File size: 774 Bytes
439fb51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

import torch
import torchvision

from torch import nn

def create_effnetb2_model(num_classes: int=3,
                         seed: int=42):
    # 1, 2, 3 Create Effnetb2 weights, transform and model
    weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT
    transforms = weights.transforms()
    model = torchvision.models.efficientnet_b2(weights=weights)
    
    # 4. Freeze all layers in the base model
    for param in model.parameters():
        param.requires_grad = False
        
    # 5. Change the classifier head with seed42
    torch.manual_seed(seed)
    model.classifier = nn.Sequential(
        nn.Dropout(p=0.3, inplace=True),
        nn.Linear(in_features=1408,
                 out_features=num_classes)
    )
    
    return model, transforms