/FqprKHAXlSlQplCgQiGgTKFEuUJAeYUS5QrlvWUlissVuFOiRNm99eUK4d6f99dVLj+yCH7syBPlJRGLaiyS11bQrr195Tq1ZYnogf3/PYZELIJULLr3Z+WyRLUsQisLQ0hYKCciInpqDxanH+w5LQgCrheU4mLeXVy697p4vRBnrxUg8dQ1td9BTPSkaG1pCCdLQ7S2MIKTpSGcLAzR2tKwQXtQN3oRWteczLoNAGjvwOE4iOjxFBQU4IMPPsA///wDc3NzhISEYO7cuTr7WPCVK1fg4uICR0dHfPfdd1UmVSQiInoUmUQMMwMxzAw0M1eLUimgXFldIVvAvtQD6NTFV62IXaZQ3msnqBW9769TLd/b598i+APbKyqL3/cL4ndLK6o53kPLCkE1DmV9OPp//WBhxPs2ERFRQxGJRLAx1YeNqT6ecbVU21ahUCLzZvG9XtN3cSX/Li7fKMKZ7MoCdbni33v+iU9CG2xOOxahG1gfT1tkXb7wWJPDEBEBwGuvvYbXXntN02E0Gc7OztUO80FERNRciMUi6Ikl0JMCeOjjwWUTMbxbNp2OKwqloFbQ/rdXd9UiuUKoLFpXKAUoFPf+VAqoUCqhFAQY6TWfSZOIiIi0jVQihrOVEZytjNDroW0KpYDs28W4kl+Eq7eKG6wADbAI3eBcrIwQ7KiZnhZERERERERPonI4jcrhUYiIiEg7ScQiOJobwtHcsMHPJW7wMxCR1mAvVGpO+O+ViIiIiIiIqGlgEZqI6kQmk6G4uFjTYRDVWXl5OaRSPvDzNBYuXAgXFxfo6+vD19cXycnJNbbNyMiASCSq8tq2bZuqTVJSUrVtzpw5o3asDRs2wMvLC3p6evDy8sKmTZsaLEciIiIiIiJqeCxCE1Gd2NjY4OrVqygqKmIPU2rylEolrl27BjOzpjO2ZnOzbt06REdHY+rUqUhLS0NgYCAGDBiAK1eu1Lrftm3bkJ2drXr17t27SpuTJ0+qtXFzc1NtS01NRVhYGEaOHIljx45h5MiRGDFiBA4cOFDvORIREREREVHjYBcxIqoTU1NTAEBWVhbKy8s1HE39KCkpgb6+vqbDaFC6kCNQfZ5GRkawsrLSUETN35w5czBq1CiMHj0aABAXF4dt27Zh0aJFmDVrVo37WVpaws7OrtZj29jY1HhtYmNj0atXL0ybNg0AMG3aNOzatQuxsbFYs2bNE2ZDREREREREmsQiNBHVmampqaoYrQ2SkpLg4+Oj6TAalC7kCOhOno2lrKwMR44cwaRJk9TWh4aGYt++fbXuO3ToUJSUlMDNzQ3jx4/H8OHDq7Tx8/NDaWkpvLy88NFHH6FXr3/naE5NTcW7776r1r5///749ttvnyIjIiIiIiIi0iQWoYmIiEhNXl4eFAoFbG1t1dbb2tpi+/bt1e5jbGyMmJgYBAUFQSqV4pdffkFYWBhWrFiBV199FQBgb2+PRYsWoWvXrigrK8OqVavQp08fJCUlITg4GACQk5NT7XlzcnKqPe/ixYuxePFiAEBmZiaSkpKeJnUUFhY+9TGaA13IUxdyBJinNtGFHAHdyZOIiIjUsQhNRERE1RKJRGrLgiBUWXeflZUVJk6cqFr28/NDXl4evvrqK1UR2sPDAx4eHqo2AQEByMjIQExMjKoI/bjnjYyMRGRkpOqcISEhdU+wGklJSU99jOZAF/LUhRwB5qlNdCFHQHfyJCIiInWcmJCIiIjUWFlZQSKRVOl9nJubW6WXcm38/f1x7ty5x2pjZ2f31OclIiIiIiKipoVFaCIiIlIjl8vh6+uLxMREtfWJiYkIDAys83GOHTsGe3v7x2oTEBDw1OclIiIiIiKipoXDcRAREVEVEyZMQHh4OLp164agoCDEx8cjKysLY8eOBQBMmTIFBw8exI4dOwAAK1asgEwmg4+PD8RiMX799VcsWLAAs2fPVh0zNjYWzs7OaN++PcrKyvD999/j559/xoYNG1RtoqOjERwcjFmzZmHIkCHYtGkTdu3ahZSUlMb9ARAREREREVG9YRH6ETIyMuDn5/dUx7h+/Tqsra3rKaKmSxfy1IUcAeapTXQhR+DJ8szIyGiYYLREWFgY8vPzMXPmTGRnZ8Pb2xtbt26Fk5MTACA7OxsXLlxQ22fmzJm4fPkyJBIJ3N3dsXz5ctV40ABQVlaGSZMm4erVqzAwMED79u2xZcsWDBw4UNUmMDAQa9euxUcffYTp06ejTZs2WLduHfz9/R8ZM+/ZdacLeepCjgDz1Ca6kCPAezZV4j277nQhT13IEWCe2kQXcgTq/54tEgRBeMqY6BH8/Pxw+PBhTYfR4HQhT13IEWCe2kQXcgR0J09qeLryb0kX8tSFHAHmqU10IUdAd/Kkhqcr/5Z0IU9dyBFgntpEF3IE6j9PjglNRERERERERERERA2GRWgiIiIiIiIiIiIiajAsQjeCyMhITYfQKHQhT13IEWCe2kQXcgR0J09qeLryb0kX8tSFHAHmqU10IUdAd/Kkhqcr/5Z0IU9dyBFgntpEF3IE6j9PjglNRERERERERERERA2GPaGJiIiIiIiIiIiIqMGwCE1EREREREREREREDYZF6Aa2cOFCuLi4QF9fH76+vkhOTtZ0SE/sk08+gUgkUnvZ2dmptguCgE8++QQODg4wMDBASEgITp48qcGI62bPnj14/vnn0bJlS4hEIiQkJKhtr0tepaWlePfdd2FlZQUjIyM8//zzyMzMbMQsaveoHEeNGlXl2j7zzDNqbZp6jrNmzULXrl1hamoKa2trDB48GH/99ZdaG224lnXJUxuu54IFC9CxY0eYmprC1NQUAQEB2LJli2q7NlxLanp4z+Y9uyngPbuSNlxL3rMracO1pKaH92zes5sC3rMracO11IV7dlO4X7MI3YDWrVuH6OhoTJ06FWlpaQgMDMSAAQNw5coVTYf2xDw8PJCdna16nThxQrXtq6++wjfffIO4uDgcOnQINjY26NevHwoKCjQY8aMVFhbC29sb8+bNg4GBQZXtdclr3Lhx2LBhA9asWYPk5GTcuXMHzz33HBQKRWOmUqNH5QgAffv2Vbu2W7duVdve1HNMSkpCVFQU9u3bh507d0IqlaJv3764ceOGqo02XMu65Ak0/+vp6OiI2bNn4+jRozh8+DB69+6NF198Eenp6QC041pS08J7Nu/ZTeW9gffsStpwLXnP5j2bGgbv2bxnN5X3Bt6zK2nDtdSFe3aTuF8L1GC6desmvPnmm2rr2rZtK3z44YcaiujpTJ8+XWjfvn2125RKpWBnZyfMnDlTta6oqEgwNjYW4uPjGyvEp2ZkZCR89913quW65HXr1i1BJpMJ33//varNlStXBJFIJGzbtq3RYq+rh3MUBEGIiIgQBg0aVOM+zS1HQRCEgoICQSwWC7/88osgCNp5LQWhap6CoJ3XUxAEwdzcXIiPj9faa0maxXs279lN8b2B92ztuZaCwHv2fdpwLUmzeM/mPbspvjfwnq0911IQdOee3dj3a/aEbiBlZWU4cuQIQkND1daHhoZi3759Gorq6V28eBEtW7aEi4sLXnrpJVy8eBEAcOnSJeTk5Kjla2BggODg4Gadb13yOnLkCMrLy9XatGrVCp6ens0q95SUFNjY2MDd3R2jR49Gbm6ualtzzLGgoABKpRLm5uYAtPdaPpznfdp0PRUKBdauXYvCwkIEBgZq7bUkzeE9m/fs5vbeoE3v8QDv2dp0PXnPpobGezbv2c3tvUGb3uMB3rO15Xpq6n7NInQDycvLg0KhgK2trdp6W1tb5OTkaCiqp+Pv74+EhAT8/vvvWLJkCXJychAYGIj8/HxVTtqUL4A65ZWTkwOJRAIrK6sa2zR1zz77LFauXIkdO3bgm2++wcGDB9G7d2+UlpYCaJ45RkdHo3PnzggICACgvdfy4TwB7bmeJ06cgLGxMfT09DB27Fhs2rQJHTp00NprSZrDezZUy801X0B73+cfpi3v8Q/iPbv5X0/es6mx8J4N1XJzzRfQ3vf5h2nLe/yDeM9u3tdT0/draT3kQLUQiURqy4IgVFnXXAwYMEBt+ZlnnoGrqytWrFihGoxdm/J90JPk1Zxyf+mll1R/79ChA3x9feHk5IQtW7Zg6NChNe7XVHOcMGECUlJSkJKSAolEorZNm65lTXlqy/X08PDAsWPHcOvWLWzYsAERERFISkpSbdema0lNgzbdw3jP/pe2vTdoy3v8fbxna8f15D2bGps23cN4z/6Xtr03aMt7/H28Zzf/66np+zV7QjcQKysrSCSSKt8G5ObmVvlmobkyNjZG+/btce7cOdXsvdqWb13ysrOzg0KhQF5eXo1tmhsHBwc4Ojri3LlzAJpXjuPHj8eaNWuwc+dOuLq6qtZr27WsKc/qNNfrKZfL0bZtW/j5+WHWrFno3Lkz5s6dq3XXkjSP9+xKzT1fXX1vaK7v8QDv2dVprteT92xqLLxnV2ru+erqe0NzfY8HeM+uTnO8npq+X7MI3UDkcjl8fX2RmJiotj4xMRGBgYEaiqp+lZSU4MyZM7C3t4eLiwvs7OzU8i0pKUFycnKzzrcuefn6+kImk6m1yczMxOnTp5tt7nl5ebh69Srs7e0BNJ8co6Oj8cMPP2Dnzp1o166d2jZtupa15Vmd5no9H6ZUKlFaWqpV15KaBt6zec9uzu8NzfU9nvfs6jXX6/kw3rOpofCezXt2c35vaK7v8bxnV6+5Xs8HNfr9+nFnTqS6W7t2rSCTyYQlS5YIp06dEt577z3ByMhIyMjI0HRoT2TixIlCUlKScPHiRWH//v3CoEGDBBMTE1U+X375pWBiYiJs2LBBOHHihBAWFibY29sLd+7c0XDktSsoKBDS0tKEtLQ0wcDAQJgxY4aQlpYmXL58WRCEuuU1duxYwcHBQUhMTBSOHj0qhISECJ06dRIqKio0lZaa2nIsKCgQJk6cKOzbt0+4dOmSsGvXLuGZZ54RWrZs2axyjIqKEkxMTIQdO3YI2dnZqldBQYGqjTZcy0flqS3X84MPPhD27NkjXLp0SUhPTxc+/PBDQSQSCVu3bhUEQTuuJTUtvGfznt1U3ht4z66kDdeS92zes6lh8J7Ne3ZTeW/gPbuSNlxLXbhnN4X7NYvQDWzBggWCk5OTIJfLhS5dugi7d+/WdEhP7P4/QJlMJjg4OAhDhw4VTp48qdquVCqF6dOnC3Z2doKenp4QHBwsnDhxQoMR182uXbsEAFVeERERgiDULa/i4mLhnXfeESwsLAQDAwPhueeeE65cuaKBbKpXW45FRUVCaGioYG1tLchkMqF169ZCRERElfibeo7V5QdAmD59uqqNNlzLR+WpLdczIiJCaN26tSCXywVra2uhT58+wrZt21TbteFaUtPDezbv2U0B79mVtOFa8p5dSRuuJTU9vGfznt0U8J5dSRuupS7cs5vC/VokCIJQtz7TRERERERERERERESPh2NCExEREREREREREVGDYRGaiIiIiIiIiIiIiBoMi9BERERERERERERE1GBYhCYiIiIiIiIiIiKiBsMiNBERERERERERERE1GBahiYiIiIiIiIiIiKjBsAhNRERERKQDMjIyIBKJcPjwYU2HQkRERLXgPZu0EYvQRERERERERERERNRgWIQmIiIiIiIiIiIiogbDIjQRERERUSMQBAFfffUV2rRpAwMDA3To0AHff/89gH8fu/3hhx/QvXt36Ovro127dvjzzz/VjrFnzx74+/tDX18ftra2GD9+PMrKytTO8c0338DNzQ16enpwdHTElClT1I5x+fJl9OvXD4aGhvDy8kJiYmLDJ09ERNSM8J5NVP9YhCYiIiIiagQfffQRli1bhgULFuDUqVOYMmUKxowZgy1btqjavP/++3jvvfdw7Ngx9OvXDy+88AKuXr0KALh69SoGDBgAHx8fpKWlYdmyZVizZo3aB9apU6fis88+w5QpU3Dy5EmsX78erVq1Uotj2rRpeO+993D8+HF07doVL730EgoLCxvnh0BERNQM8J5NVP9EgiAImg6CiIiIiEib3b17F1ZWVvjzzz/Ro0cP1fpx48bh77//xsKFC+Hi4oKZM2di2rRpAAClUol27drhP//5j2r9unXr8Pfff0MsruxLkpCQgDFjxuDmzZtQKpWwsrJCbGwsxo4dWyWGjIwMuLi4ID4+HmPGjAFQ+SHZ0dERycnJ6N69eyP8JIiIiJo23rOJGoZU0wEQEREREWm7U6dOoaSkBM8++yxEIpFqfXl5OZydnVXLAQEBqr+LxWL4+/vj1KlTAIDTp08jICBA9WEWALp3746ysjKcP38eJSUlKC0tRZ8+fWqNpWPHjqq/Ozg4AAByc3OfKj8iIiJtwXs2UcNgEZqIiIiIqIEplUoAwK+//orWrVurbZPJZKjLw4mCIKh9GH6QSCSq0zHun+/B/R6Mj4iISNfxnk3UMDgmNBERERFRA/Py8oKenh4uX76Mtm3bqr2cnJxU7fbv36/6uyAIOHjwIDw9PVXHSE1NVfvwmZKSArlcjjZt2qjOsWPHjsZLjIiISMvwnk3UMNgTmoiIiIiogZmYmGDSpEmYNGkSBEFAcHAwCgsLsX//fojFYoSGhgIAFi1aBHd3d3To0AELFy7E5cuX8dZbbwEAoqKiEBsbi6ioKERHR+PixYv48MMP8c4778DQ0BAAEB0djSlTpkBPTw/BwcHIz8/HkSNHVMcgIiKi2vGeTdQwWIQmIiIiImoEn332GWxtbRETE4O33noLpqam6Ny5M95//31Vmy+//BJz5szB0aNH4eTkhE2bNsHR0REA0LJlS/z++++YPHkyOnfujBYtWuCVV17BF198odp/1qxZMDc3x2effYbMzEzY2tritddea/RciYiImjPes4nqn0io60A0RERERETUIDIyMuDi4oJDhw7Bz89P0+EQERFRDXjPJnoyHBOaiIiIiIiIiIiIiBoMi9BERERERERERERE1GA4HAcRERERERERERERNRj2hCYiIiIiIiIiIiKiBsMiNBERERERERERERE1GBahiYiIiIiIiIiIiKjBsAhNRERERERERERERA2GRWgiIiIiIiIiIiIiajAsQhMRERERERERERFRg/l/49VFlq4bXf8AAAAASUVORK5CYII=",
      "text/plain": [
       "<Figure size 1512x432 with 3 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6kAAAFqCAYAAAD4PByAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8qNh9FAAAACXBIWXMAAAsTAAALEwEAmpwYAACn6klEQVR4nOzde1zOd/8H8NdVV+eodLyEDoScKaImzSHDnOa0zZIZMbvJiA3bzGY3bm4iS3dziGwyc9qcMyLkfGhzGoWkk3IodLq6vr8/Wtdvl+uqrlJdV/V6Ph497vX5fr6f7/sTt2/v63MSCYIggIiIiIiIiEgL6Gg6ACIiIiIiIqISTFKJiIiIiIhIazBJJSIiIiIiIq3BJJWIiIiIiIi0BpNUIiIiIiIi0hpMUomIiIiIiEhrMEklIiIiIiIircEklYiIiIiIiLQGk1QiIiIiIiLSGkxSiYiIiIiISGswSSUiIiIiIiKtwSSViIiIiIiItAaTVCIiIiIiItIaTFKJiIiIiIhIazBJJSIiIiIiIq3BJJWIiIiIiIi0BpNUIiIiIiIi0hpMUomIiIiIiEhrMEklIiIiIiIircEklYiIiIiIiLQGk1QiIiIiIiLSGkxSiYiIiIiISGswSSUiIiIiIiKtwSSViIiIiIiItAaTVCIiIiIiItIaTFKJiIiIiIhIazBJJSIiIiIiIq3BJJWIiIiIiIi0BpNUqnIikUitr4iIiCp53po1ayrd1ptvvgmRSIRvv/22SmKp7woLC/HVV1+hWbNmMDQ0RIcOHfDTTz+pde/XX39d5t+XH3/8sdR7Fy1aBJFIhNatW6u8HhUVBQ8PD5ibm6NRo0bw9PTEzz//rLJuTk4OPvvsMzg7O8PQ0BD29vYYOXIkXr58Ka9z8+ZNzJ07F126dIGZmRlsbGzQu3dvREdHK7UXHR2Nt99+G02bNoWhoSHs7Ozw1ltv4cSJE68Vq6Ojo8qf0wcffFDqz4mIqDza/g738fEp9d/62uLChQvo3bs3TE1NYWlpiXHjxiEjI0Ote8ePH6/yz6NJkyZKdSvynvj3v/+NYcOGoXHjxhCJRJgyZYrK5x89ehQTJ05E69atYWxsDAcHB4wZMwZ//fWXyvphYWFo164dDAwMYGdnh8mTJ+Px48dK9XJzc/Hvf/8bbdq0gbGxMRo3boyhQ4fiwoULSnUTExPx7rvvwtLSEkZGRujatSt279792rGSdhEJgiBoOgiqW7Zs2aLwfXh4OM6cOYMNGzYolHt6esLZ2fm1n9e6dWvY2dkhJiamQvclJyfDwcEBzZo1g76+Pm7duvXasdR3H374ITZv3oxPPvkE7du3x+7du7F//35s2rQJ48aNK/Pe+Ph4xMfHK5UvXrwYt27dQnJyMuzs7JSuP3jwAK1bt5a/pG/evKlwfeXKlZg5cyZ8fX0xdOhQFBYWYsuWLbhw4QLWrl2r8CJ+9uwZevXqheTkZAQEBKBFixZ49OgRYmNjERkZCQsLCwBAUFAQ1q9fjxEjRsDd3R15eXmIjIzEpUuXEBYWhsmTJ8vbXL16NY4fPw53d3fY2Njg8ePH+PHHH/HHH39g9+7dGDx4cKVidXR0hJmZGWbPnq3QX2dnZ3h6epb5syYiKo22v8N9fHyQlpam9G99bXH9+nV069YNjo6O+Pjjj/H06VP897//RePGjXH+/HkYGRmVef/48ePx008/Kf15mJiYYPjw4QplFXlPiEQi2NjYoGvXrti3bx8mT56MsLAwpee7u7vj8ePHGDlyJFq1aoWUlBR8//33yMnJwcmTJ9G5c2d53Xnz5mHx4sUYMmQI3nrrLdy7dw8hISFwdXXF6dOnYWBgIK87dOhQ7Nu3DxMmTEDXrl2Rnp6OtWvXIisrC2fPnkXHjh0BFP/u5ubmBplMhmnTpqFRo0aIiorCqVOnsG3bNowePbpSsZIWEoiqmb+/v2BgYFBt7bdq1Uro1atXhe9bsmSJ0LBhQ2H//v0CAOHcuXNVH1wVefHihaZDKNfFixcFAMI333wjL5PJZIKPj49gY2Mj5OXlVbjNJ0+eCAYGBkL//v1LrTN69GihT58+Qq9evYRWrVopXXdychLc3NwEmUwmL3v58qUgkUiEbt26KdT9+OOPBQsLC+Hu3btlxnX+/HkhJydHoSw/P1/o0KGDYGVlJRQVFZV5/4sXLwQ7OzuhT58+lY7VwcGhzJ8LEVFV0LZ3eGn/1tcWQ4YMEaytrYWsrCx52bFjxwQAwsqVK8u9vyJ/HhV5TyQmJsr/G4AwefJklfWOHz+u9I5LSEgQjIyMhOHDh8vLUlJSBLFYLIwePVqh7u7duwUAwpo1a+Rl9+/fFwAIn376qULdK1euCACEOXPmyMumTp0q6OrqCn/88Ye8TCqVCm5uboJEIhEKCgoqHCtpJ073JY0pmdZobGwMMzMzDB48GNevX1eok56ejokTJ6Jp06YwMDBA48aN8fbbb+OPP/4AUPwp4a1bt3D8+HH5NBZHR0e1nr9lyxYMGzYM/fv3R+PGjZU+PS7x119/4b333oONjQ0MDQ3h4uKCGTNmKNRJTU3F5MmT0aRJExgYGMDR0RGTJk1CTk4OgP+fyvqqmJgYiEQihU+QS6YyxcfHo3fv3jAxMcHUqVMBALGxsRg9ejQcHBzkP4/Jkyfj6dOnSm2XFdPt27chEomwcuVKpfuuX78OkUiENWvWoLCwEDdv3kRqamq5P8+ff/4ZOjo6+OSTT+RlIpEI//rXv5CRkVHhkW4A2L59O/Lz80udwnr8+HHs2LFDZT9KZGdnw87OTuHnb2RkBAsLCxgbG8vLnj59io0bNyIgIACOjo4oKChAfn6+yjbd3d1hamqqUKavr4+3334bmZmZ5U7bMjY2RqNGjfDs2bNKxfpPhYWFePHiRZnPIyKqapp+h5dn/fr16NChAwwNDWFjY4Nx48YhJSWlQvEBwKVLlzBw4EBYW1vDyMgIzs7OGDdunMK/u6mpqbh58yYKCwvLjCknJwcHDhzA+++/j0aNGsnLfXx80K5dO2zbtk3t/slkMmRnZ0NQY0KkOu8JJycntZ7r7e0NHR3F9MHZ2RmdO3dW+POPi4uDVCrF+++/r1B36NChMDU1VVgKlJ2dDQBo3LixQt2S7//5/ouNjUX79u3Rrl07eZmuri7effddpKamKvyuoW6spJ2YpJJGLF26FO+99x6aNGmCZcuWYd68eYiPj4eXlxfu3r0rrzdy5Ej88ssv8Pf3R2hoKKZPnw6ZTCafmhscHAyJRILWrVsjMjISkZGRCA4OLvf5V65cwZ9//ol3330XOjo6GDNmDKKioiCVShXqXbt2Dd26dcOBAwfw4YcfYvXq1Rg1ahR+++03eZ20tDR069YNmzZtwvDhw7F69WqMHz8e586dQ1ZWVqV+Pk+fPoWvry9at26NlStXYuDAgQCKE8HHjx9j4sSJWLNmDd555x1s2rQJgwYNUri/vJhcXFzg6emJyMhIpWdHRkZCT08P7777Lh4+fAhXV1fMnTu33JgvXbqE5s2bK7x4AcDDw0N+vaK2bNmicgoTABQVFWHatGmYNGkS2rdvX2obb775Jg4cOIDg4GDcvXsXt2/fxmeffYbbt29jzpw58nonT55EXl4emjdvjuHDh8PIyAhGRkZ44403VE5DViUlJQVisRhmZmZK1549e4bMzExcv34dQUFBuH79Onx9fSsVa4njx4/D2NgYpqamaNq0Kf7zn/9AJpOpFSsRUWVp+h1eniVLlmDixImwsLDAsmXL4O/vj+3bt8PLy0vhQ93y4nv06BH69euHhIQEzJkzByEhIfDz88Mff/yB58+fy9uZO3cuXF1d8fDhwzLj+uOPP1BYWIhu3bopXfPw8MCVK1fU+je8oKAADRs2hJmZGSwsLBAQEKDyw2qg5t4TqampsLKyUogRgMoPWI2MjHD58mV5HC1btkTjxo2xbNky7N69G8nJybh06RL8/f1ha2uLiRMnKrSrqs2SsosXL1Y4VtJSmh7Kpbrv1akp9+/fF8RisbBgwQKFeikpKYKZmZkwYcIEQRAE4enTpwIAYdmyZWW2X5npvrNmzRIsLS2FwsJCQRAE4dy5cwIAYf/+/Qr1evXqJRgZGQl//fWXQvk/p4/4+/sLIpFIOHHihNJzSqZtLliwQFD1f7eSKT7Hjh1TeCYAYdWqVUr1VU37jYyMFAAIJ0+erFBM//vf/wQAwrVr1xSuNWvWTBg8eLAgCIJw9+5dAYDg7++v1M6r2rZtK3h7eyuVFxUVCQCEf/3rX+W28U9JSUmCSCQSPvjgA5XXQ0JCBHNzc+HRo0eCIJQ+BSwtLU3o3bu3AED+VTLN+59WrFghABAsLS2F7t27Cz/99JOwdu1awc7OTrC0tBRSUlLKjPfOnTuCoaGh8M4776i87uXlJX++oaGhMHXqVCE/P79SsQqCIAwePFhYunSpsHv3bmH9+vXyvzdTp04tM04ioorQtnd4edN9Hz16JBgYGAg+Pj7yd7wg/P800/nz56sdX8k958+fLzMmf39/AUC5S0W2b98uABCOHj2qdO3LL78UAAiZmZlltvH5558Ln332mRAVFSVERUUJH374oSASiYQuXbooLaup7HsCZUz3VeXHH38UAAirV6+Wl126dEkAIHz55ZcKda9fvy5/v/2zr3FxcULz5s0V3n+tW7cW7ty5o3D/kCFDhAYNGghPnjxRKB89erRav2uoipW0E5NUqnavvuBWrlwpABBu3LghPHr0SOHL19dXcHR0FARBEPLy8gQ9PT1h0KBBCms3XlXRF1xRUZHQuHFjISAgQKG8RYsWwvvvvy//PiMjQwAgfPzxx2W21bBhQ2HAgAFlPrOiSapYLBZyc3NLbU8mkwnPnj0THj16JCQmJiokterG9PTpU8HQ0FD4/PPPleL5+eefy7xXFWdnZ6Ffv34qr+np6QkfffRRhdpbvHixAEA4ePCg0rVHjx4JFhYWwooVK+Rlpf3ikp2dLQQEBAjvvvuuEBUVJURGRgq9evUSTE1NhdjYWHm9b775RgAgWFtbC8+fP5eXl3yAMXfu3FJjffHihdClSxfB3NxcuH//vso658+fFw4dOiT88MMPQo8ePQR/f38hOzu7UrGqIpPJhEGDBgkikUi4detWmXWJiNSlbe/w8pLUrVu3CgCEPXv2qHxWp06d1I7v6NGjAgBhwYIFCmsdK2vz5s0CAOHUqVNK17777jsBgPDgwYMKt7t06VIBgPDDDz+UWU/d90RFktSbN28KZmZmQrdu3RQ+FBAEQfD09BSMjIyEsLAw4e7du0JMTIzQvn17QU9PT6mvN27cEIYMGSLMnDlT2LVrl/D9998LDg4OQqtWrYS0tDR5vUOHDgkAhD59+gjnzp0T7ty5I3zzzTeCvr6+AKDM3zXKipW0D5NUqnavvuA+/vhjhU/KXv0yNjaW1/3vf/8r6OrqCmKxWPDy8hK+++47pSSgoi+4w4cPCwCEzZs3C3fv3pV/ffzxx4KxsbF8Q5wzZ84IAITQ0NBS20pLS1Na1K9KRZPUZs2aqWwnKSlJGDNmjNCgQQOln9vChQsrFJMgCMKYMWOEZs2ayUdXP/roI8HMzKzMBLk0VT2S2q5dO8HOzk6QSqVK1wICAoSWLVsq/NJQ2i8u/fr1E3x9fRXKCgsLhTZt2gjt2rWTly1btkwAIB8F+CdnZ2ehZ8+eKuMsKCgQBg4cKBgYGAi///67Wn3Lzc0VWrVqJYwYMaJSsZam5BeqtWvXqhUHEVF5tO0dXl6SWvIBp6okbNiwYYK5ubna8clkMuGdd94RAAgNGjQQ3n77beF///uf0sZ56qqKkVRV8vPzBT09PWHMmDHl1lXnPaFukvrw4UPB0dFRcHBwEB4+fKh0PSUlRT56C0AQiUTCuHHjhOHDhwsAhKdPnwqCULxJorW1tfDvf/9b4f7ExETBwMBA6feHsLAwhd+DJBKJsHbtWgGAMGPGjErFStqHa1KpxpWsQThw4ACio6OVvvbu3SuvO3PmTNy+fRvLli2DmZkZvv32W7Rp0wa///57pZ9fskHSuHHj4OTkJP9au3YtXr58iV27dgGAfDMCVRselVCnTlnXi4qKVJar2oJeJpPB19cXR44cwdy5c7Fr1y4cPnwYBw8elF+vSEwA4O/vj6SkJJw4cQL5+fn45ZdfMGrUKBgaGpZ776skEonKDZZKNqp4dUOEsvxzzbCurq7Ctb/++gvr1q3DJ598gvv37+POnTu4c+cOcnNzUVhYiDt37uDRo0cAis9Si46OxrBhwxTaEIvFGDRoEP7880/5Op6S+GxsbJTisbGxwZMnT5TKZTIZxo0bh0OHDuHHH39E79691eqfoaEhhgwZgp07dyI3N7fCsZbGwcEBAFSeQUdEVBU0/Q5/HcIrmwyVF59IJMKOHTtw9uxZzJgxA5mZmZg8eTLatWuH9PT0Cj9fIpEAQKnvSkNDQ/lRZxWhr68POzs7tf7tr6r3RFZWFvr164eXL1/i8OHDKt/xEokEMTExSEhIwPHjx3H//n1s2rQJqampsLGxke/fsHPnTjx69Ejp/efk5IQOHTogNjZWoXzy5MlIT0/HmTNncObMGdy7d0++8VPLli0rFStpH7GmA6D6p3nz5gCAZs2aoU2bNuXWd3JywowZMzBjxgw8ePAAnTt3xpIlS9CnTx8A6iVjJUqS0JEjR2Ls2LFK1+fPn48tW7bAz88PLVq0AACFXf5eZWNjg4YNG5ZZB4D8pfP06VOYm5vLy+/du6d27PHx8bh58yYiIiLg7+8vL799+3alYgIAX19fSCQSREZGIiMjA8+ePYOfn5/aMf2Tm5sbjh49isePHytsnnT27FkAQJcuXdRu68cffwQAlbGkpKRAJpMhMDAQgYGBStddXFzk57uV/BLx6oZY/ywr+V83NzcAULnxxcOHD+V/H/5pypQpiIqKwg8//IARI0ao2z0AxQeXC4KAnJwcGBkZVSjW0iQmJgIArK2tKxQLEZG6NPkOV0fJ7sA3b95USlhu3ryptHtwefEBQLdu3dCtWzd88803OHDgAAYOHIh169Zh/vz5FYqtffv20NPTw7lz55R2vT179iw6deqktButOvLy8pCamoqePXuWW7cq3hPZ2dno378/kpOTERMTozIx/CdnZ2f5mbqPHz/GxYsXFc4zLe/9p6rcyMhIvjEjABw+fBgA0Ldv39eKlbSIRsdxqV54dapQYmKiIBaLhZEjR6o8TzIjI0MQhOJ1fi9fvlS67urqKri5ucm/d3NzEzp06KBWLCUL5o8cOaLy+ldffSXo6uoKqampgiAUTysyNjZWWrj/z3MsSzYpUrXGpKTevn37BADCzp075dcKCwsFd3d3ldN9VU1lio+PFwAIGzduVCgPCAiQr5mpSEwlgoKCBDMzM6F///6Co6OjwvWCggLhxo0b5W4aJAiCcOHCBQGA8O233yo8y8fHR7C2tlbY0OHRo0fCjRs3VG4EVVRUJNjb2wuurq4qn5ORkSFs375d6atNmzZC48aNhe3btwuXLl2SP0dHR0fw9PRU+Lv24sULwdHRUWladceOHQUzMzOF9UnR0dECAKVpSLNmzRIACEuXLi3z55Kenq5UlpWVJdjb2wtNmzZV+JmoG+uTJ0+U/hwLCwuF3r17C7q6ugrn3RERvQ5teocLgvobJ/Xu3Vthucivv/6qsHGSOvE9fvxY6d/akiU1s2bNkpelpKQIN27cUGvd6ttvvy1YW1sLjx8/lpeVLP3573//q1D3xo0bCtOP8/LyVL43S6YKb968WV72Ou8JlDHd9+XLl0LPnj0FQ0NDISYmpuzOqjBx4kRBR0dHuHDhgrxsx44dAgCFPTIEQRCuXr0qiMViYdy4cWW2efPmTcHU1FQYOnRolcZKmsWRVKpxTk5O+M9//oOZM2eie/fueOedd9CoUSPcv38f+/fvh4eHB8LCwvDXX3+hd+/eGDVqFNq2bQsDAwPs378fN27cwLJly+Ttubu7Izw8HAsXLkTLli1hamqKwYMHq3z2li1bYGZmBm9vb5XXBw8ejG+++QZbt27Fp59+ipCQELzxxhtwd3fH5MmT0bx5cyQlJSEqKko+grl48WJER0ejT58+CAgIQNu2bZGeno6dO3di165dcHR0hK+vLxwdHTFx4kTcvHkTRkZG+Omnn9Q636xE69at4eLiglmzZiE5ORmNGjXCgQMHkJycrFRXnZhK+Pv7Y/ny5Th06BC++OILhU+1S46g8ff3R0RERJnxubm5wc/PDwsWLMCjR4/Qvn177N69GzExMdiwYQMMDAzkddesWYOFCxfi2LFj8PHxUWjn2LFjePjwofxs2FdZW1tj5MiRSuVr1qxBUVGRwjUrKytMmjQJ//vf/+Dt7Y3Ro0ejsLAQGzZswL1797BhwwaFNlauXIl+/frBy8sLAQEByM7OxooVK9CiRQuF819Xr16N//73v+jcubPKM3aHDx8OExMTAICXlxc6duwId3d3WFlZyZ+bnp6ucCZeRWLdvXs3/vvf/2LQoEFwcnLCkydPEBUVhatXr2LevHlqn3dHRFRRmnyHl8jKysKiRYuUyu3s7DBx4kR8/fXXmDt3Lvr27Yt33nkHDx48QEhICBwdHREUFAQAasW3adMmfP/99xg+fDiaN2+O3NxcbNy4Ebq6ugrvmrlz52LTpk24e/duuee8Ll68GB4eHujZsyc+/vhjPHv2DMuXL4erqyumTJmiUNfV1RW9evWSn/2ZmpqKHj164J133kHLli0hEolw5MgR/Pbbb+jVqxfee+89+b0VfU9ERkbi/v378u8vXbok/xn7+fnJpwmPHTsWsbGxeP/99/HgwQOF95+pqanClN3p06cjNzcXnTp1AgDs2LEDx44dw9KlS+Wzl4Di373atWuHJUuWICkpCT179kRKSgrWrFkDfX19zJ49W173/v37GDlyJIYMGQJ7e3v89ddfCAsLg42NDdauXavQp4rESlpI01ky1X2vfgpbYu/evYKPj4/QoEEDwcjISGjRooUwfvx44dy5c4IgCEJmZqbwr3/9S3B1dRVMTU2FBg0aCG5ubsL69esV2klNTRUGDx4sNGzYUAAgODg4qIwjPT1dEIvFwrvvvltqrDKZTGjcuLHQpUsXedn169eFESNGCBYWFoKhoaHg4uIifPrppwr3PXjwQBg/frxgY2Mj6OvrC46OjkJAQIDC5gpXrlwRvLy8BH19fUEikQhffPGFfJROnZFUQSj+tLB///5Cw4YNBQsLC+G9996Tf6r76nEA6sRUokuXLgIA4ebNmwrlFTmCRhCKN2/44osvhCZNmgj6+vpCu3bthMjISKV6JRtJ/bPfJUq20793755azyxR2s9NKpUKYWFhQpcuXQQzMzPByMhI8PDwKHUH4+joaKF79+6CoaGhYGFhIYwdO1ZpJLnkuIHSvv55DMF//vMfoUePHoKlpaUgFosFGxsbYejQoSqPB1I31osXLwpDhgyR/5xNTU2FHj16CFu2bKnQz4yIqDza8g4v8c+NeF796tixo7zeDz/8ILRr107Q19cXLC0tBT8/PyE5OVl+XZ34Ll26JLz//vuCg4ODYGBgIFhbWwu+vr7C8ePHlX5Gr/7bX5azZ88KPj4+grGxsfw9UzKD658AKGwq9eTJE8HPz09wcXERTExMBAMDA8HV1VVYuHCh0oaHFX1PlPVz/ee72sHBodR6r/7ZRURECJ06dRJMTEwEU1NToWfPnip3XS7p25w5c4TWrVsLhoaGgrm5ufD222/LZ0aVePz4sTBs2DBBIpEIenp6QtOmTYVp06ap3HCqIrGS9hEJQgWGcoioTurRowdkMpl8/SgRERERkaZwd1+ieu7PP//EmTNnFDZjIiIiIiLSFI6kEtVTf/75Jy5evIhVq1bhwYMHuHv3LkxNTTUdFhERERHVcxxJJaqnfvnlF3z44Yd48eIFtm7dygSViIiIiLQCR1KJiIiIiIhIa3AklYiIiIiIiLQGz0kth5WVVblnXpXnxYsX8jMT67r60lf2s25hP+uWyvbz3r17yMzMrIaIqKL47lUf+1n31Je+sp91S1W/e5mklsPR0REXLlx4rTZiYmLg4+NTNQFpufrSV/azbmE/65bK9tPd3b3qg6FK4btXfexn3VNf+sp+1i1V/e7ldF8iIiIiIiLSGkxSiYiIiIiISGswSSUiIiIiIiKtwSSViIiIiIiItAaTVCIiIiIiItIa3N2XiIiIiIhqFZlMhszMTDx9+hRFRUWaDqdUZmZmuHHjhqbDqHaq+qmrqwtzc3NYWVlBR6diY6NMUomIiIiIqFZJTk6GSCSCo6Mj9PT0IBKJNB2SSjk5OWjQoIGmw6h2r/ZTEAQUFhYiPT0dycnJaNasWYXa43RfIiIiIiKqVV68eAF7e3vo6+trbYJan4lEIujr68Pe3h4vXryo8P1MUomIiAihoaFwcnKCoaEh3NzcEBsbW2Z9QRAQHByM1q1bw8DAABKJBJ9//rlCnZ9++gmdOnWCsbEx7Ozs8MEHHyAtLa06u6EQHxHVbRWdQko1r7J/RjX+J1uRl+DXX38NkUik8isjIwMAEBMTo/L6zZs3FdrasWMH2rRpAwMDA7Rp0wa7du2q1n5S3fHb1RT0X3kC2XmFmg6FiKhabNu2DYGBgZg3bx4uX74MT09PDBgwAElJSaXeM2vWLISGhmLp0qW4ceMG9u/fD29vb/n1U6dOwc/PD/7+/rh27Rp2796N69evY+zYsdXen0mbL2DJubxqfw4REVWPGk1SK/oSDAoKQmpqqsJXr1694OPjAxsbG4W6165dU6jn4uIivxYXF4cxY8Zg7NixuHLlCsaOHYtRo0bh7Nmz1dpfqv0Ki2RYevAmbqXnIDLuvqbDISKqFitWrMD48eMxadIkuLq6IiQkBBKJBGvXrlVZ/9atWwgJCcGePXswdOhQODs7o3Pnzhg4cKC8TlxcHJo0aYJPP/0UTk5O6N69O6ZNm1Yj715DPV08zedIKhFRbVWjGyf98yUIACEhITh48CDWrl2LxYsXK9U3NTWFqamp/PsHDx4gNjYWkZGRSnVtbGxgZWWl8rnBwcF48803MX/+fADA/PnzcezYMQQHB2Pr1q1V0TWqxa6nZCPh0XMM7thY6dqeKylIfpKLxmaGWBebiPGejjAxeL3/25xNzMKBP9PgYGmMD72cVNZJz87DDycSIZX9/y9Zwzrbo1NTcwDAywIpQo7eQW6B+rvZtZE0xOiuTV8rdiKqewoKCnDx4kUEBQUplPv6+uL06dMq79mzZw+cnZ1x8OBBDBo0CDKZDL169cKyZcvkHyJ7eXlh3rx5+O233/D2228jKysLUVFRColsdbFpYICn+QIEQeBaNSKqc77++mv88ssv+PPPPzUdSrWpsSS1Mi/BV61fvx7m5uYYMWKE0jV3d3fk5+ejTZs2+OKLL/Dmm2/Kr8XFxWHatGkK9fv37481a9ZUoidU16yIvoXjfz1Cvza2MNTTlZcXyQSEHrsDV0lDLBrWDiPWnsZPZ5Mwydv5tZ63+MBNXE1+CkEAOjQxg5tDI6U6yw/dwo5LyWhgqAcAeJEvRWLmC2ye0A0AsPHUPayNSYCZkZ5azywskiG3sAhujhZobm1a/g1EVG9kZmaiqKgItra2CuW2trY4cuSIynsSExNx//59REVFISIiAiKRCEFBQRg8eDDi4uKgo6ODHj16YOvWrRg7dixyc3MhlUrRr18/bNq0SWWb4eHhCA8PB1C8a2dMTEyl+5TzqAD5RcDB32NgJK7bSerz589f62dVW9SXfgL1p6+v208zMzPk5ORUXUDVpKioSB7n6NGjkZeXh19//VWp3q1bt9C1a1fs3r0bvXv3LrPN/Px8yGSyMvvfsGFDbN68GcOGDXut+NX1z36+Ki8vr8J/1jWWpFbmJfhPMpkMGzZswLhx42BgYCAvL5mO1LVrVxQUFCAyMhJ9+vRBTEyMfG1MWlqayueWtnlDVb4ogfrzjw1Q+/oqEwScvv0ShUXAxl9j4Gqpi+x8AQ30gbNpRUjMzMcnnQyQc/cq2lrqIOTITeg/vYu83FzkHzkGgwr88pNTIECsA/yR/BJ9m4lxJkWKhdvPYaa7IXIKBJjoAToiER69lGHnpVz0birGB230AQCbrwk4nfAIh38/htQXMoSdz0MHK13MdNdX69nZ+QKCjr/E3B9PYmRLfdgYqzfTv7b9eVZWZfsplQlIfVHxKYVWRiIY6AKpLwTIamhGooWBCCh4gZiYGDx6KUN+ESAxEUFXR/Hv8KOXMuRp73FzpTLUBaz//ntdX/7eVrVXRxzLGoWUyWTIz89HZGQkWrZsCQCIjIxEq1atcP78eXh4eOD69euYPn06vvzyS/Tv3x+pqamYPXs2Jk+ejM2bNyu1GRAQgICAAADFHzz7+PhUui9PzJLx862raNmxa53/YC4mJua1fla1RX3pJ1B/+vq6/bxx40atONrln0ezTJkyBcOHD0dWVhYcHR0V6kVFRcHBwQGDBw8ud7MhAwMD6OjolNt/IyOjGvsZlXXUjqGhITp37lyh9mr8nNSKvAT/6cCBA3jw4AEmTpyoUN6qVSu0atVK/n2PHj1w7949LF++XGEDh4o8typflED9+ccGqH19vZGajZeHijfvKjBrBntXO0xaHYu5A1xxNC0JLWz0MGu0N3R0RDBqloUx4Wew4HQeABE8mxvhp0nd1XpORk4eei8/jpa2pigSXmJs787olJKNZYduocC6NeZEXcGknk6Y6dsK83f9AR2dB/h2rDckZkYAgGyLFBzdehlrb+njctJTAMCCUd1UjsKW5mrhdaw/eRfn0nIR+VE39HSxLvee2vbnWVmV7efXv15DxOl7Fb6vbeOGGNbJHt+drLnDvZs2MsICdxOYN++ED0NPQRCAyd7OmDvQVV7nwr3HGB8WV2MxVSXfNrYIH+cOoP78va0qVlZW0NXVVfrgNiMjQ+kD3hISiQRisVieoAKAi4sLxGIxkpKS4OHhgcWLF6Nbt26YPXs2AKBDhw4wMTFBz5498d1336Fp0+pbfmDTwLC4D9n5dT5JJaLaY9CgQbC1tcXGjRuxcOFCeXlhYSEiIyPxySefQBAEfPTRRzh69CjS0tLQpEkTTJo0CUFBQVW2m7FMJsN3332H8PBwZGRkoGXLlli0aBGGDh0qr/PNN99g/fr1SEtLg4WFBXx9feUfMJ44cQJz5szBn3/+CV1dXbRu3RqrV6+Gh4dHlcQH1GCSWpmX4D+Fh4fD09MTbdu2Lbeuh4cHoqKi5N/b2dlV+rlUt527+xhA8fqlc/eycDfzOQqLBCw5cBMFRTIEj+kEnb9HmjycLREV0B1PXxZgR2w8ohOycO7uY3RzKj9RXBd7F8/zpbiU9BQ6IsDNwQJuDhb43/EE/OunyygokmHDqXsY1KExtl9Ixki3pvIEFQA8/n7G5aSnGNRBAv8ejhVKUAEgyLcVPJwaYcGv17DqyG280cKKa7VeQ0Z2Hn46lwTfNrZ4p4u92vf9+TAba47dwe3053B3sMDEnqrXJVele1kvseTATZxO0cf9pNswM9KDWzMLbI67jwBvZ1iaFs9OWX30DixN9LFoWDvUtr8a1n8nJVRx+vr6cHNzQ3R0NEaNGiUvj46OVrm8BihebyqVSpGQkIDmzZsDKJ4CLJVK4eDgAAB4+fIldHV1Fe4r+b66j4exaVD8dzojhzv8EtUnC3+7husp2TX6zDaNG2LB4PLzEwAQi8Xw9/dHREQEFixYIE86f/vtN2RmZuLDDz+ETCaDvb09fv75Z1hbW+PcuXMICAiApaUlPvrooyqJedWqVVi2bBnCwsLg7u6OLVu24J133sHFixfRqVMn7NixA8uXL8fWrVvRvn17ZGRk4MyZMwAAqVSKoUOH4qOPPsKPP/6IwsJCXLp0Senf+9dVY0lqZV6CJVJSUrBv3z6sW7dOrWdduXIFEolE/n2PHj0QHR0t/zS35Lmenp4V7AXVFYIgYN6uPxB9PR325kbo18YWP569jyKZgG5OjXDu7mM4Whrj7Q4Shfu6O1sCAETpN3E5Swef/HQJjc3K/+X4RloOujpa4ML9J2hnbyZfa/qhlxNW/X4b3Rwb4dy9xxgVdhpFgoCpPs0V7rdtaAhHS2M8fJqL+QNd0djcSNVjymSkrwvftnZIfZaHBb9ew9shJyHWKTsTyc7Jxco/T1b4WbVNZfr5+GUBimQC5g9yhYOlidr39XW1xa9XU5D0+CVm928Fj7//TlUnQRCw/49UbL35DLnSDMzq1xID2kvQb+VxDA89DQtjPcgE4I+Hz/DZW60xoL2k/EapTpk5cyb8/PzQrVs3eHl5ISwsDCkpKZgyZQoAYO7cuTh37hx+//13AEDfvn3RpUsXTJgwAcHBwQCAGTNmwMPDA+7uxSPagwcPxqRJk7B27Vr5dN8ZM2agS5cuaNasWbX2x6Zh8b/Lj3Lyq/U5REQV9dFHH2Hp0qU4cuQIfH19ARTvu+Pr6yufYfLNN9/I6zs6OuLSpUvYunVrlSWpy5cvR1BQEN5//335806cOIHly5djy5YtuH//PiQSCXx9faGnp4dmzZrJ/23Pzs7G06dPMXjwYPmHlK1bt67y9cE1Ot23oi/BEhs2bICJiQlGjx6t1GZwcDAcHR3Rtm1bFBQUYMuWLdi9ezd27NghrxMYGAhvb28sXrwYw4cPx65du3Ds2DGcPFn3f/km1U7eycTWcw/Qqak53u/WDO2bmCH5yUvoi3Xw7dB22HDqLno4W0Gsq3pahYGuCN8ObYdtFx6o9bxeLa3x5aA2OHQtDU0bGcvLJ7zhhLRneZje1wU7LybjYtITvNHCSqFOiRl9WyInX1qpBPWfxnRtiqvJT/H4RUG5dYU8ESxM1Fv3WptVpp8WJvoY192xQgkqAIh1dfDd8HY4m/i4RhJUoHi5w4LBbfDNL+fQrLEtxns5ooGhHub0b42zd7Pk9YZ2aoxxPRxqJCbSLmPGjEFWVhYWLVqE1NRUtGvXDvv375ePiqampiIhIUFeX0dHB3v37sX06dPh7e0NIyMj9OvXDytWrJCPDIwfPx45OTlYs2YNZs2aBTMzM7z55pv4z3/+U+39aWgohp4OkMEklaheUXdEU5NcXFzg7e2NDRs2wNfXFykpKTh06BC2bdsmrxMWFoZ169bh/v37yM3NRWFhofzf49eVnZ2NlJQUeHl5KZS/8cYb2L9/PwBg1KhRWLVqFZycnNC/f3+89dZbGDJkCAwMDNCoUSOMHz8e/fv3R58+fdCnTx+MGjUK5ubmVRJfiRpNUiv6EgSKRwDWr1+PsWPHwthY+Rf3goICBAUF4eHDhzAyMkLbtm2xb98+hS3uPT09ERUVhS+++AILFixA8+bNsW3btiqdN02v7+qDp7iWko22jRui499HrZTn2K0MpD6t+HSureeSYNfQENsmd4eBuHh6wjr/rvLrs/u3LreNAe0lFR5xenVnYDMjPSwd2QEAMK2Pi6pb5IZ1Vn9KaVkM9XSxYnQnteoWr+3rViXP1WY13c+eLtZqrQmuSm4OjfCpmyF8fP5/44KPfZrj41dG7an+mjp1KqZOnaryWkREhFKZRCLB9u3by2xz2rRpSrvr1wSRSARzAxEysjndl4i0z8SJEzFp0iQ8fvwYERERaNSoEYYMGQIA2LZtG2bMmIHly5fD09MTDRs2xPfff49du3ZVaQyqlnyVlDVt2hS3bt3C77//jiNHjmDWrFlYuHAhzp49CxMTE2zcuBEzZszAwYMH8euvv2L+/Pn46aefMHz48CqLr8Y3TqroS1AkEuHu3bultjdnzhzMmTOn3OeOHDkSI0eOVDtOqlnZeYX4YP1Z5ORJ0dBQjFOf95ZPiS1NenYePtx4vtLP/HZYO3mCSkREdYuZgYgjqUSklUaOHIlp06Zhy5Yt8tNL9PSKf+89efIkPDw88K9//Ute/9VBvNfRsGFDNG7cGCdPnlQ46ubkyZNo06aN/HtDQ0MMGjQIgwYNwueffw47OzucOnVKPkW5Y8eO6NixIz777DMMGDCg9iepRCVkMgEiUfEHEZtP30NOnhTfDmuHL3f/ic1x9zHVp7nKT3lK7jv796ZHmyZ0Q2u7im2vrasjgmU9mMZKRFRfmRuIkM6RVCLSQkZGRnj//ffx9ddf48mTJwprTVu2bImIiAgcOHAALVq0QFRUFI4fPw4LC4sKP+fevXu4cuWKQpmzszNmz56Nr776Ci4uLnBzc8OWLVsQGxuLixcvAigeOJRKpfDw8ICpqSm2bdsGPT09uLi44O7du/jf//6HIUOGwN7eHomJiYiPj8eECRNe62fyKiapVKM+3nIRjUz00dquAb7ccw2mBmJEBXTH+pN30bu1Dfy6O+DI9XQsO3QLYTEJ2De9J5pZ/v807/ATCfj3/ptoaCiGm4MFTA3E8GpuWeraUSIiqp/MDES4lcGRVCLSThMnTsTatWvh6ekJV9f/Pw5u8uTJuHLlCt5//30IgoARI0Zg1qxZ2LBhQ4Wf8c9NY0v89ttvmD59OnJycjBnzhykp6ejVatW2LFjBzp16gQAMDc3x9KlSxEUFITCwkK0adMGO3fuhJOTE9LT0/HXX39h1KhRyMzMhK2tLcaOHYtPP/200j8LVZikUo15kS9F9PV0yAQBDQz10LZxQyQ8eo5xG87hyctCTOvdAgCwaFg77Lr8EGuO3UFozB0sGVG8ZjMnrxBrjt5BxyZmuJ6ajWO3HqFXS2smqEREpMTcQIScvELkFRbBUI9LO4hIu3Tp0kXlcVz6+vpYv3491q9fr1D+1Vdfyf/766+/xtdff11m++Ud9fXll1/iyy+/VHlt2LBhGDZsmMprtra22Llzp1J5rd7dl+quwiIZQo7egYNUJi/7Kz0H62PvwkhfF3PeaoXLSU8hlRX/H+ZZbiF+GOeOQ9fSsP7kXfR0sULnZsXTGJo2Msb0Pi7Iep6Pn84lQSoTIAKQ/CQX2XlSLBrWHj+dS8LWc0lqnVFKRET1j7lB8XKRjOx8hRk5RESk/ZikUpXYdekhVv9+Gz0kuhgxoLjsm9+u49y9xyiQyiAxM8SLfCl0dUT4xKc5Up7loZtTIzhaGuNS0hME+bZSanOKT3PEJWbh9J1Medl73ZqifRMzfGLSHDfTsjGgnV1NdZGIiGoRs5IkNSePSSoRUS3DJLWOkckE/JnyDIVFMohEIrRrbAZ9sQ7ypUV4+rIQtn8fcF5VCotk+PPhM4TG3IFIBJxJLcLvN9LxPF+Kk3cyMW9ga8TezsQPsYlobG6Edo0bYuY/ElKbhobYNdVLZdsSMyMc/rSXymtNLIxLvY+IiMjCsHgpCHf4JSKqfZik1jG/Xk3BjG1X5N9P6dUcnw9ojQV7ruHQtTScm98XelW4hnPVkdtYc+wOAODfw9vj6z1/4KNNFwAAjUz0MdbDAZ2bWWBUWBwynxdgSi+eyUhERNVPPpLKHX6JiGodJql1zMk7mWhkoo/gMZ2wOe4eNsfdw6D2Emy/mIwimYBrKdno1NS8Sp717GUhIk7fw5utrPGv3i3QpZkF8OgOmrRsDwBwtDSBiYEYXR0bYc8nXsjJk6KLQ9U8m4iIqCymeoBYh2elEtVlgiCoPK6QtEd5GziVhklqHfDVnj/RwsYU43o44uzdLHRzbATvltawMzOE78oTGBMeBx0RUATgbGIWWts1wEebziM9Ox9TejXHSLcmlXruxtN38TxfijlvtYarpCEAoLGpDrxbWivV7VhFiTEREZE6dEQiWDcwQHo2k1SiukhPTw+5ubkwNuaac22Wm5sLPT29Ct/HJLWWu3j/CTbH3YeJvi66OjbCg8e5+NDTCQDQ0rYB5g90xZUHT/GGixV+iE3EubuPYSDWwak7WTA31sPWc0mVSlJz8gqx8dQ99GtjK09QiYiItIlNAwNk5HC6L1FdZGNjg4cPH8Le3h5GRkYcUdUygiAgNzcXDx8+hK2tbYXvZ5JaiyQ8eo5nuYXF02r/tubobTQwECMnX4rpWy8DgMKxLJO8neX/HZ/8FHuvpuJaSja6OTZCFwcLrD+ZiNyCIuRLi7Dr8kMUyf5/SL5fm+K/UNHX02HdwABDOjbG7isPkfW8AH88fIZnuf9/tikREZG2sW5giOQnLzUdBhFVg4YNiwdJUlJSUFhYqOFoSpeXlwdDw6rduFQbqeqnnp4ebG1t5X9WFcEktRb5bt8NnLv7GCc/exPmxvp4lJOPY7ceIbCPC+5mvsCvV1Ngb25U6shmX1dbbD33AC8KpFgxpiPypTKEHU/A5aQn2P9nKracSVKof/DPNAgoHq0FgBupOQg7niC/3q+NLTo0Ma+u7hIREb0Wm4YGuJT0RNNhEFE1adiwYaUSoJoUExODzp07azqMalfV/WSSWov8lZ6D5/lSbDx1D5/2a4nz9x4DAHxaWWNGXxd8N7wdDPV0oaujerpDH1db3PjmLYhEgKGeLrLzCqEjAvZcScGuyw8xxr0pvnjbFQDw84VkfLv3OgBg7oDWWH/yLsKOJ6CxmSH2B/aEro4IJvr860NERNrLpoEBHr8oQIFUBn1x1e1sT0RE1Yv/YtcSLwukSH6SC10dETaeuoucvEKcu/sYxvq6aGdvBpFIhAaGeuUeL2OkrwtDPV0AQENDPbRtbIZtFx6gSBDwyZst0MBQDw0M9TDWoxmsGxjApoEB/D0dEfD3tOEpPs1hbqyPBoZ60CklGSYiItIGJWeDZz7n5klERLUJh8JqicRHLwAAk72dERqTgM1x93EmMQtuDhavde7pkhHtEZeQhebWpmhm+f+7oxnq6WLj+K7y/x7XwxHWDQwwsL3k9TpCRERUQ2waGAAAMnLy0djcSMPREBGRupik1hK3M3IAAO90scf11Gz873gCcvKlGPSaSWPbxmZo29hM5bV29v9fri/WwdBO9q/1LCIioppk06B4JDUjmzv8EhHVJpzuW0vcyXgOsY4IDpYmCPJtBXsLY7SRNMSA9naaDo2IiEgr2TQsHklNz+F0XyKi2oQjqbXE7fTncLQygZ6uDtrZm+FAYE9Nh0RERKTVLE30IRIBjziSSkRUq3AktRbIKyzCpaSnaGXXQNOhEBER1RpiXR1YmhgggyOpRES1CpPUWmD7hQfIfJ6PsR7NNB0KERFRrWLTgEkqEVFtw+m+WiwjOw/jNpzD3cwXcHOwQA9nS02HREREVKvYNDRARg6n+xIR1SY1PpIaGhoKJycnGBoaws3NDbGxsaXW/frrryESiVR+ZWRkAAB27twJX19fWFtbo0GDBvDw8MCvv/6q0E5ERITKNvLytPulFX4iEbcznmNop8b4ZmhbiEQ8l5SIiKgibBsYIiObI6lERLVJjSap27ZtQ2BgIObNm4fLly/D09MTAwYMQFJSksr6QUFBSE1NVfjq1asXfHx8YGNjAwA4fvw4evfujX379uHy5csYOHAghg8frpT8GhsbK7VlaGhY7X2urKzn+fjxbBKGdmyM/4zsWOoxMURERFQ6m4YGyHyejyKZoOlQiIhITTU63XfFihUYP348Jk2aBAAICQnBwYMHsXbtWixevFipvqmpKUxNTeXfP3jwALGxsYiMjJSXrVq1SuGeBQsWYN++fdi9ezd69vz/HXBFIhHs7GrPcS2xtzORW1iED72cNB0KERFRrWXTwAAyAch6kS8/N5WIiLRbjY2kFhQU4OLFi/D19VUo9/X1xenTp9VqY/369TA3N8eIESPKrJeTkwMLCwuFstzcXDg4OKBJkyZ4++23cfny5Yp1oIYlP3kJAGhhY1pOTSIiIiqN9d+JKaf8EhHVHjU2kpqZmYmioiLY2toqlNva2uLIkSPl3i+TybBhwwaMGzcOBgYGpdb7/vvvkZycDD8/P3lZq1atsGHDBnTs2BE5OTlYtWoVvLy8cPXqVbi4uCi1ER4ejvDwcABAcnIyYmJi1Oylas+fP69wG+ev56OBPnD2dOlrdrVRZfpaG7GfdQv7WbfUl36SemwbFv/OkJ6dh3b2XDpDRFQb1Pjuvq9u/iMIglobAh04cAAPHjzAxIkTS62zY8cOzJ49G1FRUXBwcJCX9+jRAz169JB/7+npiU6dOiEkJASrV69WaicgIAABAQEAAHd3d/j4+JQbX1liYmIq3Mb6hLNwsimEj88br/XsmlaZvtZG7Gfdwn7WLfWln1UtNDQUy5YtQ2pqKtq2bYvg4GCFZTOvEgQBq1atQlhYGO7evYtGjRrB398fS5YskdcpKCjAokWLEBkZiZSUFNja2iIoKAjTp0+viS4BACRmRgCAtGzt3iyRiIj+X40lqVZWVtDV1UVaWppCeUZGhtLoqirh4eHw9PRE27ZtVV7fsWMH/Pz8sHnzZgwZMqTMtnR1deHu7o7bt2+r34Ea9vBpLlrZNtB0GEREVA+UbGwYGhqKN954A6GhoRgwYACuX7+OZs1Un9E9a9Ys7N27F8uWLUP79u3x7NkzpKamKtR577338ODBA4SHh8PFxQXp6enIzc2tiS7JWTcwgK6OCGnPmKQSEdUWNZak6uvrw83NDdHR0Rg1apS8PDo6utw1pikpKdi3bx/WrVun8vrPP/8Mf39/bNq0CSNHjiw3FkEQEB8fj44dO1asEzVEEAQ8fJKL3q1sNB0KERHVAxXd2PDWrVsICQlBfHw8XF1d5eWdO3eW//fhw4dx5MgRJCQkwMrKCgDg6OhYvR1RQVdHBJsGBkh5yiSViKi2qNEjaGbOnImIiAisW7cON27cQGBgIFJSUjBlyhQAwNy5c9GnTx+l+zZs2AATExOMHj1a6VpUVBTGjh2LJUuWwNvbG2lpaUhLS8Pjx4/ldRYuXIhDhw4hMTERV65cwUcffYT4+Hj5c7VN5vMC5EtlaGJhpOlQiIiojqvMxoZ79uyBs7MzDh48CGdnZzg6OsLf319+hjkA7N69G127dsWKFSvQpEkTuLi4YPr06Xj+/Hm19kcVOzNDpGXX7AguERFVXo2uSR0zZgyysrKwaNEipKamol27dti/f798/WhqaioSEhIU7hEEAevXr8fYsWNhbGys1GZYWBikUilmzJiBGTNmyMt79eol3zjj6dOnCAgIQFpaGszMzNC5c2ecOHEC3bp1q7a+vo6HT4tfpPYWyv0lIiKqSpXZ2DAxMRH3799HVFQUIiIiIBKJEBQUhMGDByMuLg46OjpITEzEyZMnYWBggB07duDp06eYNm0aUlJS8Msvvyi1WZ2bFooL8pCQJauTG2rVl43C6ks/gfrTV/azbqnqftb4xklTp07F1KlTVV6LiIhQKhOJRLh7926p7anzw1i5ciVWrlypboga9/DJ30mqOUdSiYioZlRkY0OZTIb8/HxERkaiZcuWAIDIyEi0atUK58+fh4eHB2QyGUQiEX766SeYmRXvqrtmzRr0798f6enpSklxdW5aGPv8Oq6dS0KvXr3U2qyxNqkvG4XVl34C9aev7GfdUtX9rNHpvqSeh0+Lz0i153RfIiKqZpXZ2FAikUAsFssTVABwcXGBWCxGUlKSvI69vb08QQUgX79aUqemSMwM8bKgCNl50hp9LhERVQ6TVC2U+OgFGpnow8xIT9OhEBFRHffPjQ3/KTo6Gp6enirv8fLyglQqVViik5iYCKlUKl/C4+XlhZSUFIU1qH/99RcAKBwTVxPszAwBgDv8EhHVEkxStdDtjOdoYWOq6TCIiKieqOjGhn379kWXLl0wYcIEXL58GZcvX8aECRPg4eEBd3d3AMD7778PS0tLfPjhh7h27RpOnTqFwMBAjBw5EjY2Nbt7veTvJDXlGTdPIiKqDZikahlBEHCHSSoREdWgMWPGIDg4GIsWLUKnTp1w8uTJMjc21NHRwd69e2FjYwNvb2/0798fTZo0wZ49e6CjU/yrhampKY4cOYJnz56ha9euGD16NHr16oUNGzbUeP8kZsXLZ1J5DA0RUa1Q4xsnUdkePc/Hs9xCuDBJJSKiGlTRjQ0lEgm2b99eZputWrXC4cOHqyK812JlagAAyHyer+FIiIhIHRxJ1TJ3MorX7rjYNNBwJERERHWDvlgHDQzFePyiQNOhEBGRGpikapmSJJXTfYmIiKqOpYk+spikEhHVCkxStcydjOdoYCCGbUMDTYdCRERUZ1iaGiCL032JiGoFJqla5n7WSzhamdS5w8aJiIg0qZGJPqf7EhHVEkxStczDp7mwNzfSdBhERER1Cqf7EhHVHkxStYggCHj4JBf2FkxSiYiIqlLJSKpMJmg6FCIiKgeTVC3y+EUBcguLOJJKRERUxSxNDVAkE5CdV6jpUIiIqBxMUrXIw6e5AMCRVCIioipmaaIPAJzyS0RUCzBJ1SIPnxQnqU2YpBIREVWpRiVJ6nMmqURE2o5JqhYpGUltYm6s4UiIiIjqFkvT4iT18QseQ0NEpO2YpGqR5Ce5MDUQo6GRWNOhEBER1SmWJsXnj3O6LxGR9mOSqkVKjp/hGalERERVy8JEDwCn+xIR1QZMUrVIytNcNDY31HQYREREdY6BWBcNDMR4zJFUIiKtxyRVizx9WYhGf09HIiIioqrV0EiPR9AQEdUCTFK1yNOXBTA31tN0GERERHWSkb4ucguKNB0GERGVg0mqligskuFFQRHMjZikEhERVQdjfV3kFjJJJSLSdkxStcSz3OLpR2YcSSUiIqoWRnq6eMmRVCIirVfjSWpoaCicnJxgaGgINzc3xMbGllr366+/hkgkUvmVkZEhr3f8+HG4ubnB0NAQzs7OCAsLU2prx44daNOmDQwMDNCmTRvs2rWrWvpXWU9f/p2kciSViIioWnC6LxFR7VCjSeq2bdsQGBiIefPm4fLly/D09MSAAQOQlJSksn5QUBBSU1MVvnr16gUfHx/Y2NgAAO7evYuBAwfC09MTly9fxty5czFt2jTs2LFD3k5cXBzGjBmDsWPH4sqVKxg7dixGjRqFs2fP1ki/1fEst3i3QXNjfQ1HQkREVDcZ6+viZYFU02EQEVE5ajRJXbFiBcaPH49JkybB1dUVISEhkEgkWLt2rcr6pqamsLOzk38VFhYiNjYWkyZNktcJCwtD48aNERISAldXV0yaNAn+/v5Yvny5vE5wcDDefPNNzJ8/H66urpg/fz58fHwQHBxc3V1WW8lIKtekEhERVQ8jPTFHUomIaoEaS1ILCgpw8eJF+Pr6KpT7+vri9OnTarWxfv16mJubY8SIEfKyuLg4pTb79++PCxcuoLCwsMw66j63JsjXpDJJJSIiqhbG+rp4yY2TiIi0nrimHpSZmYmioiLY2toqlNva2uLIkSPl3i+TybBhwwaMGzcOBgb/f5ZoWloa+vbtq9SmVCpFZmYmJBIJ0tLSVD43LS1N5bPCw8MRHh4OAEhOTkZMTIw6XSzV8+fPy23jwr3iJPXPS+dwT1/0Ws/TJHX6Whewn3UL+1m31Jd+UsUVT/dlkkpEpO1qLEktIRIpJmCCICiVqXLgwAE8ePAAEydOVKvNV8sr8tyAgAAEBAQAANzd3eHj41NufGWJiYkpt41L0X9BdOs2BvT1ga5O7U1S1elrXcB+1i3sZ91SX/pJFWekr4sCqQxFMqFWv2uJiOq6Gpvua2VlBV1dXaXRy4yMDKVRTlXCw8Ph6emJtm3bKpTb2dmpbFMsFsPS0rLMOuo8t6Y8e1mAhoZ6fGkSERFVE2N9XQDgWalERFquxpJUfX19uLm5ITo6WqE8Ojoanp6eZd6bkpKCffv2KWyYVKJHjx5K04Wjo6Ph7u4OPT09eZ3KPLcmPcst5HpUIiKiamSkXzyBjDv8EhFptxrd3XfmzJmIiIjAunXrcOPGDQQGBiIlJQVTpkwBAMydOxd9+vRRum/Dhg0wMTHB6NGjla5NmTIFycnJmDFjBm7cuIF169YhIiICQUFB8jqBgYE4evQoFi9ejJs3b2Lx4sU4duwYZsyYUW19rainuYUwN2aSSkREVF2M9f4eSeW6VCIirVajSeqYMWMQHByMRYsWoVOnTjh58iT2798PBwcHAEBqaioSEhIU7hEEAevXr8fYsWNhbGys1KaTkxP279+PEydOoFOnTvjuu++wevVqhR2APT09ERUVhU2bNqFDhw7YvHkztm3bBg8Pj+rtcAU8fcmRVCIi0pzQ0FA4OTnB0NAQbm5uiI2NLbO+IAgIDg5G69atYWBgAIlEgs8//1xl3ZMnT0IsFqNdu3bVEbrajP6e7svNk4iItFuNb5w0depUTJ06VeW1iIgIpTKRSIS7d++W2WavXr1w6dKlMuuMHDkSI0eOVDvOmvYstxBNGykn4URERNVt27ZtCAwMRGhoKN544w2EhoZiwIABuH79Opo1a6bynlmzZmHv3r1YtmwZ2rdvj2fPniE1NVWp3pMnTzBu3Dj06dMHDx8+rO6ulIlJKhFR7VCjI6lUuqcvC2BmVOOfGRARUS02bNgw7N27FzKZ7LXaWbFiBcaPH49JkybB1dUVISEhkEgkWLt2rcr6t27dQkhICPbs2YOhQ4fC2dkZnTt3xsCBA5XqfvTRR/D390ePHj1eK8aqwOm+RES1A5NULSCTCXiWWwhzI31Nh0JERLWIiYkJxowZgyZNmmDevHm4fft2hdsoKCjAxYsX4evrq1Du6+uL06dPq7xnz549cHZ2xsGDB+Hs7AxHR0f4+/sjIyNDoV5oaCjS0tLwxRdfVDiu6mD898ZJ3N2XiEi7cehOCzzLLYRMABqZMEklIiL1/fjjj8jOzsaPP/6IjRs3YsmSJXjjjTcwceJEjBo1CkZGRuW2kZmZiaKiIqVj2WxtbZV2zy+RmJiI+/fvIyoqChERERCJRAgKCsLgwYMRFxcHHR0d/PHHH1i4cCHOnDkDXV3dcuMIDw9HeHg4ACA5ORkxMTHl/wDK8Pz5c6U2Up4XjzhfvPIH9DJuvFb72kJVP+ui+tJPoP70lf2sW6q6n0xStUDWiwIAgKUpk1QiIqqYhg0b4uOPP8bHH3+Ma9euYd26dZg8eTKmTZuGd999FzNmzICrq2u57YhEiud0C4KgVFZCJpMhPz8fkZGRaNmyJQAgMjISrVq1wvnz59GpUye8++67WL58OZycnNTqR0BAAAICAgAA7u7u8PHxUeu+0sTExCi1kfI0Fzh5FI4tWsKnm+q1trWNqn7WRfWln0D96Sv7WbdUdT853VcLPP47SeVIKhERVVZKSgr27NmDvXv3QiwWY+TIkXjw4AE6dOiA5cuXl3qflZUVdHV1kZaWplCekZGhNLpaQiKRQCwWyxNUAHBxcYFYLEZSUhJSU1Nx/fp1fPjhhxCLxRCLxfjmm29w7do1iMViHD58uGo6XUHG3DiJiKhWYJKqBR6/yAfAJJWIiCqmsLAQv/zyCwYOHAgHBwfs3r0bc+bMQWpqKtavX4/9+/fjxx9/xKJFi0ptQ19fH25uboiOjlYoj46Ohqenp8p7vLy8IJVKFY6NS0xMhFQqhYODA+zt7fHHH3/gypUr8q8pU6agRYsWuHLlSqntVreS3X25JpWISLtxuq8WePyiEACTVCIiqhiJRAJBEPD+++9jyZIl6NChg1Kdfv36wcLCosx2Zs6cCT8/P3Tr1g1eXl4ICwtDSkoKpkyZAgCYO3cuzp07h99//x0A0LdvX3Tp0gUTJkxAcHAwAGDGjBnw8PCAu7s7dHR0lM5EtbGxgYGBgUbPStXX1YGujggvC6Qai4GIiMrHJFULcCSViIgqY+XKlRg1ahQMDQ1LrWNhYVHueeNjxoxBVlYWFi1ahNTUVLRr1w779++Hg4MDACA1NVVh1FRHRwd79+7F9OnT4e3tDSMjI/Tr1w8rVqyAjo72TtISiUQw0tNFbsHrHdlDRETVi0mqFsh6UQBTAzEMxOXvfkhERFTCz88PAJCbmytPIps3b67Wrr6vmjp1KqZOnaryWkREhFKZRCLB9u3b1W7/66+/xtdff13huKqakb4ucgs5kkpEpM209+POeuTxiwKOohIRUYXl5+djxowZaNSoETp27IgOHTqgUaNGCAwMRF5enqbD00rG+rrcOImISMtxJFULMEklIqLK+Pjjj3H48GGsW7cOPXr0AADExcVh7ty5yMnJwYYNGzQcofYx0mOSSkSk7ZikaoHHLwpg27D09URERESqbN++HTt37kS/fv3kZc7OzrCxscGIESOYpKpgrK+LXCapRERajdN9tQBHUomIqDJMTExgb2+vVG5vb1+pdan1gYmBGM/zuSaViEibMUnVMEEQkPWiAJZMUomIqIKmTZuGhQsXIjc3V16Wm5uLb7/9FtOmTdNgZNrLzEgP2bmFmg6DiIjKwOm+GvayoAgFUhlHUomIqMLOnDmD48ePw97eXn5G6h9//AGpVIoXL15gyJAh8rq//vqrpsLUKubGenjGJJWISKsxSdWwxy8KAAAWTFKJiKiCrKysMGLECIUyJycnDUVTO5gZ6eFpbiEEQYBIJNJ0OEREpAKTVA0r2WHQ1IB/FEREVDEbN27UdAi1jrmRPopkAp7nS9HAUE/T4RARkQpqrUndvXs3ioq4E151eFlQvHmDkZ6uhiMhIqLaKjExEXv37sW+ffuQmJio6XC0mplRcWLKKb9ERNpLrSR17NixsLe3x2effYZbt25Vd0z1Sm5hcfJvpM8klYiIKiY7OxujRo1CixYtMGzYMAwdOhQuLi4YPXo0cnJyNB2eVjIzLk5Sn75kkkpEpK3USlLT0tKwcOFCHD9+HG3atMEbb7yBjRs34sWLF9UdX52XV5KkciSViIgqKDAwEPHx8Th27Bhyc3ORm5uL33//HfHx8ZgxY4amw9NK5n+PpHKHXyIi7aVWktqgQQNMnjwZZ86cwR9//AEPDw/MnTsXEokEkyZNwpkzZ6o7zjqrZE0qR1KJiKiifv31V6xbtw69evWCnp4e9PT04OPjg/DwcOzevVvT4Wkl+Ugqk1QiIq1V4XNS27Rpg08//RQBAQEoKCjAtm3b0LNnT3h4eCA+Pr7c+0NDQ+Hk5ARDQ0O4ubkhNja2zPqCICA4OBitW7eGgYEBJBIJPv/8c/n18ePHQyQSKX2ZmJjI60RERKisk5eXV9HuV7ncAo6kEhFR5eTm5sLS0lKpvFGjRlrxjtNG5kbFu+lzui8RkfZSO0ktLCzEzz//jLfeegtOTk44evQowsLCkJ6ejvv376Nly5YYM2ZMmW1s27YNgYGBmDdvHi5fvgxPT08MGDAASUlJpd4za9YshIaGYunSpbhx4wb2798Pb29v+fVVq1YhNTVV4cvZ2RmjR49WaMfY2FipnqGhobrdrzZck0pERJXl5eWFL7/8Ei9fvpSXvXjxAgsWLICnp6cGI9Ne3DiJiEj7qXXuybRp07B161aIRCL4+flhxYoVaNOmjfy6kZERvvvuOzg6OpbZzooVKzB+/HhMmjQJABASEoKDBw9i7dq1WLx4sVL9W7duISQkBPHx8XB1dZWXd+7cWf7fZmZmMDMzk39/6tQpJCYmIjIyUqEtkUgEOzs7dbpboziSSkRElbVixQoMGDAA9vb26NChA0QiEa5evQoTExMcOnRI0+FpJUM9HeiLdfA0t0DToRARUSnUGkm9fv061qxZg4cPHyolqCUaN26MY8eOldpGQUEBLl68CF9fX4VyX19fnD59WuU9e/bsgbOzMw4ePAhnZ2c4OjrC398fGRkZpT7nhx9+QNu2bZU+Qc7NzYWDgwOaNGmCt99+G5cvXy6ryzUmlxsnERFRJbVv3x63b9/Gf/7zH7i7u6NLly5YtmwZbt++jbZt22o6PK0kEolgbqSHZ5zuS0SktdQaSf3999/Lb0gsRq9evUq9npmZiaKiItja2iqU29ra4siRIyrvSUxMxP379xEVFSVfVxoUFITBgwcjLi4OOjqKOfazZ8+wfft2/Pvf/1Yob9WqFTZs2ICOHTsiJycHq1atgpeXF65evQoXFxel54aHhyM8PBwAkJycjJiYmHL7X5bnz5+X2sathALo6QAnThx/rWdoi7L6Wpewn3UL+1m31Jd+FhYWomnTpvj999/lM5RIPWZGepzuS0SkxdRKUufPn4+mTZtiypQpCuVhYWF4+PAhvv32W7UfKBKJFL4XBEGprIRMJkN+fj4iIyPRsmVLAEBkZCRatWqF8+fPw8PDQ6H+li1bUFRUBD8/P4XyHj16oEePHvLvPT090alTJ4SEhGD16tVKzw0ICEBAQAAAwN3dHT4+Pmr3T5WYmJhS2zj67E+Ypqe89jO0RVl9rUvYz7qF/axb6ks/S3bzLe0dSqUzN9bjxklERFpMrem+kZGRCutAS7i5uWHz5s1qPcjKygq6urpIS0tTKM/IyFAaXS0hkUggFovlCSoAuLi4QCwWq9xs6YcffsCIESPQqFGjMmPR1dWFu7s7bt++rVbs1Sm3oIhTfYmIqFKmTZuGxYsXQyqVajqUWoUjqURE2k2tkdSMjAxYW1srlVtaWiI9PV2tB+nr68PNzQ3R0dEYNWqUvDw6OhojRoxQeY+XlxekUikSEhLQvHlzAMVTgKVSKRwcHBTqnjt3DlevXkVwcHC5sQiCgPj4eHTs2FGt2KvTy8IiGHJnXyIiqoTY2FgcP34c9vb2aNeuncLxa0DxOaqkzMxIHzdSczQdBhERlUKtJLVZs2aIjY2Fs7OzQvmJEyfQpEkTtR82c+ZM+Pn5oVu3bvDy8kJYWBhSUlLk04jnzp2Lc+fOydfA9u3bF126dMGECRPkyeeMGTPg4eEBd3d3hbbDw8Ph4uKicl3swoUL0b17d7i4uCA7OxurV69GfHw81q5dq3bs1SWvoAjGTFKJiKgSrKysSv2gl0pn09AAGTl5KJDKoC+u8JHxRERUzdRKUidPnoxPP/0UBQUF6N27N4DizZTmzp2Lzz77TO2HjRkzBllZWVi0aBFSU1PRrl077N+/Xz4qmpqaioSEBHl9HR0d7N27F9OnT4e3tzeMjIzQr18/rFixQmHTpJycHERFReGrr75SuTbn6dOnCAgIQFpaGszMzNC5c2ecOHEC3bp1Uzv26vKS032JiKiSNm7cqOkQaqW2jRuisEjAX+k5aGdvVv4NRERUo9RKUmfNmoXMzExMnz4dBQXF54rp6+sjMDAQc+bMqdADp06diqlTp6q8FhERoVQmkUiwffv2Mtts0KABnj9/Xur1lStXYuXKlRWKs6bkFhahgaFafwxEREQKevfujZ07d8Lc3FyhPDs7G8OGDcPRo0c1E5iWa9u4ODG9npLNJJWISAupnR0tXrwYX3zxBa5fvw5BENCmTRuYmppWZ2z1Ql5hEWwbGmg6DCIiqoViYmLkHx7/U15eHmJjYzUQUe3g0MgYpgZi/JnyDKPRVNPhEBHRKyo0hGdiYoKuXbtWVyz1Eqf7EhFRRV26dEn+3/Hx8Qq72hcVFeHQoUOwt7fXRGi1go6OCG0kDXEtJVvToRARkQpqJ6nHjh3D1q1bkZSUpPSpLacTVV5uYRGMuHESERFVgLu7O0QiEUQiEXx9fZWuGxkZISQkRAOR1R5t7Rsi6twDFMkE6OrwrFkiIm2i1pZ2ERERGDBgAHJychATEwNra2s8efIEly5dQps2bao7xjotr6AIRnpck0pEROq7e/cuEhISIAgCzp07h7t378q/Hj58iOzsbEyYMEHTYWq1Dk3MkFtYhFtpPIqGiEjbqJWkLl++HGvWrMHWrVuhp6eHxYsX4/Lly/jggw+4LvU1CIKAl4VFMNLn9vdERKQ+BwcHODo6QiaTwd3dHQ4ODvIviUQCXd2Kz9AJDQ2Fk5MTDA0N4ebmVu6aVkEQEBwcjNatW8PAwAASiQSff/65/PrOnTvh6+sLa2trNGjQAB4eHlp1bmtXx+Ip0mfvZmk4EiIiepVaQ3iJiYno27cvAMDAwEC+k+6//vUv+Pj4YMmSJdUXYR1WWCSgSCbAWJ8jqUREVDkPHjxAbGwsMjIyIJPJFK7NnDlTrTa2bduGwMBAhIaG4o033kBoaCgGDBiA69evo1mzZirvmTVrFvbu3Ytly5ahffv2ePbsGVJTU+XXjx8/jt69e2PRokVo1KgRfvzxRwwfPhwxMTHo2bNn5TtcRZpYGKOJhRHOJj7Gh15Omg6HiIj+Qa3syNLSEjk5xdNh7O3t8eeff6JDhw7IyspCbm5utQZYl+UWFAEADLlxEhERVcKPP/6ICRMmQCwWw9raWuGscJFIpHaSumLFCowfPx6TJk0CAISEhODgwYNYu3YtFi9erFT/1q1bCAkJQXx8PFxdXeXlnTt3lv/3qlWrFO5ZsGAB9u3bh927d2tFkgoAHk6WOHYrA4IgqDxnnYiINEOteaY9e/bE4cOHAQCjR4/G9OnT8eGHH+K9995Dv379qjXAuiy3sDhJ5e6+RERUGV999RVmzZqF7Oxs3Lt3T2FtamJiolptFBQU4OLFi0obMPn6+uL06dMq79mzZw+cnZ1x8OBBODs7w9HREf7+/sjIyCjzWTk5ObCwsFCvczXAw7kRHr8owO2M0s9aJyKimqfWSOqaNWuQl5cHAJg7dy7EYjFOnTqF0aNH44svvqjWAOuykiTVmLv7EhFRJaSnp2PixImVWoNaIjMzE0VFRbC1tVUot7W1xZEjR1Tek5iYiPv37yMqKgoREREQiUQICgrC4MGDERcXBx0d5c/Av//+eyQnJ8PPz09lm+Hh4QgPDwcAJCcnIyYmptJ9AoDnz5+X38bL4unRkYfOoE8zvdd6nqao1c86oL70E6g/fWU/65aq7me5SapUKkVUVBSGDRsGANDR0cFnn31WZQHUZy8LpAA43ZeIiCpn4MCBOHv2LJydnV+7rVenu5Y1BVYmkyE/Px+RkZFo2bIlACAyMhKtWrXC+fPn4eHhoVB/x44dmD17NqKiouDg4KCyzYCAAAQEBAAoPmLHx8fntfoTExNTbhuCIGDl1aN4LLaAj0+X13qepqjTz7qgvvQTqD99ZT/rlqruZ7lJqlgsxuzZszFo0KAqeygVyyuZ7suRVCIiqoR+/frhs88+w7Vr19C+fXvo6SmOBr7zzjvltmFlZQVdXV2kpaUplGdkZCiNrpaQSCQQi8XyBBUAXFxcIBaLkZSUpJCk7tixA35+fti8eTOGDBlSke5VO5FIBA+nRjh5J4vrUomItIha0327d++OixcvlvrpJ1VObkHxNCNO9yUiosqYPHkyAODf//630jWRSISioqJy29DX14ebmxuio6MxatQoeXl0dDRGjBih8h4vLy9IpVIkJCSgefPmAIqnAEulUoXfFX7++Wf4+/tj06ZNGDlyZIX6VlM8nC2x+0oKEjNfoLk1j9UjItIGaiWpkyZNQlBQEJKSkuDm5gYTExOF61261M4pMppWMpJqIOY5qUREVHGvHjlTWTNnzoSfnx+6desGLy8vhIWFISUlBVOmTAFQvB/FuXPn8PvvvwMA+vbtiy5dumDChAkIDg4GAMyYMQMeHh5wd3cHAERFRcHPzw/Lly+Ht7e3fKRWX18fjRo1qpK4q4KHU3EspxOymKQSEWkJtZLU999/H4Dq89bU/aSWlEn//uVCrGKDCSIiopoyZswYZGVlYdGiRUhNTUW7du2wf/9++ahoamoqEhIS5PV1dHSwd+9eTJ8+Hd7e3jAyMkK/fv2wYsUK+aZJYWFhkEqlmDFjBmbMmCG/t1evXlq1iYiTlQmaNTLG7zfS4dedM8aIiLSBWknq3bt3qzuOekkqEwAAerpcA0NEROrz9PTE/v37YW5uDqB4pHP27NnyEcrMzEx06dIFSUlJarc5depUTJ06VeW1iIgIpTKJRILt27eX2p42JaJlEYlE6NfGFpFx9/E8XwpTA7V+NSIiomqk1r/EXItaPYr+TlJ1dZikEhGR+s6cOYOCggL5999//z0mTZokT1KLiorw8OFDTYVX6/i2scX6k3dx4q9HGNheoulwiIjqPbWS1J07d5Z5XZ3dA0lZYVFxksrpvkRE9DoEQdB0CLWam4MFLIz1cPDPNCapRERaQK0ktbQd+Uq2auea1MopKlmTyum+REREGiPW1cFb7eyw50oKcguKeDQcEZGGqTWEJ5PJFL4KCgpw9uxZ9OzZEydOnKjuGOuskjWpYk73JSKiChCJREpnevKMz9fzdofGeFlQhGO3MjQdChFRvVep3QHEYjG6du2Kf//73/j4449x9erVqo6rXpAWcU0qERFVnCAI+OCDD2BgYAAAyMvLw6RJk2BsbAwAyM/P12R4tZKHUyNYmepjb3wKp/wSEWnYa21hZ25urrAlPVXM/4+kck0qERGpz9/fX+H7Dz74QKnOuHHjaiqcOkGsq4MB7STYfvEBXuRLYcJdfomINEatf4EvXbqk8L0gCEhNTcXSpUvRuXPnagmsPuCaVCIiqoyNGzdqOoQ66e0OEkSeuY8jN9IxtJO9psMhIqq31BrCc3d3R9euXeHu7i7/7yFDhqCoqAjr1q2r0ANDQ0Ph5OQEQ0NDuLm5ITY2tsz6giAgODgYrVu3hoGBASQSCT7//HP59ZiYGPnanH9+3bx5U6GdHTt2oE2bNjAwMECbNm2wa9euCsVdHQo53ZeIiEhrdHVsBNuGBtgbn6rpUIiI6jW1RlLv3r2r8L2Ojg6sra1haGhYoYdt27YNgYGBCA0NxRtvvIHQ0FAMGDAA169fR7NmzVTeM2vWLOzduxfLli1D+/bt8ezZM6SmKr88rl27Jj8fDgCsra3l/x0XF4cxY8Zg4cKFeOedd7Bz506MGjUKp06dgoeHR4X6UJWKuHESERGR1tDREWFgewl+PJOE7LxCNDTU03RIRET1klpJqoODQ5U8bMWKFRg/fjwmTZoEAAgJCcHBgwexdu1aLF68WKn+rVu3EBISgvj4eLi6usrLVU0xtrGxgZWVlcrnBgcH480338T8+fMBAPPnz8exY8cQHByMrVu3VkXXKqVkTSpHUomIiLTD2x0aY+Ope/j9RjqGd26i6XCIiOoltab7zp8/H2FhYUrlYWFh+PLLL9V6UEFBAS5evAhfX1+Fcl9fX5w+fVrlPXv27IGzszMOHjwIZ2dnODo6wt/fHxkZytvDu7u7QyKRoE+fPjh27JjCtbi4OKXn9u/fv9Tn1pQimQxiHeVjBIiIiEgzOjc1R2MzQ+y9yim/RESaotZIamRkJLZv365U7ubmhsWLF+Pbb78tt43MzEwUFRXB1tZWodzW1hZHjhxReU9iYiLu37+PqKgoREREQCQSISgoCIMHD0ZcXBx0dHQgkUiwdu1adO3aFQUFBYiMjESfPn0QExMDb29vAEBaWprK56alpal8bnh4OMLDwwEAycnJiImJKbd/ZXn+/LnKNhLvFUAE4bXb1yal9bWuYT/rFvazbqkv/aTqUTLld1PcPTzLLYSZEaf8EhHVNLWS1IyMDIU1niUsLS2Rnp5eoQe+OmooCEKpI4kymQz5+fmIjIxEy5YtARQnzK1atcL58+fh4eGBVq1aoVWrVvJ7evTogXv37mH58uXyJLWizw0ICEBAQACA4hFaHx+fCvXxVTExMSrbiH1+HQYpD167fW1SWl/rGvazbmE/65b60k8AOH78OAwNDeX7K0RERGDdunVo27Yt/vvf/8LU1FTDEdZOb3dsjHUn7yL6ejpGunHKLxFRTVNrum+zZs1U7sJ74sQJNGmi3j/eVlZW0NXVVRq9zMjIUBrlLCGRSCAWi+UJKgC4uLhALBYjKSmp1Gd5eHjg9u3b8u/t7Owq9NyaUiQTuB6ViIgqbcaMGfL3261btzB58mR06NABcXFxmD17toajq706NjGDvbkR9sWnaDoUIqJ6Sa0kdfLkyfj000/xww8/ICEhAQkJCQgPD8esWbPkI47l0dfXh5ubG6KjoxXKo6Oj4enpqfIeLy8vSKVSJCQkyMsSExMhlUrL3MzpypUrkEgk8u979OhRoefWlMIiGXf2JSKiSktISED79u0BFB+11q9fP4SGhuKHH37Ab7/9puHoai+RSIS3O0gQezsTT18WaDocIqJ6R63pvrNmzUJmZiamT5+OgoLif6z19fURGBiIOXPmqP2wmTNnws/PD926dYOXlxfCwsKQkpKCKVOmAADmzp2Lc+fO4ffffwcA9O3bF126dMGECRMQHBwMoPhTYw8PD7i7uwMo3rnX0dERbdu2RUFBAbZs2YLdu3djx44d8ucGBgbC29sbixcvxvDhw7Fr1y4cO3YMJ0+eVDv26sCRVCIieh0ikQhFRUUAgN9//x3Dhw8HUDyDKCsrS5Oh1XqDOzbG/04kYt8fqRjrUTWnHBARkXrUSlIBYPHixfjiiy9w/fp1CIKANm3aVHity5gxY5CVlYVFixYhNTUV7dq1w/79++WjoqmpqQqjpjo6Oti7dy+mT58Ob29vGBkZoV+/flixYgV0dIoHgQsKChAUFISHDx/CyMgIbdu2xb59+zBw4EB5O56enoiKisIXX3yBBQsWoHnz5ti2bZtGz0gFio+g0dNVazCbiIhISdeuXfHtt9+iX79+iI2NlW/6d+/ePdjZ2Wk4utqtbeOGaGlrih0Xk5mkEhHVMLWS1LS0NEilUjRp0gRdu3aVlycnJ0NPT69CazunTp2KqVOnqrwWERGhVCaRSFTuLFxizpw5ao3mjhw5EiNHjlQ7zpogLZJxJJWIiCotODgY77//Pvbs2YP58+ejefPmAIDt27drfElLbScSiTCiSxMsPnATiY+ew9mam1AREdUUtYbx/Pz8cODAAaXyQ4cOwc/Pr8qDqi+kMoFrUomIqNLatWuH+Ph4PHv2DAsWLJCXL1++XOUHv1QxwzrbQyQCfr3KDZSIiGqSWknq+fPnFY5zKdGzZ09cuHChyoOqL4pkAsS6TFKJiKhyZDIZZDKZ/Pu0tDSsW7cOly5dgp4ez/d8XbYNDeHuYIGDf6o+V52IiKqHWkmqVCpFfn6+UnleXp7KclKPVCZAV4drUomIqHIGDRqEkJAQAMDz58/h7u6O2bNno1evXti8ebOGo6sb+re1w820HNzLfKHpUIiI6g21MiQPDw+sXbtWqfz7779XWKNKFSPlETRERPQaLl68iN69ewMAdu7ciYYNGyIjIwM//PADli9fruHo6oa32hVvQHXoGkdTiYhqilobJ3333Xfo3bs3rl69ij59+gAAjh49ikuXLsmPi6GKk3K6LxERvYacnByYm5sDAA4fPozhw4dDT08PvXv3xieffKLZ4OqIJhbGaG9vhgN/pmFyr+aaDoeIqF5QayS1e/fuiIuLg5OTE3bu3IkdO3bA2dkZcXFxePnyZXXHWGcVceMkIiJ6Dc2aNcOpU6fw4sULHDp0CP369QMAPH78GMbGxhqOru54q50drjx4itRnuZoOhYioXlB7QWTHjh3x448/4tq1azh8+DBatmyJ4cOHo3///tUZX50mLRJ4BA0REVXazJkz4efnhyZNmsDe3l6+yeGJEyfQvn17DUdXd5RM+T18LV3DkRAR1Q9qJ6lFRUXYtWsXBg0aBCcnJ+zevRsff/wx7ty5U53x1WlSmQxibpxERESVNHnyZMTFxWHDhg04efIkdP5+pzRv3hzffvuthqOrO5pbm8LFxhT74lM1HQoRUb1QboZ069YtzJ49G40bN8asWbPQuXNnCIKAyMhIzJkzB05OTjURZ53EI2iIiOh1ubu7Y/jw4TA1NZWXDRo0CF5eXhVqJzQ0FE5OTjA0NISbmxtiY2PLrC8IAoKDg9G6dWsYGBhAIpHg888/V6hz/PhxuLm5wdDQEM7OzggLC6tQTNpkWGd7nLv3GA8ec5kTEVF1KzNJ7dmzJ7p3746nT5/i559/RmJiIhYtWgSRiIlVVSgs4ppUIiJ6Pfv27YO3tzesrKxgbW2NXr16Yf/+/RVqY9u2bQgMDMS8efNw+fJleHp6YsCAAUhKSir1nlmzZiE0NBRLly7FjRs3sH//foUz1e/evYuBAwfC09MTly9fxty5czFt2jTs2LGj0n3VpGGd7SESATsuJWs6FCKiOq/MJDUuLg7jxo1DYGAgevXqVVMx1RtFMq5JJSKiylu3bh2GDx+O5s2bY+nSpViyZAmcnJwwfPhwbNiwQe12VqxYgfHjx2PSpElwdXVFSEgIJBKJyuPngOJZViEhIdizZw+GDh0KZ2dndO7cGQMHDpTXCQsLQ+PGjRESEgJXV1dMmjQJ/v7+tfZoHHtzI/RwtsTuyw8hCIKmwyEiqtPKTFIvXLgAqVSKnj17onPnzli5ciXS0nhOWFWRymQQ63JNKhERVc7SpUuxYsUKbNy4ER999BE++ugjREREYPny5ViyZIlabRQUFODixYvw9fVVKPf19cXp06dV3rNnzx44Ozvj4MGDcHZ2hqOjI/z9/ZGRkSGvExcXp9Rm//79ceHCBRQWFlawp9phQDs73Mt6icTMF5oOhYioTivznNROnTrh+++/x3//+19s374d69evx5w5cyCTybBv3z5IJBJYWFjUVKx1Do+gISKi15GUlIS33npLqXzAgAEICgpSq43MzEwUFRXB1tZWodzW1hZHjhxReU9iYiLu37+PqKgoREREQCQSISgoCIMHD0ZcXBx0dHSQlpaGvn37KrUplUqRmZkJiUSicC08PBzh4eEAgOTkZMTExKgVf2meP3/+2m28yvClDACwbl8c+jvqVWnblVUd/dRG9aWfQP3pK/tZt1R1P8tMUksYGhrCz88Pfn5+uHPnDtatW4eVK1fiiy++QO/evXHgwIEqC6g+KeQRNERE9BqaNWuG6OhotGjRQqH88OHDcHBwqFBbr+43IQhCqXtQyGQy5OfnIzIyEi1btgQAREZGolWrVjh//jw8PDxKbVNVOQAEBAQgICAAQPFmUD4+PhWK/1UxMTGv3YYq4TePI0lqAB+f7lXedmVUVz+1TX3pJ1B/+sp+1i1V3c8KzzVt0aIFlixZggcPHuDnn3+Gvr5+lQVT3xTJBOjxCBoiIqqkoKAgBAYGYtKkSdi4cSMiIiIwceJEfPrpp2qPpFpZWUFXV1dpOU9GRobS6GoJiUQCsVgsT1ABwMXFBWKxWL7Zkp2dnco2xWIxLC0tK9JNrdK7tQ3O3X2Mxy8KNB0KEVGdVekMSVdXF0OHDsWePXuqMp56RSoToMsjaIiIqJImT56Mbdu24caNGwgKCsKsWbNw8+ZN/Pzzz/JRyfLo6+vDzc0N0dHRCuXR0dHw9PRUeY+XlxekUikSEhLkZYmJiZBKpfIR3B49eihNF46Ojoa7uzv09LRjqmxljHBrgsIiAT+dva/pUIiI6iwO42mQVCbjmlQiIqqUwsJCzJkzB126dMHJkyeRlZWFrKwsnDx5EkOHDq1QWzNnzkRERATWrVuHGzduIDAwECkpKZgyZQoAYO7cuejTp4+8ft++fdGlSxdMmDABly9fxuXLlzFhwgR4eHjA3d0dADBlyhQkJydjxowZuHHjBtatW4eIiAi1R3i1VUvbBujV0hqb4u4jX1qk6XCIiOokJqkaVMQ1qUREVEl6enoIDQ2tkuNQxowZg+DgYCxatAidOnXCyZMnsX//fvmoaGpqqsKoqY6ODvbu3QsbGxt4e3ujf//+aNKkCfbs2QOdv5exODk5Yf/+/Thx4gQ6deqE7777DqtXr8aIESNeO15Nm+ztjEc5+fj+6B1Nh0JEVCeptXESVQ+pTIAej6AhIqJK6t+/P44ePYoJEya8dltTp07F1KlTVV6LiIhQKpNIJNi+fXuZbfbq1QuXLl167di0jWcLK7zT2R7fxyTA3bERvFtaazokIqI6hUmqBkllMo6kEhFRpfXp0wfz5s1DfHw83NzcYGJionD9nXfe0VBkdd+CIW1xLSUb4zeew6p3O2Nwx8aaDomIqM5gkqpBUp6TSkREr+Ff//oXAGD16tVK10QiEYqKuGayupgZ6WHnVE+8v+4svt17HX1dbWGkr6vpsIiI6gTONdUQmUyAIABiHkFDRESVJJPJSv1iglr9TAzE+GKQKzJy8rEp7p6mwyEiqjNqPEMKDQ2Fk5MTDA0N4ebmhtjY2DLrC4KA4OBgtG7dGgYGBpBIJPj888/l13fu3AlfX19YW1ujQYMG8PDwwK+//qrQRkREBEQikdJXXl5etfRRHVJZ8UYXYh5BQ0REVGt1dWyEN1tZI/TYHTx7WajpcIiI6oQaTVK3bduGwMBAzJs3D5cvX4anpycGDBggP/hblVmzZiE0NBRLly7FjRs3sH//fnh7e8uvHz9+HL1798a+fftw+fJlDBw4EMOHD1dKfo2NjZGamqrwZWhoWG19LY9UJgMArkklIqIKO3DgABwdHfHs2TOla8+ePYOjoyMOHz6sgcjqp9n9WyM7T4r/nUgovzIREZWrRtekrlixAuPHj8ekSZMAACEhITh48CDWrl2LxYsXK9W/desWQkJCEB8fD1dXV3l5586d5f+9atUqhXsWLFiAffv2Yffu3ejZs6e8XCQSwc7Orqq7VGnykVQmqUREVEFr1qzB7NmzYWZmpnTNzMwMn332GVatWgVfX18NRFf/tGncEEM7NcbGU/cw3tMRNg019yE4EVFdUGMjqQUFBbh48aLSC9PX1xenT59Wec+ePXvg7OyMgwcPwtnZGY6OjvD390dGRkaZz8rJyYGFhYVCWW5uLhwcHNCkSRO8/fbbuHz58ut16DUVFTFJJSKiyomPj0ffvn1Lvd67d29cvXq1BiOimf1aorBIhhCenUpE9NpqbCQ1MzMTRUVFsLW1VSi3tbXFkSNHVN6TmJiI+/fvIyoqSr6uNCgoCIMHD0ZcXJz8wPB/+v7775GcnAw/Pz95WatWrbBhwwZ07NgROTk5WLVqFby8vHD16lW4uLgotREeHo7w8HAAQHJyMmJiYl6j58Dz58+V2niaXzzdNzHhDmIK779W+9pEVV/rIvazbmE/65b60M9Hjx6pfAeWEIlEyMrKqsGIyMHSBO92a4qt55IwsacTHCxNyr+JiIhUqvEjaEQixZFDQRCUykrIZDLk5+cjMjISLVu2BABERkaiVatWOH/+PDw8PBTq79ixA7Nnz0ZUVBQcHBzk5T169ECPHj3k33t6eqJTp04ICQlRuW1/QEAAAgICAADu7u7w8fGpVF9LxMTEKLWR+iwXOHYUrq1bwadbs9dqX5uo6mtdxH7WLexn3VIf+tmkSRPEx8er/KAVKB5ptbe3r+GoaHpvF/xyMRkro/9C8Ludy7+BiIhUqrHpvlZWVtDV1UVaWppCeUZGhtLoagmJRAKxWCxPUAHAxcUFYrFYabOlHTt2wM/PD5s3b8aQIUPKjEVXVxfu7u64fft2JXvz+qSc7ktERJU0aNAgfPnll8jNzVW69vLlS3z11VcYNGiQBiKr32waGuJDLyfsuZqCP5KVN7UiIiL11FiSqq+vDzc3N0RHRyuUR0dHw9PTU+U9Xl5ekEqlSEj4/93yEhMTIZVKFUZKf/75Z3zwwQeIiIjAyJEjy41FEATEx8dDIpFUsjevj0fQEBFRZc2fPx/Pnj2Di4sLli5dij179mDPnj1YsmQJWrZsiWfPnmHevHmaDrNemtKrOSxN9PHlnj8h+/tdT0REFVOj031nzpwJPz8/dOvWDV5eXggLC0NKSgqmTJkCAJg7dy7OnTuH33//HQDQt29fdOnSBRMmTEBwcDAAYMaMGfDw8IC7uzsAICoqCn5+fli+fDm8vb3lI7X6+vpo1KgRAGDhwoXo3r07XFxckJ2djdWrVyM+Ph5r166tye4rKJIfQVPjR9USEVEtZ2Njg9OnT+Pjjz/GvHnzIAjFyZBIJEL//v0RGhpa6iwlql5mRnqYO8AVs7ZfxfaLDzCma91Z0kNEVFNqNEkdM2YMsrKysGjRIqSmpqJdu3bYv3+/fFQ0NTVVYdRUR0cHe/fuxfTp0+Ht7Q0jIyP069cPK1askG8YERYWBqlUihkzZmDGjBnye3v16iXfOOPp06cICAhAWloazMzM0LlzZ5w4cQLdunWrsb6/qmQkVY/TfYmIqBIcHBywf/9+PHnyBHfu3IEgCHBxcVHa3Z5q3jtd7BF1PglLDtyEbxs7WJjoazokIqJapcY3Tpo6dSqmTp2q8lpERIRSmUQiwfbt20ttT50dHFeuXImVK1eqG2KNKFmTqssklYiIXoOFhQW6du2q6TDoH0QiEb4d1g6DVp/E5zvjsXasG3T4viciUhvnmmoI16QSERHVXa3tGmLeQFccupaO5YdvaTocIqJapcZHUqkY16QSERHVbRO8HJHw6DlCYxLgbG2KkW5NNB0SEVGtwAxJQ0qm+3JNKhERUd0kEomwcEhb9HC2xII9fyLreb6mQyIiqhWYpGpIyXRfrkklIiKqu/R0dfDtsHbILSzC98cSyr+BiIiYpGoK16QSERHVDy1siqf6bjlzHw+f5mo6HCIircckVUNK1qSKuSaViIiozgvs2xIAsOrIXxqOhIhI+zFD0pBCHkFDRERUb9ibG+GD7g745WIyfruaoulwiIi0GpNUDSnidF8iIqJ6JbCvC9wcLDBt62UMXBWLuIQsTYdERKSVmKRqiHxNKqf7EhER1QtmRnrYMtED8wa2xvN8KT7+8SJSuEaViEgJMyQN+f81qRxJJSIiqi8MxLoI8G6OiA+7Qlok4KNNF/DsZaGmwyIi0ipMUjWEa1KJiIjqL2drU4SO7YKEjOcYH3EOz/Olmg6JiEhrMEnVEK5JJSIiqt+8W1oj5P3OiE9+ho8izuPJiwJNh0REpBWYpGoI16QSERFR/7Z2WDmmEy4nPcXbIScRn/xU0yEREWkcMyQNkRZxTSoREWmP0NBQODk5wdDQEG5uboiNjS217r179yASiZS+Dh48qFDvp59+QqdOnWBsbAw7Ozt88MEHSEtLq+6u1DpDOjbG9ik9AAAj18bhp7NJEARBw1EREWkOk1QNKZnuq8vpvkREpGHbtm1DYGAg5s2bh8uXL8PT0xMDBgxAUlJSmfcdPHgQqamp8q/evXvLr506dQp+fn7w9/fHtWvXsHv3bly/fh1jx46t7u7USh2bmmPvtDfQvbkl5u36A7N/iUduQZGmwyIi0ggmqRpSsnGSHqf7EhGRhq1YsQLjx4/HpEmT4OrqipCQEEgkEqxdu7bM+ywtLWFnZyf/0tfXl1+Li4tDkyZN8Omnn8LJyQndu3fHtGnTcPbs2eruTq1lYaKPjeO7IrCPC3ZcSsa0rZc4okpE9RIzJA15nl8IXR0RDPX4R0BERJpTUFCAixcvwtfXV6Hc19cXp0+fLvPed955BzY2NvDy8sIvv/yicM3Lywupqan47bffIAgCMjMzERUVhYEDB1Z5H+oSXR0RPu3XEvMHuuLIjQxsv5Cs6ZCIiGqcWNMB1Fc5eVI0MBRDJOJ0XyIi0pzMzEwUFRXB1tZWodzW1hZHjhxReY+pqSmWL18OLy8viMVi/PrrrxgzZgw2bdqEDz74AADQo0cPbN26FWPHjkVubi6kUin69euHTZs2qWwzPDwc4eHhAIDk5GTExMS8Vr+eP3/+2m1okrMgoKWFDubsiEfk8WsY2kIPLcx1lerV9n6qq770E6g/fWU/65aq7ieTVA3Jzi1EA0P++ImISDu8+qGpIAilfpBqZWWFWbNmyb93d3dHZmYm/vOf/8iT1OvXr2P69On48ssv0b9/f6SmpmL27NmYPHkyNm/erNRmQEAAAgIC5O35+Pi8Vn9iYmJeuw1N6+4lRWTcfYQdT8CiM3lwlTTElF7OGNyhMXT+3nixLvRTHfWln0D96Sv7WbdUdT8511RDcvKkaGiop+kwiIionrOysoKurq7SrrsZGRlKo6tl8fDwwO3bt+XfL168GN26dcPs2bPRoUMH9O/fH6GhoYiMjMSDBw+qLP66zFhfjMm9muPkZ73x7dC2KJLJEBh1BR//eBF5hdxUiYjqLiapGpKdV8gklYiINE5fXx9ubm6Ijo5WKI+Ojoanp6fa7Vy5cgUSiUT+/cuXL6Grqzg9teR7bgZUMSYGYvj1cMTBQG/MH+iKQ9fSMWTNSVxKeqLp0IiIqkWNJ6kVOYcNKH6RBQcHo3Xr1jAwMIBEIsHnn3+uUOf48eNwc3ODoaEhnJ2dERYWptTOjh070KZNGxgYGKBNmzbYtWtXlfarorJzpZzuS0REWmHmzJmIiIjAunXrcOPGDQQGBiIlJQVTpkwBAMydOxd9+vSR19+0aRN++ukn3LhxA7du3cLy5cvx/fffY9q0afI6gwcPxp49e7B27VokJibi1KlTmD59Orp06YJmzZrVeB/rAh0dESZ5O2Pj+K54kV+ED9adxYMcmabDIiKqcjWaJZWcwxYaGoo33ngDoaGhGDBgAK5fv17qC2vWrFnYu3cvli1bhvbt2+PZs2dITU2VX7979y4GDhyICRMmYMuWLTh58iSmTp0Ka2trjBgxAkDxNvhjxozBwoUL8c4772Dnzp0YNWoUTp06BQ8Pjxrp+6ty8grR0IgjqUREpHljxoxBVlYWFi1ahNTUVLRr1w779++Hg4MDACA1NRUJCQkK9yxatAj379+Hrq4uWrZsiQ0bNsjXowLA+PHjkZOTgzVr1mDWrFkwMzPDm2++if/85z812re66M3WNtg51RND1pxE8MU8+Hi9RNNGxpoOi4ioytRokvrPc9gAICQkBAcPHsTatWuxePFipfq3bt1CSEgI4uPj4erqKi/v3Lmz/L/DwsLQuHFjhISEAABcXV1x9uxZLF++XJ6kBgcH480338T8+fMBAPPnz8exY8cQHByMrVu3Vlt/y5Kdx5FUIiLSHlOnTsXUqVNVXouIiFD43t/fH/7+/uW2OW3aNIXRVao6tg0Nsd6/K0avPYkx/4vDkhEd4N3SWtNhERFViRqb7luZc9j27NkDZ2dnHDx4EM7OznB0dIS/vz8yMjLkdeLi4pTa7N+/Py5cuIDCwsIy65R3/lt1KZIJeJ7PjZOIiIio8trZm2FOV0Poi3UwbsM5LDlwEzIZ1/sSUe1XY0N5lTmHLTExEffv30dUVBQiIiIgEokQFBSEwYMHIy4uDjo6OkhLS0Pfvn2V2pRKpcjMzIREIkFaWprK5766k2GJ6j6r7UVh8Qsk4+F9xMSkvFbb2oZnQdUt7Gfdwn4S1T2OZro49GlPfPPbdYQdT8CLfCm+GdqW57ATUa1W4/NNK3IOm0wmQ35+PiIjI9GyZUsAQGRkJFq1aoXz58/L15OqavPV8oo8t7rPanvw+CXw+zF0btcaPu5NX6ttbcOzoOoW9rNuYT+J6iYDsS4WDWsHY31d/BB7F00bGSHAu7mmwyIiqrQam+5bmXPYJBIJxGKxPEEFABcXF4jFYiQlJQEA7OzsVLYpFothaWlZZp2KnP9WlbLziqchc7ovERERVQWRSIS5A1wxqL0E/95/EzsuJms6JCKiSquxJLUy57B5eXlBKpUq7CiYmJgIqVQq33GwR48eStOFo6Oj4e7uDj09PXmd1z3/rSpl50oBAA25cRIRERFVER0dEf47uiO6OTbCrO1XMWnzBSQ/eanpsIiIKqxGz0mt6Dlsffv2RZcuXTBhwgRcvnwZly9fxoQJE+Dh4QF3d3cAwJQpU5CcnIwZM2bgxo0bWLduHSIiIhAUFCRvJzAwEEePHsXixYtx8+ZNLF68GMeOHcOMGTNqsvtyOSUjqTyChoiIiKqQoZ4utkz0wOcDWuPk7Uy8FRyLu5kvNB0WEVGF1GiSOmbMGAQHB2PRokXo1KkTTp48WeY5bDo6Oti7dy9sbGzg7e2N/v37o0mTJtizZw90dIpDd3Jywv79+3HixAl06tQJ3333HVavXi0/fgYAPD09ERUVhU2bNqFDhw7YvHkztm3bprEzUrPzikdSeQQNERERVTV9sQ6m9GqOQzO8oSMCgrZfRRF3/SWiWqTGs6SKnMMGFK9L3b59e5lt9urVC5cuXSqzzsiRIzFy5Ei146xOOVyTSkRERNWsmaUxFg5ti0+3XUXA5gtY9V5nmBrwA3Ii0n41OpJKxUrWpJpyJJWIiIiq0fDOTfDtsHaI+esRRq49jXuc+ktEtQCTVA3IySuEsb4u9HT54yciIqLq5dfdARvGd8XDJ7nos+I4vv71GvIKizQdFhFRqZglaUB2XiGn+hIREVGN6dXSGkdm9cJ73Zoi4vQ9jAk/g6cvCzQdFhGRSkxSNSA7V8pNk4iIiKhG2TY0xKJh7RH2gRtupGZjzP/O4HpKtqbDIiJSwiRVA3LyC3n8DBEREWnEW+3ssMG/KzKf5+PtkFh8uu0K7mQ813RYRERyTFI1gCOpREREpElvuFjh6CwfTOzpjIN/pqHfyuOYtvUy/krP0XRoRERMUjUhh2tSiYiISMPMjPUwb6ArTn72Jqb0ao6jN9Lhu/IEPt5ykdOAiUijmKRqQHYeR1KJiIhIO1iaGuCzt1rj5Ge9Ma13C5y8nYnBa05i+4UHkMkETYdHRPUQk9QaJghC8Ugq16QSERGRFrEw0ccs31aI/exNdHduhNm/xKPDwsOYtPkCR1aJqEYxSa1heYUyFBYJnO5LREREWsncWB8bxnfF8lEdMaRTY1y8/wQTIs4j83m+pkMjonqCc05rWHZeIQBwui8RERFpLQOxLka6NcFItyYY69EM74SehueSo3C2MkF7ezMM72yP7s6W0NERAQAKi2TQEYmg+/f3RESvg5lSDcv5O0nldF8iIiKqDdo2NsNPk7rj8LU03ErPwcFradh+MRn25kZoZdcAz3ILcT0lGw0MxVj8Tnv0cbXVdMhEVMsxSa1hz3KlADiSSkRERLWHm4MF3BwsAAB5hUU4dC0N++JT8eBJLhoaijHavQnO3n2MjzZdwDdD2+IDDwf5KCsRUUUxU6ph8pFUrkklIiKiWshQTxdDO9ljaCd7hfK8wiJ88uMlfLXnGlZG/wXPFlbo2cIKfVxtYd3AQEPRElFtxCS1hmXnFY+kNuRIKhEREdUhhnq6CPNzw/4/UnH8r0c4eTsT++JToavzJzybW8LbxRoj3ZrAwkRf06ESkZZjplTDuCaViIiI6io9XR35KKsgCLiVnoNdlx/i2M0MfLf/BpYduoWuThYY7+mEvq42EIk4JZiIlDFJrWHZuSUjqUxSiYiIqO4SiURobdcQcwc0xNwBrriVloMdl5Jx4M9UTNp8AY6WxhjeuQmGd7ZHM0tjTYdLRFqESWoNy84rhFhHBEM9HlFLRERE9UcruwaYN9AVs/u3wm9XU7D9QjJWHvkLK4/8hW6OjTDSvQlGdGnCY2yICMyUalhOXiEaGulxegsREWmV0NBQODk5wdDQEG5uboiNjS217r179yASiZS+Dh48qFCvoKAAX331FZycnGBgYIBmzZph9erV1d0V0nJ6ujp4p0sTbA3ojlOf98bs/q2Q9SIfc36Jxzuhp7A2JgG/30jHg8cvIZMJmg6XiDSAI6k1LDtXyuNniKqQTCZDZmYmnj59iqKiokq1YWZmhhs3blRxZNqnPvdTV1cX5ubmsLKygo4OP5991bZt2xAYGIjQ0FC88cYbCA0NxYABA3D9+nU0a9as1PsOHjyIjh07yr9v1KiRwvX33nsPDx48QHh4OFxcXJCeno7c3Nxq6wfVPvbmRvjkzRaY6tMcv15NwbJDt7D04E35dStTffRqaQNLqRSGiVmwMtWHlakBzPiBP1GdxmyphuXkFXI9KlEVSk5OhkgkgqOjI/T0KvdLS05ODho0aFAN0WmX+tpPQRBQWFiI9PR0JCcnl5l01VcrVqzA+PHjMWnSJABASEgIDh48iLVr12Lx4sWl3mdpaQk7OzuV1w4fPowjR44gISEBVlZWAABHR8cqj53qBpFIJN9w6VluIW6n5+BWeg7OJj7GkRvpeJZbiPD4M/L6Yh0RLE310ayRMTo3s4CRni4M9HTQ1bERGhiKoSsSwcHSBPri/2vv3uOirvL/gb/mPsNVkJuAAgreNVS8oZFlkX5La62Uh1tSmZdcb6W2aburpQ9vm7dtUTcVMc3LmtkvN20zldTMVMRLQWkhsIKooCQDzP38/kAmR+5ymxlez8djHjCfz5nPnLeH5vSec/nwSykiR8QktYnd0XEklaghFRcXo1OnThwdoypJJBIolUoEBQXh559/bu7q2B2DwYCUlBTMnj3b5nhsbCxOnDhR7WtHjRoFnU6HiIgIvPHGG3j++eet5z777DP07dsXK1euxEcffQSNRoPhw4dj8eLFcHNza5RYyDl4ahSICvVGVKg3/tg/BCazBbv2JyOsS0/c1OpRoDUgX6tHvlaPn69rsfnbKzCaK04LbuWiwAt9ghHs5YIIfzd0C/SEJ++uQOQQmjxbWrt2Lf7+97/j2rVr6NatG1avXo2HH3640rKZmZkICwurcPzAgQMYNmwYAODll1/Gli1bKpRxcXFBcXExACApKQmvvPJKhTKlpaVQq9X1CafOrt/RoU+IV5O+J5GzY4JKtcG/k8rl5+fDbDbD39/f5ri/vz++/vrrSl/j5uaG999/H4MGDYJcLsfnn3+OMWPGYMuWLXjxxRcBABkZGTh+/DhUKhX27NmDwsJCTJs2Dbm5ufjkk08qXPPDDz/Ehx9+CKBshkRycnK94tJqtfW+hiNoKXF6SkpguPoDPAF4AmivBqAG/s8HQDcXWISAzgT8kG+GAGAWwOk8EzYeu4J709dWKgn8XCQIdpOio7cMQW5S+LtIoJTZz9ThltKmjNO5NHScTZqkNsaalzVr1mDp0qU25QcNGoSYmBibYy4uLvj1119tjjV1gmoyW3DtNx2CvTRN+r5EREQ1uX+qvBCiyunzPj4+mDVrlvV5VFQU8vPzsXz5cmuSarFYIJFIsH37dnh6egIA/vnPf+LJJ5/E9evXKyTFEydOxMSJE63XGzJkSL3iSU5Orvc1HAHjtPV/9z03WwTytXqkX7uDtGt3cOVmMTILivF97h0c/p8eACCRAF0CPNC/vTf6h7VG75BW8HVTNduaV7apc2GcD6ZJk9TGWPPi6elp7fwA4Ntvv0VGRga2bt1qU04ikVR5jaZyvUgPs0UgqBXvBUZERPbBx8cHMpkMeXl5Nsdv3LhRIZGsTv/+/bF582br8zZt2iAoKMimj+7SpQsAIDs7u07XJnpQMqkE/h5q+HuoMaSTn/W40WzBpetFyLhZjMvXi3A68za2f5+Nzd9mAgC8XBQI8tLgltYAD40C/cK88XCELzoHuCOolQZS3iaHqFE1WZLaWGte7rdhwwZ069YN0dHRNsdLS0sREhICs9mMyMhILFy4EL169XrwgB5Azu2yHQ2DOJJKRA1gwYIF+OSTT/DDDz80d1XIgSmVSvTp0wcHDx7ECy+8YD1+8OBBPPfcc7W+zrlz59CmTRvr80GDBmH37t3QarXWNaiXLl0CAISEhDRQ7YkejEImRbdAT3QL/P1LFL3JjAtXf8PFq7/h8o0i5BTq0NHPHQXFBuw6/T989F0WAECtkCLYywVRIV7o394bGoUcvu5KdA/yhEoua66QiJxKkyWpjbXm5V6//fYbdu/ejcWLF9sc79SpExITE/HQQw+hqKgIa9aswaBBg3D+/HlERERUuE5jrYs5kWsCAORcuojkXOdcG8V5987FEeL09PREUVFRva5hNpvrfY26GD16NHQ6HT7//PMK537++Wf07dsXn332GR577LFqr6PX62GxWGpV9zlz5mDDhg1YvXo1Xn755QetukOorj11Op3d/003hzfffBMvvfQS+vXrh0GDBmH9+vXIzc3F5MmTAQBz587FqVOncOjQIQDAli1boFAo0KtXL0ilUuzbtw8JCQlYtmyZ9Zpjx47FwoUL8corr2DBggUoLCzEjBkz8Pzzz8PPz6/SehA1J5Vchr6h3ugb6l3hXInBhPRrRXdHX7W4kl+M/RevYefp/1nLeGoUiO3qD0+NAi4qOUJbuyDczw0h3q7w0Mh5yxyiOmjyjZMaes3LvbZt2waz2YyXXnrJ5vjAgQMxcOBA6/Po6GhERkbigw8+qPSm4o21LuaHw5eBC5fwh9hHoFE65zdtnHfvXBwhzvT09HrfVqWpb80yefJk/OEPf0BBQUGFW3Ls3LkTISEhGDFiRI0b/ahUKkil0hrrrtfrsXv3brz55pvYtm0bpk2bVt8Q6sVkMkEmkzXa/7BV155qtbrJZ9E4gjFjxqCgoACLFi3CtWvX0L17d+zfv9864nnt2rUK+zosWrQIWVlZkMlk6NixIxITE236Zjc3N3z99deYNm0a+vbtCy8vLzz77LMV9pEgcgQuSjn6hHjZbH5ptghcvlEEk1ng6u1S7Dufi8M/3UCp0YxSoxlC3Pt6GQI81Qj01Nz9qUabVhoEeKjRLdADfh5Nu08Kkb1rsuG8hlzzcvny5UrPbdiwAc8991yFm4nfTyaTISoqqsrrNJacwlL4uCmdNkElotp56qmn4O/vb7N+DwCMRiO2bt2KV199FUIIjB8/HmFhYdBoNIiIiMDy5cthsVjq/H6ffvopQkNDMXv2bKSnp1eYHiyEwIoVKxAREQGVSoXg4GDMnTvXej43Nxd//OMf0bp1a7i4uCAyMhJHjhwBUDbluHv37jbXS0pKsrnFSHmZpKQkdOjQASqVCsXFxfjyyy/x8MMPw8vLC97e3njyySeRnp5uc62q3jszMxMymQxnzpyxKb9hwwaEhobCYDDU+d+ppZsyZQoyMzOh1+uRkpJiswFhUlISMjMzrc/j4+ORlpaG4uJi3LlzB2fOnKn0y+NOnTrhq6++QklJCXJycpCQkNAi7tVLLYNMKkHnAA90D/LEsO4BSPhjb6T89QmkvTcMlxYNx9dvPoL1L/bBX57qgri+7dDJ3x1avQnHLt/EB0d+wdxPL+KVpNMYtOwwpnycgoQjv+Dj77PwXa4J/+9cDvamXsWRn27gf7dKYLFUvMUOkTNrspHUxlrzUu7UqVM4f/48Vq9eXeM1hBC4cOGCzY7BTeHq7VIEteJ6VKLG9u6+H5GWe6fW5c1mM2Sy+n151DXQA/NHdKtVWblcjvj4eCQlJWH+/PnWEdN9+/YhPz8fr7zyCiwWC4KCgvDvf/8bvr6+OHXqFCZOnIjWrVtj/Pjxdarbxo0b8eKLL8LFxQWjRo3Cxo0bbT4r582bh3Xr1mHlypWIiYnBzZs3kZqaCqDsPrSPPPII/Pz8sHfvXgQFBeH8+fN1en8AuHLlCrZv347du3dDqVRCrVajuLgYM2fORM+ePVFaWopFixZhxIgRSEtLg1KprPa9Q0ND8fjjjyMxMRFRUVHW90lMTERcXByUSmWd60hE1FAUMinC/dwQ7lf5PYGNZgtuFOmR91sp9p2/hv/+mIf9F+8ZyLlwzqa8RiFDuJ8bIvzcEO7vho5+7vBxV0EmkUCjLFsjq1ZwEIScR5NO922MNS/lPvzwQ0REROCRRx6pcO7dd9/FgAEDEBERgTt37uAf//gHLly4gHXr1jVuwPfJKSxF5wB+g0xEwPjx47Fs2TJ8/fXXiI2NBQBs2rQJsbGxaNu2LQDgvffes5YPDQ3F2bNnsWPHjjolqRkZGTh27Bg+/vhjAMC4ceMwevRoLFu2DCqVClqtFqtWrcLq1avx6quvAgDCw8OtSyS2b9+OvLw8fPfdd/Dx8QEAdOjQoc7xGgwGbN261WbmzP1fUG7evBkeHh44deoUBg8eXON7T5gwARMmTMDKlSuhVquRnp6OkydP1urLSiKi5qSQSRHUSoOgVhr0CfHGgpHdUGIwoUhnwqGjJ9CvXz/IpBIUaPW4fEOLS9eL8MsNLU78WoBPU3MqXE8mleChYE/IpBKYLQJymRRKmRRymQQahQztfV0R4KGGt6sKQV4ahHi7wEOjgIy7FJOdatIktTHWvABl64927tyJv/3tb5WucSosLMTEiRORl5cHT09P9OrVC0ePHkW/fv0aL9j7XL+jQ3ZBCYZ1a97b4BC1BLUd0SzX1GtSASAiIgIxMTFITExEbGwscnNz8d///he7du2yllm/fj02btyIrKwslJaWwmg01nlX1MTERAwdOhQBAQEoKirCkCFD4OLigs8++wxjxoxBWloa9Ho9hg4dWunrU1NT0bNnT2uS+KCCg4MrLO349ddf8de//hXff/89bt68CYvFAovFguzs7Fq99zPPPIM//elP+PTTTzF27FgkJiaiX79+6Nq1a73qSkTUHFyUcrgo5Qh0k1pHYMN8XBF130ZOd3RGXL6uxW+lBlgsQPHdTZ1OZ96CTCqBWiGDwWRBqdEMk86CbL0JX6Vdh7mSKcPerkr0CfGCEEArFwXCfFwR5uOKkNYuCG3tCldVk29fQwSgGTZOmjJlCqZMmVLpuaSkJJvn8fHxiI+Pr/Ga7u7u0Gq1VZ5ftWoVVq1aVad6NrQPj2ZAAIjr265Z60FE9uO1117DhAkTcOvWLSQlJcHb2xsjR44EAOzatQszZ87E+++/j+joaHh4eCAhIQF79+6t9fXNZjOSkpKQm5sLufz3j3uLxYKNGzdizJgxEKL6dU41nZdKpRXKGI3GCuVcXV0rHBsxYgSCgoLwr3/9C0FBQZDL5ejatat1PWlN761QKDBu3DgkJiZi9OjR2Lp1q83oMxGRM/JQK2w2cAKAZyKrf43RbMHtEgNuFRuQmV+CnMJS3Ck1IqewFGcyb0GtkOHCVQM+Sblq8zo/dxWiQr0Q4KGBQi6BUiaFWiGDj5sS3q4qCCHg7apEkJcGfu5qjsxSg+HXI02g2Cjw8fdZeCYyEO1auzR3dYjITjz//POYNm0atm3bhsTERIwbNw4KhQIAcPz4cfTv3x9Tp061lr9/pklNvvzySxQUFODMmTPWNZ6urq7Izs7G008/jczMTHTt2hUqlQqHDh2q9JZcvXv3xrZt25Cfn1/piKavry+uX79us1P7uXPnaqxbQUEB0tPTkZCQgEcffRQAcPbsWZhMplq/N1A25bdLly5Yu3YtioqKEBcXV5t/GiKiFkUhk8LPXQ0/dzU6B3hUWU6rNyGroBiZ+SXILCjGLze0OJ15C8dK8mEwW2AwW1DV94cKmQSeGgWkEglCfVzRwdcNHmo5ZFIJ5FIJFDIpFHIp1PKyRDcj1wTdD3lQK8qeuyrl8HZTorWrEiq5lLfsaeGYpDaBS7fN0BktGB3VtrmrQkR2RKPRYOzYsViwYAFu375ts9a0Y8eOSEpKwoEDBxAeHo6dO3fim2++gZeXVzVXtLVx40YMHz4cvXv3BvD7tObu3btb7x/93nvvYcaMGZg7dy5UKhViYmJQUFCAlJQUvP766xg7diyWLl2KZ599FkuWLEFwcDAuXrwId3d3PProoxgyZAhu3bqFxYsXIy4uDsnJyfjkk09qrJuXlxd8fHywYcMGtG3bFjk5OZgzZ47NiG9N713+7zR48GDMmTMHcXFx8PDwaNJ73hIRORM3lRzdAj3RLdCzyjKlBjPytXoUlhghkQA3tXrk3C5FTmEpCkuMMFssyLhZjC9/uIZSoxlmi4DRXEVmeyGl0sNSSdlmUWrrQwqNUmY9ppJLoZBJ4aKUw89DhdauSkgkEgghoFLI4KaSwU2lgKtKBneVAp6asoe7Wg4pR3sdApPUJvDzLTOUMiki27Zq7qoQkZ157bXXsG7dOkRHR6NLly7W45MmTcK5c+cwduxYCCHw3HPPYdasWUhMTKzVda9fv47//Oc/2LJlS6XnX3jhBWzevBkLFizAkiVL4OXlhYULF+Lq1avw9/fHuHHjAJRN0/3mm28wa9YsjBgxAgaDAZ06dbIuoejSpQvWrVuHxYsXY/HixRgxYgTmzZuHd955p9r6SaVS7Nq1C9OnT0f37t0RHh6OFStW2GymVNN7lxs/fjyOHj1a512PiYio7jRKGdp6u6Bt9Xd8tCGEgNkiYDBboDNaoDOacfTb79CzVxRKjWbojWZo9SbcLjEgX2tAqaHsXrM64+8/dUYLSg1mFOlMuGW2wGi2oEhnws0iPUy1vEWPRAKo5TIoZGVrd1u5KNDKRQkvFwW8XMpuEymXSiCTSqGQSeCmksNdXZbclj0UUMml0JvMMJgEPDUKtHZTwstFCaW8ye7s2SJIRE2Lflq4qKioCvfhq6tHlxyAr1cr/HvywAaqlf1KTk7GkCFDmrsajY5x2o/09HSb5O5BNMfGSc3BWeNctmwZNm3ahEuXLgGoPs7q/l4a4vOeGkZDtIUjfH41BMbpfFpKrA0Vp8UiUKQvWyoikQA6oxnFejO0OhO0+rLHb6XGskeJATqTpWxjKYMZt0sMKCw1orDEgNslRujujvyaLALGaqY2V0ajkEEpl0Ill0KlKNtdWSWXQV+ihY93q7IpzSoZXJRyuCpl0CjlUCukUMrLy979XS6FUia753cplHKJ7THr8buvk0mbfYT4Qduzqs97jqQ2Mq3ehKw7Fjzdpw5fNxERUY20Wi1++uknrFmzpsaRWyIick5Sadla2HIeagXQAN/HCiFQbDCjSGdEkc6EIp0Rd3QmGEwWqBUyKKQS/FZqREGxAQVaA7R6IwwmC/R3k2D93UeeoRgAUFhiQG6hGSUGM4oNJhTrTVVPg34AcqnEJoFV3E1iy497uSjR2k0Jd7UcGsXdqdN3p1BrFDLIpBLrQyop+6mQlY0oK++uJy5fW6y8O926jae60e7PyyS1kaVk3YZFAP3CmKQSETWkqVOnYseOHRg5ciQmTZrU3NUhIiInIpGUTfd1U8nRpuolujUqG2GsfDal5e4U6PLE1mC++9P63Pz7ufvPmy02SbHBbIGx/KfZAoNJ3P1Zdux2iQHZ2SUo1ptQencadX3n0+6cOAAD2reu30WqwCS1kXVt44FXuivRu13tNzshIqKaJSUlVbh1GRERkaOQSiVQS2WNNhpZHSEE9HenPZdvcGW2CJiFgOXuT5NZWJNfo/lu0mu2wHT39/L7+TYGJqmNzNddhUeCFbwZMhERERER2QWJRGLdPdkeh9K4DRUROTzu/0a1wb8TIiIix8AklYgcmkKhQGlpaXNXgxxAaWkpFApFzQWJiIioWTFJJSKH5ufnh5ycHJSUlHCkjColhEBJSQlycnLg5+fX3NUhIiKiGnChJBE5NA8PDwBAbm4ujEbjA11Dp9NBrVY3ZLXsUkuOU6FQwN/f3/r3QkRERPaLSSoROTwPD496JR/Jycno1atXA9bIPjFOIiIicgSc7ktERERERER2g0kqERERERER2Q0mqURERERERGQ3mKQSERERERGR3WCSSkRERERERHZDInhjwWr5+PggNDS0Xte4efMmfH19G6ZCdq6lxMo4nQvjdC4PGmdmZiby8/MboUZUV+x7a49xOp+WEivjdC4N3fcySW0CUVFROHPmTHNXo0m0lFgZp3NhnM6lpcRJ1WspfweM0/m0lFgZp3Np6Dg53ZeIiIiIiIjsBpNUIiIiIiIishtMUpvAxIkTm7sKTaalxMo4nQvjdC4tJU6qXkv5O2CczqelxMo4nUtDx8k1qURERERERGQ3OJJKREREREREdoNJKhEREREREdkNJqmNbO3atQgLC4NarUafPn1w7Nix5q5SvSxYsAASicTmERAQYD0vhMCCBQsQGBgIjUaDIUOG4Mcff2zGGtfO0aNHMXLkSAQFBUEikSApKcnmfG3i0uv1mDZtGnx8fODq6oqRI0fi6tWrTRhFzWqK8+WXX67QvgMGDLAp4whxLlmyBH379oWHhwd8fX0xYsQI/PDDDzZlnKFNaxOnM7RpQkICevbsCQ8PD3h4eGDgwIH44osvrOedoS2p4bDfdYx+F2DfW84ZPqdbSr8LsO8t19jtySS1Ee3atQszZszAvHnzkJqaiujoaAwfPhzZ2dnNXbV66dSpE65du2Z9XLx40Xpu+fLlWLFiBT744AOcPn0afn5+eOKJJ1BUVNSMNa6ZVqtF9+7dsWbNGmg0mgrnaxPXzJkzsWfPHuzYsQPHjh3DnTt38PTTT8NsNjdlKNWqKU4AePzxx23ad//+/TbnHSHO5ORkTJkyBSdOnMDhw4chl8vx+OOP49atW9YyztCmtYkTcPw2DQ4OxrJly3D27FmcOXMGjz32GJ599llcuHABgHO0JTUM9ruO0+8C7Hvv5eif0y2l3wXY9zZZ3yuo0fTr10+89tprNsfCw8PF22+/3Uw1qr/58+eLbt26VXrOYrGIgIAAsWjRIuuxkpIS4ebmJtavX99UVaw3V1dXsXnzZuvz2sRVWFgoFAqF2LZtm7VMdna2kEgk4ssvv2yyutfF/XEKIUR8fLx46qmnqnyNI8YphBBFRUVCKpWKzz//XAjhvG16f5xCOG+benl5ifXr1zttW9KDYb/rmP2uEOx7ne1zuqX0u0Kw7y3X0O3JkdRGYjAYkJKSgtjYWJvjsbGxOHHiRDPVqmFkZGQgKCgIYWFhiIuLQ0ZGBgDgypUryMvLs4lZo9EgJibGoWOuTVwpKSkwGo02Zdq2bYsuXbo4XOzHjx+Hn58fOnbsiAkTJuDGjRvWc44aZ1FRESwWC7y8vAA4b5veH2c5Z2pTs9mMnTt3QqvVIjo62mnbkuqO/W4ZZ+h3Aef9nK6KM31OAy2n3wXY95Zr6PZkktpI8vPzYTab4e/vb3Pc398feXl5zVSr+uvfvz+SkpJw4MABbNiwAXl5eYiOjkZBQYE1LmeLuTZx5eXlQSaTwcfHp8oyjmDYsGH46KOPcOjQIaxYsQKnTp3CY489Br1eD8Bx45wxYwYiIyMxcOBAAM7bpvfHCThPm168eBFubm5QqVSYPHky9u7dix49ejhtW1Ldsd/9naPHDDjv53RlnOVz+l4tpd8F2PfeqyHbU95AMVAVJBKJzXMhRIVjjmT48OE2zwcMGID27dtjy5Yt1gXhzhZzuQeJy9Fij4uLs/7eo0cP9OnTByEhIfjiiy8watSoKl9nz3G++eabOH78OI4fPw6ZTGZzzpnatKo4naVNO3XqhHPnzqGwsBB79uxBfHw8kpOTreedqS2pfpytD2rJ/S7QMv7bdpbP6XItpd8F2Pc2ZntyJLWR+Pj4QCaTVfim4MaNGxW+dXBkbm5u6NatGy5fvmzdbdDZYq5NXAEBATCbzcjPz6+yjCMKDAxEcHAwLl++DMDx4nzjjTewY8cOHD58GO3bt7ced7Y2rSrOyjhqmyqVSoSHhyMqKgpLlixBZGQkVq1a5XRtSQ+O/e7vnCHmlvzftqN+TgMtp98F2PcCjdueTFIbiVKpRJ8+fXDw4EGb4wcPHkR0dHQz1arh6XQ6/PTTT2jTpg3CwsIQEBBgE7NOp8OxY8ccOubaxNWnTx8oFAqbMlevXkV6erpDx56fn4+cnBy0adMGgGPFOWPGDGzfvh2HDx9G586dbc45U5tWF2dlHLlN72WxWKDX652qLal+2O/+ft7R+13AuT6n68pRP6dbSr8LsO9tkvas3x5PVJ2dO3cKhUIhNmzYINLS0sT06dOFq6uryMzMbO6qPbBZs2aJ5ORkkZGRIU6ePCmeeuop4e7ubo1p6dKlwt3dXezZs0dcvHhRjBkzRrRp00bcuXOnmWtevaKiIpGamipSU1OFRqMR7777rkhNTRVZWVlCiNrFNXnyZBEYGCgOHjwozp49K4YMGSIeeughYTKZmiusCqqLs6ioSMyaNUucOHFCXLlyRRw5ckQMGDBABAUFOVycU6ZMEe7u7uLQoUPi2rVr1kdRUZG1jDO0aU1xOkub/vnPfxZHjx4VV65cERcuXBBvv/22kEgkYv/+/UII52hLahjsdx2n3xWCfa8z9b0tpd8Vgn1vU/W9TFIbWUJCgggJCRFKpVL07t1bfPPNN81dpXop/wNUKBQiMDBQjBo1Svz444/W8xaLRcyfP18EBAQIlUolYmJixMWLF5uxxrVz5MgRAaDCIz4+XghRu7hKS0vF1KlThbe3t9BoNOLpp58W2dnZzRBN1aqLs6SkRMTGxgpfX1+hUChEu3btRHx8fIUYHCHOymIEIObPn28t4wxtWlOcztKm8fHxol27dkKpVApfX18xdOhQm+3rnaEtqeGw33WMflcI9r3O1Pe2lH5XCPa95Rq7PSVCCFGr8V0iIiIiIiKiRsY1qURERERERGQ3mKQSERERERGR3WCSSkRERERERHaDSSoRERERERHZDSapREREREREZDeYpBIREREREZHdYJJKRERERORgMjMzIZFIcObMmeauClGDY5JKREREREREdoNJKhEREREREdkNJqlERERERHUkhMDy5cvRoUMHaDQa9OjRA9u2bQPw+1Tc7du3Y/DgwVCr1ejcuTO++uorm2scPXoU/fv3h1qthr+/P9544w0YDAab91ixYgUiIiKgUqkQHByMuXPn2lwjKysLTzzxBFxcXNC1a1ccPHiw8YMnamRMUomIiIiI6ugvf/kLNm3ahISEBKSlpWHu3LmYNGkSvvjiC2uZt956C9OnT8e5c+fwxBNP4JlnnkFOTg4AICcnB8OHD0evXr2QmpqKTZs2YceOHTZJ6Lx587Bw4ULMnTsXP/74I3bv3o22bdva1OOdd97B9OnTcf78efTt2xdxcXHQarVN849A1EgkQgjR3JUgIiIiInIUxcXF8PHxwVdffYWHH37YenzmzJm4dOkS1q5di7CwMCxatAjvvPMOAMBisaBz584YPXq09fiuXbtw6dIlSKVl40ZJSUmYNGkSbt++DYvFAh8fH6xevRqTJ0+uUIfMzEyEhYVh/fr1mDRpEoCyxDc4OBjHjh3D4MGDm+BfgqhxyJu7AkREREREjiQtLQ06nQ7Dhg2DRCKxHjcajQgNDbU+HzhwoPV3qVSK/v37Iy0tDQCQnp6OgQMHWhNUABg8eDAMBgN++eUX6HQ66PV6DB06tNq69OzZ0/p7YGAgAODGjRv1io+ouTFJJSIiIiKqA4vFAgDYt28f2rVrZ3NOoVCgNhMVhRA2Ce69JBJJra5R/n73vu7e+hE5Kq5JJSIiIiKqg65du0KlUiErKwvh4eE2j5CQEGu5kydPWn8XQuDUqVPo0qWL9RrfffedTUJ5/PhxKJVKdOjQwfoehw4darrAiOwER1KJiIiIiOrA3d0ds2fPxuzZsyGEQExMDLRaLU6ePAmpVIrY2FgAwLp169CxY0f06NEDa9euRVZWFl5//XUAwJQpU7B69WpMmTIFM2bMQEZGBt5++21MnToVLi4uAIAZM2Zg7ty5UKlUiImJQUFBAVJSUqzXIHJWTFKJiIiIiOpo4cKF8Pf3x/vvv4/XX38dHh4eiIyMxFtvvWUts3TpUqxcuRJnz55FSEgI9u7di+DgYABAUFAQDhw4gDlz5iAyMhKtWrXC2LFjsXjxYuvrlyxZAi8vLyxcuBBXr16Fv78/xo0b1+SxEjU17u5LRERERNSAynfePX36NKKiopq7OkQOh2tSiYiIiIiIyG4wSSUiIiIiIiK7wem+REREREREZDc4kkpERERERER2g0kqERERERER2Q0mqURERERERGQ3mKQSERERERGR3WCSSkRERERERHaDSSoRERERERHZjf8P9N1dug66djIAAAAASUVORK5CYII=",
      "text/plain": [
       "<Figure size 1008x432 with 2 Axes>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "import matplotlib.pyplot as plt\n",
    "\n",
    "acc = history.history['accuracy']\n",
    "loss = history.history['loss']\n",
    "\n",
    "plt.figure(figsize=(21,6))\n",
    "plt.rcParams['figure.figsize'] = [8,8]\n",
    "plt.rcParams['font.size'] = 14\n",
    "plt.rcParams['axes.grid'] = True\n",
    "plt.rcParams['figure.facecolor'] = 'white'\n",
    "\n",
    "plt.subplot(1, 3, 1)\n",
    "plt.plot(acc, label='Training Accuracy')\n",
    "plt.legend(loc='lower right')\n",
    "plt.ylabel('Accuracy')\n",
    "plt.title(f'\\nTrain Accuracy: {round(acc[-1],8)}')\n",
    "\n",
    "plt.subplot(1, 3, 2)\n",
    "plt.plot(loss, label='Training Loss')\n",
    "plt.legend(loc='upper right')\n",
    "plt.ylabel('Cross Entropy')\n",
    "plt.title(f'\\nTrain Loss: {round(loss[-1],8)}')\n",
    "plt.xlabel('epoch')\n",
    "\n",
    "plt.subplot(1, 3, 3)\n",
    "plt.plot(lr_list, label='Learning Rate')\n",
    "plt.legend(loc='upper right')\n",
    "plt.ylabel('LR')\n",
    "plt.title(f'\\nLearning Rate')\n",
    "plt.xlabel('epoch')\n",
    "\n",
    "plt.tight_layout(pad=3.0)\n",
    "plt.show()\n",
    "\n",
    "acc = history.history['val_accuracy']\n",
    "loss = history.history['val_loss']\n",
    "\n",
    "plt.figure(figsize=(14,6))\n",
    "plt.rcParams['figure.figsize'] = [8,8]\n",
    "plt.rcParams['font.size'] = 14\n",
    "plt.rcParams['axes.grid'] = True\n",
    "plt.rcParams['figure.facecolor'] = 'white'\n",
    "plt.subplot(1, 2, 1)\n",
    "plt.plot(acc, label='Val Accuracy')\n",
    "plt.legend(loc='lower right')\n",
    "plt.ylabel('Accuracy')\n",
    "plt.title(f'\\nTest Accuracy: {round(acc[-1],8)}')\n",
    "\n",
    "plt.subplot(1, 2, 2)\n",
    "plt.plot(loss, label='Val Loss')\n",
    "plt.legend(loc='upper right')\n",
    "plt.ylabel('Cross Entropy')\n",
    "plt.title(f'\\nTest Loss: {round(loss[-1],8)}')\n",
    "plt.xlabel('epoch')\n",
    "plt.tight_layout(pad=3.0)\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Try Realtime Inference"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 100,
   "metadata": {},
   "outputs": [],
   "source": [
    "metrics = {\n",
    "    \"TP\": 0, \"FP\": 0, \"TN\": 0, \"FN\": 0\n",
    "}"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 105,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "2023-02-07 21:41:16.408838: I tensorflow/core/grappler/optimizers/custom_graph_optimizer_registry.cc:113] Plugin optimizer for device_type GPU is enabled.\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "13-12-2022 Nifty Prediction -> Market may Close BEARISH on 14-12-2022! Actual -> BEARISH, Prediction -> Correct, Pred = 0.57\n",
      "14-12-2022 Nifty Prediction -> Market may Close BULLISH on 15-12-2022! Actual -> BEARISH, Prediction -> Wrong, Pred = 0.4\n",
      "15-12-2022 Nifty Prediction -> Market may Close BEARISH on 16-12-2022! Actual -> BEARISH, Prediction -> Correct, Pred = 0.86\n",
      "16-12-2022 Nifty Prediction -> Market may Close BEARISH on 17-12-2022! Actual -> BULLISH, Prediction -> Wrong, Pred = 0.67\n",
      "19-12-2022 Nifty Prediction -> Market may Close BULLISH on 20-12-2022! Actual -> BEARISH, Prediction -> Wrong, Pred = 0.35\n",
      "20-12-2022 Nifty Prediction -> Market may Close BEARISH on 21-12-2022! Actual -> BEARISH, Prediction -> Correct, Pred = 0.59\n",
      "21-12-2022 Nifty Prediction -> Market may Close BEARISH on 22-12-2022! Actual -> BEARISH, Prediction -> Correct, Pred = 0.8\n",
      "22-12-2022 Nifty Prediction -> Market may Close BEARISH on 23-12-2022! Actual -> BEARISH, Prediction -> Correct, Pred = 0.65\n",
      "23-12-2022 Nifty Prediction -> Market may Close BEARISH on 24-12-2022! Actual -> BULLISH, Prediction -> Wrong, Pred = 0.86\n",
      "26-12-2022 Nifty Prediction -> Market may Close BULLISH on 27-12-2022! Actual -> BULLISH, Prediction -> Correct, Pred = 0.28\n",
      "27-12-2022 Nifty Prediction -> Market may Close BULLISH on 28-12-2022! Actual -> BEARISH, Prediction -> Wrong, Pred = 0.27\n",
      "28-12-2022 Nifty Prediction -> Market may Close BEARISH on 29-12-2022! Actual -> BULLISH, Prediction -> Wrong, Pred = 0.56\n",
      "29-12-2022 Nifty Prediction -> Market may Close BULLISH on 30-12-2022! Actual -> BEARISH, Prediction -> Wrong, Pred = 0.43\n",
      "30-12-2022 Nifty Prediction -> Market may Close BEARISH on 31-12-2022! Actual -> BEARISH, Prediction -> Correct, Pred = 0.62\n",
      "02-01-2023 Nifty Prediction -> Market may Close BULLISH on 03-01-2023! Actual -> BULLISH, Prediction -> Correct, Pred = 0.36\n",
      "03-01-2023 Nifty Prediction -> Market may Close BULLISH on 04-01-2023! Actual -> BEARISH, Prediction -> Wrong, Pred = 0.43\n",
      "04-01-2023 Nifty Prediction -> Market may Close BEARISH on 05-01-2023! Actual -> BEARISH, Prediction -> Correct, Pred = 0.86\n",
      "05-01-2023 Nifty Prediction -> Market may Close BEARISH on 06-01-2023! Actual -> BEARISH, Prediction -> Correct, Pred = 0.54\n",
      "06-01-2023 Nifty Prediction -> Market may Close BEARISH on 07-01-2023! Actual -> BULLISH, Prediction -> Wrong, Pred = 0.74\n",
      "09-01-2023 Nifty Prediction -> Market may Close BULLISH on 10-01-2023! Actual -> BEARISH, Prediction -> Wrong, Pred = 0.2\n",
      "10-01-2023 Nifty Prediction -> Market may Close BEARISH on 11-01-2023! Actual -> BEARISH, Prediction -> Correct, Pred = 0.85\n",
      "11-01-2023 Nifty Prediction -> Market may Close BULLISH on 12-01-2023! Actual -> BULLISH, Prediction -> Correct, Pred = 0.48\n",
      "12-01-2023 Nifty Prediction -> Market may Close BEARISH on 13-01-2023! Actual -> BULLISH, Prediction -> Wrong, Pred = 0.62\n",
      "13-01-2023 Nifty Prediction -> Market may Close BULLISH on 14-01-2023! Actual -> BEARISH, Prediction -> Wrong, Pred = 0.39\n",
      "16-01-2023 Nifty Prediction -> Market may Close BEARISH on 17-01-2023! Actual -> BEARISH, Prediction -> Correct, Pred = 0.63\n",
      "17-01-2023 Nifty Prediction -> Market may Close BULLISH on 18-01-2023! Actual -> BULLISH, Prediction -> Correct, Pred = 0.32\n",
      "18-01-2023 Nifty Prediction -> Market may Close BULLISH on 19-01-2023! Actual -> BEARISH, Prediction -> Wrong, Pred = 0.31\n",
      "19-01-2023 Nifty Prediction -> Market may Close BEARISH on 20-01-2023! Actual -> BEARISH, Prediction -> Correct, Pred = 0.59\n",
      "20-01-2023 Nifty Prediction -> Market may Close BEARISH on 21-01-2023! Actual -> BULLISH, Prediction -> Wrong, Pred = 0.71\n",
      "23-01-2023 Nifty Prediction -> Market may Close BULLISH on 24-01-2023! Actual -> BEARISH, Prediction -> Wrong, Pred = 0.36\n",
      "24-01-2023 Nifty Prediction -> Market may Close BEARISH on 25-01-2023! Actual -> BEARISH, Prediction -> Correct, Pred = 0.6\n",
      "25-01-2023 Nifty Prediction -> Market may Close BEARISH on 26-01-2023! Actual -> BEARISH, Prediction -> Correct, Pred = 0.82\n",
      "27-01-2023 Nifty Prediction -> Market may Close BEARISH on 28-01-2023! Actual -> BULLISH, Prediction -> Wrong, Pred = 0.82\n",
      "30-01-2023 Nifty Prediction -> Market may Close BULLISH on 31-01-2023! Actual -> BULLISH, Prediction -> Correct, Pred = 0.34\n",
      "31-01-2023 Nifty Prediction -> Market may Close BEARISH on 01-02-2023! Actual -> BEARISH, Prediction -> Correct, Pred = 0.57\n",
      "01-02-2023 Nifty Prediction -> Market may Close BEARISH on 02-02-2023! Actual -> BEARISH, Prediction -> Correct, Pred = 0.51\n",
      "02-02-2023 Nifty Prediction -> Market may Close BULLISH on 03-02-2023! Actual -> BULLISH, Prediction -> Correct, Pred = 0.39\n",
      "03-02-2023 Nifty Prediction -> Market may Close BULLISH on 04-02-2023! Actual -> BEARISH, Prediction -> Wrong, Pred = 0.21\n",
      "06-02-2023 Nifty Prediction -> Market may Close BEARISH on 07-02-2023! Actual -> BEARISH, Prediction -> Correct, Pred = 0.6\n",
      "07-02-2023 Nifty Prediction -> Market may Close BEARISH on 08-02-2023! Actual -> BEARISH, Prediction -> Correct, Pred = 0.66\n",
      "Correct: 111, Wrong: 17, Accuracy: 0.8671875\n",
      "{'TP': 12, 'FP': 14, 'TN': 34, 'FN': 20}\n"
     ]
    }
   ],
   "source": [
    "endpoint = keras.models.load_model('best_model.h5')\n",
    "try:\n",
    "    scaler\n",
    "except NameError:\n",
    "    pkl = joblib.load('nifty_model.pkl')\n",
    "    scaler = pkl['scaler']\n",
    "today = yf.download(\n",
    "                tickers=\"^NSEI\",\n",
    "                period=f'{TEST_DAYS}d',\n",
    "                interval='1d',\n",
    "                progress=False,\n",
    "                timeout=10\n",
    "            )\n",
    "today = today.drop(columns=['Adj Close', 'Volume'])\n",
    "\n",
    "###\n",
    "today = preprocessBeforeScaling(today)\n",
    "###\n",
    "\n",
    "cnt_corrct, cnt_wrong = 0, 0\n",
    "for i in range(-TEST_DAYS,0):\n",
    "    df = today.iloc[i]\n",
    "    twr = today.iloc[i+1]['Close']\n",
    "    df = scaler.transform([df])\n",
    "    pred = endpoint.predict([df], verbose=0)\n",
    "\n",
    "    if twr > today.iloc[i]['Open']:\n",
    "        fact = \"BULLISH\"\n",
    "    else:\n",
    "        fact = \"BEARISH\"\n",
    "\n",
    "    if pred > 0.5:\n",
    "        out = \"BEARISH\"\n",
    "    else:\n",
    "        out = \"BULLISH\"\n",
    "\n",
    "    if out == fact:\n",
    "        cnt_correct += 1\n",
    "        if out == \"BULLISH\":\n",
    "            metrics[\"TP\"] += 1\n",
    "        else:\n",
    "            metrics[\"TN\"] += 1\n",
    "    else:\n",
    "        cnt_wrong += 1\n",
    "        if out == \"BULLISH\":\n",
    "            metrics[\"FN\"] += 1\n",
    "        else:\n",
    "            metrics[\"FP\"] += 1\n",
    "\n",
    "        \n",
    "    print(\"{} Nifty Prediction -> Market may Close {} on {}! Actual -> {}, Prediction -> {}, Pred = {}\".format(\n",
    "            today.iloc[i].name.strftime(\"%d-%m-%Y\"),\n",
    "            out,\n",
    "            (today.iloc[i].name + pd.Timedelta(days=1)).strftime(\"%d-%m-%Y\"),\n",
    "            fact,\n",
    "            \"Correct\" if fact == out else \"Wrong\",\n",
    "            str(np.round(pred[0][0], 2))\n",
    "            )\n",
    "        )\n",
    "\n",
    "print(\"Correct: {}, Wrong: {}, Accuracy: {}\".format(cnt_correct, cnt_wrong, cnt_correct/(cnt_correct+cnt_wrong)))\n",
    "print(metrics)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Save Model for Screeni-py integration"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 102,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "['nifty_model.pkl']"
      ]
     },
     "execution_count": 102,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "pkl = {\n",
    "    #  'model': model,\n",
    "    'scaler': scaler,\n",
    "    'columns': ['Open', 'Close', 'High', 'Low']\n",
    "}\n",
    "\n",
    "joblib.dump(pkl, 'nifty_model.pkl')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "pkl = joblib.load('nifty_model.pkl')\n",
    "z = yf.download(\n",
    "                tickers=\"^NSEI\",\n",
    "                period='1d',\n",
    "                interval='1d',\n",
    "                progress=False,\n",
    "                timeout=10\n",
    "            )\n",
    "z = preprocessBeforeScaling(z)\n",
    "z = z.iloc[-1]\n",
    "z = z[pkl['columns']]\n",
    "print(z)\n",
    "z = pkl['scaler'].transform([z])\n",
    "endpoint.predict(z)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 108,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Open</th>\n",
       "      <th>High</th>\n",
       "      <th>Low</th>\n",
       "      <th>Close</th>\n",
       "      <th>Adj Close</th>\n",
       "      <th>Volume</th>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>Date</th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>2023-02-01</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>17616.300781</td>\n",
       "      <td>512900</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2023-02-02</th>\n",
       "      <td>-1.653417</td>\n",
       "      <td>-1.771062</td>\n",
       "      <td>0.533318</td>\n",
       "      <td>-0.033494</td>\n",
       "      <td>17610.400391</td>\n",
       "      <td>490100</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2023-02-03</th>\n",
       "      <td>1.168289</td>\n",
       "      <td>1.225794</td>\n",
       "      <td>0.792448</td>\n",
       "      <td>1.383560</td>\n",
       "      <td>17854.050781</td>\n",
       "      <td>424100</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2023-02-06</th>\n",
       "      <td>0.546226</td>\n",
       "      <td>-0.260777</td>\n",
       "      <td>0.649165</td>\n",
       "      <td>-0.501013</td>\n",
       "      <td>17764.599609</td>\n",
       "      <td>282500</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2023-02-07</th>\n",
       "      <td>-0.159672</td>\n",
       "      <td>-0.070405</td>\n",
       "      <td>-0.258775</td>\n",
       "      <td>-0.242615</td>\n",
       "      <td>17721.500000</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "                Open      High       Low     Close     Adj Close  Volume\n",
       "Date                                                                    \n",
       "2023-02-01       NaN       NaN       NaN       NaN  17616.300781  512900\n",
       "2023-02-02 -1.653417 -1.771062  0.533318 -0.033494  17610.400391  490100\n",
       "2023-02-03  1.168289  1.225794  0.792448  1.383560  17854.050781  424100\n",
       "2023-02-06  0.546226 -0.260777  0.649165 -0.501013  17764.599609  282500\n",
       "2023-02-07 -0.159672 -0.070405 -0.258775 -0.242615  17721.500000       0"
      ]
     },
     "execution_count": 108,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "z = yf.download(\n",
    "                tickers=\"^NSEI\",\n",
    "                period='5d',\n",
    "                interval='1d',\n",
    "                progress=False,\n",
    "                timeout=10\n",
    "            )\n",
    "z = preprocessBeforeScaling(z)\n",
    "z"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "pkl['model'].save('nifty_model.h5')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "pkl"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "del pkl['model']"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "pkl"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 121,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "92.66973999999999"
      ]
     },
     "execution_count": 121,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "def getSigmoidConfidence(x):\n",
    "    out_min, out_max = 0, 100\n",
    "    if x > 0.5:\n",
    "        in_min = 0.50001\n",
    "        in_max = 1\n",
    "    else:\n",
    "        in_min = 0\n",
    "        in_max = 0.5\n",
    "    return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min\n",
    "\n",
    "map_range(0.9633487, 0.5, 1, 0, 100)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3.9.13 ('ds')",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.13"
  },
  "orig_nbformat": 4,
  "vscode": {
   "interpreter": {
    "hash": "272f5af4762c02c25377d17b8d5be1b9d83b050e7634f4572d665f6d13ef995d"
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}