Spaces:
Runtime error
Runtime error
File size: 2,418 Bytes
5f0a349 4bd7b39 5f0a349 89dd83c 5f0a349 89dd83c 5f0a349 89dd83c d8f90a3 3d86fd5 568df48 89dd83c 17fc033 23ba778 53f286f 17fc033 e365617 97c72c7 23ba778 ea241b1 7fb79d9 ea241b1 97c72c7 17fc033 23ba778 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
from fastapi import FastAPI
from pydantic import BaseModel
from model.model import predict_pipeline
from model.model import __version__ as model_version
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from transformers import TextClassificationPipeline
app = FastAPI()
class TextIn(BaseModel):
text: str
class PredictionOut(BaseModel):
language: str
class TopicClassificationOut(BaseModel):
result: str
@app.get("/")
def home():
return {"health_check": "OK", "model_version": model_version}
@app.post("/predict", response_model=PredictionOut)
def predict(payload: TextIn):
language = predict_pipeline(payload.text)
return {"language": language}
@app.post("/TopicClassification", response_model=TopicClassificationOut)
def TopicClassification(payload: TextIn):
model_name = 'lincoln/flaubert-mlsum-topic-classification'
loaded_tokenizer = AutoTokenizer.from_pretrained(model_name)
loaded_model = AutoModelForSequenceClassification.from_pretrained(model_name)
nlp = TextClassificationPipeline(model=loaded_model, tokenizer=loaded_tokenizer)
# print(payload.text)
# text = re.sub(r'[!@#$(),\n"%^*?\:;~`0-9]', " ", payload.text)
text = "Le Bayern Munich prend la grenadine."
text = re.sub(r"[[]]", " ", text)
text = text.lower()
result = nlp(text, truncation=True)
return {"result": result}
# https://hinacortus-api-knowyouraudience.hf.space/whichsocial/myspace
@app.get("/whichsocial/{request}")
def whichsocial(request):
if ('http' in request or 'https' in request or 'www' in request or '.com' in request or '.fr' in request):
website = "ok"
listsocialnetwork = ['facebook', 'youtube', 'myspace', 'linkedin', 'twitter', 'instagram', 'github',
'reddit', 'picterest', 'discord', '']
for partsplit in request.split('/'):
for part in partsplit.split('.'):
for socialnetwork in listsocialnetwork:
print(socialnetwork, part)
if socialnetwork == request:
socialnetwork = socialnetwork
else:
socialnetwork = "not found"
else:
website = "it's not a website link !"
userprofile = 'me'
return {"request": request, "website":website, "social_network": socialnetwork, "user_profile": userprofile} |