Spaces:
Runtime error
Runtime error
File size: 1,618 Bytes
5f0a349 4bd7b39 5f0a349 89dd83c 5f0a349 89dd83c 5f0a349 89dd83c d8f90a3 3d86fd5 568df48 89dd83c 17fc033 53f286f 17fc033 a94360e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
from fastapi import FastAPI
from pydantic import BaseModel
from model.model import predict_pipeline
from model.model import __version__ as model_version
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from transformers import TextClassificationPipeline
app = FastAPI()
class TextIn(BaseModel):
text: str
class PredictionOut(BaseModel):
language: str
class TopicClassificationOut(BaseModel):
result: str
@app.get("/")
def home():
return {"health_check": "OK", "model_version": model_version}
@app.post("/predict", response_model=PredictionOut)
def predict(payload: TextIn):
language = predict_pipeline(payload.text)
return {"language": language}
@app.post("/TopicClassification", response_model=TopicClassificationOut)
def TopicClassification(payload: TextIn):
model_name = 'lincoln/flaubert-mlsum-topic-classification'
loaded_tokenizer = AutoTokenizer.from_pretrained(model_name)
loaded_model = AutoModelForSequenceClassification.from_pretrained(model_name)
nlp = TextClassificationPipeline(model=loaded_model, tokenizer=loaded_tokenizer)
# print(payload.text)
# text = re.sub(r'[!@#$(),\n"%^*?\:;~`0-9]', " ", payload.text)
text = "Le Bayern Munich prend la grenadine."
text = re.sub(r"[[]]", " ", text)
text = text.lower()
result = nlp(text, truncation=True)
return {"result": result}
@app.get("/whichsocial/{request}")
def whichsocial(request):
socialnetwork = 'TikTok'
userprofile = 'me'
return {"request": request, "social_network": socialnetwork, "user_profile": userprofile} |