File size: 7,619 Bytes
b213d84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
# Copyright (c) Facebook, Inc. and its affiliates.
import itertools
import json
import numpy as np
import os
import torch
from pycocotools.cocoeval import COCOeval, maskUtils

from detectron2.structures import BoxMode, RotatedBoxes, pairwise_iou_rotated
from detectron2.utils.file_io import PathManager

from .coco_evaluation import COCOEvaluator


class RotatedCOCOeval(COCOeval):
    @staticmethod
    def is_rotated(box_list):
        if type(box_list) == np.ndarray:
            return box_list.shape[1] == 5
        elif type(box_list) == list:
            if box_list == []:  # cannot decide the box_dim
                return False
            return np.all(
                np.array(
                    [
                        (len(obj) == 5) and ((type(obj) == list) or (type(obj) == np.ndarray))
                        for obj in box_list
                    ]
                )
            )
        return False

    @staticmethod
    def boxlist_to_tensor(boxlist, output_box_dim):
        if type(boxlist) == np.ndarray:
            box_tensor = torch.from_numpy(boxlist)
        elif type(boxlist) == list:
            if boxlist == []:
                return torch.zeros((0, output_box_dim), dtype=torch.float32)
            else:
                box_tensor = torch.FloatTensor(boxlist)
        else:
            raise Exception("Unrecognized boxlist type")

        input_box_dim = box_tensor.shape[1]
        if input_box_dim != output_box_dim:
            if input_box_dim == 4 and output_box_dim == 5:
                box_tensor = BoxMode.convert(box_tensor, BoxMode.XYWH_ABS, BoxMode.XYWHA_ABS)
            else:
                raise Exception(
                    "Unable to convert from {}-dim box to {}-dim box".format(
                        input_box_dim, output_box_dim
                    )
                )
        return box_tensor

    def compute_iou_dt_gt(self, dt, gt, is_crowd):
        if self.is_rotated(dt) or self.is_rotated(gt):
            # TODO: take is_crowd into consideration
            assert all(c == 0 for c in is_crowd)
            dt = RotatedBoxes(self.boxlist_to_tensor(dt, output_box_dim=5))
            gt = RotatedBoxes(self.boxlist_to_tensor(gt, output_box_dim=5))
            return pairwise_iou_rotated(dt, gt)
        else:
            # This is the same as the classical COCO evaluation
            return maskUtils.iou(dt, gt, is_crowd)

    def computeIoU(self, imgId: int, catId: int):
        p = self.params
        if p.useCats:
            gt = self._gts[imgId, catId]
            dt = self._dts[imgId, catId]
        else:
            gt = [_ for cId in p.catIds for _ in self._gts[imgId, cId]]
            dt = [_ for cId in p.catIds for _ in self._dts[imgId, cId]]

        if len(gt) == 0 or len(dt) == 0:
            return []

        inds = np.argsort([-d["score"] for d in dt], kind="mergesort")
        dt = [dt[i] for i in inds]
        if len(dt) > p.maxDets[-1]:
            dt = dt[0 : p.maxDets[-1]]

        assert p.iouType == "bbox", "unsupported iouType for iou computation"

        g = [g["bbox"] for g in gt]
        d = [d["bbox"] for d in dt]

        # compute iou between each dt and gt region
        iscrowd = [int(o["iscrowd"]) for o in gt]

        # Note: this function is copied from cocoeval.py in cocoapi
        # and the major difference is here.
        ious = self.compute_iou_dt_gt(d, g, iscrowd)
        return ious


class RotatedCOCOEvaluator(COCOEvaluator):
    """
    Evaluate object proposal/instance detection outputs using COCO-like metrics and APIs,
    with rotated boxes support.
    Note: this uses IOU only and does not consider angle differences.
    """

    def process(self, inputs, outputs):
        """
        Args:
            inputs: the inputs to a COCO model (e.g., GeneralizedRCNN).
                It is a list of dict. Each dict corresponds to an image and
                contains keys like "height", "width", "file_name", "image_id".
            outputs: the outputs of a COCO model. It is a list of dicts with key
                "instances" that contains :class:`Instances`.
        """
        for input, output in zip(inputs, outputs):
            prediction = {"image_id": input["image_id"]}

            if "instances" in output:
                instances = output["instances"].to(self._cpu_device)

                prediction["instances"] = self.instances_to_json(instances, input["image_id"])
            if "proposals" in output:
                prediction["proposals"] = output["proposals"].to(self._cpu_device)
            self._predictions.append(prediction)

    def instances_to_json(self, instances, img_id):
        num_instance = len(instances)
        if num_instance == 0:
            return []

        boxes = instances.pred_boxes.tensor.numpy()
        if boxes.shape[1] == 4:
            boxes = BoxMode.convert(boxes, BoxMode.XYXY_ABS, BoxMode.XYWH_ABS)
        boxes = boxes.tolist()
        scores = instances.scores.tolist()
        classes = instances.pred_classes.tolist()

        results = []
        for k in range(num_instance):
            result = {
                "image_id": img_id,
                "category_id": classes[k],
                "bbox": boxes[k],
                "score": scores[k],
            }

            results.append(result)
        return results

    def _eval_predictions(self, predictions, img_ids=None):  # img_ids: unused
        """
        Evaluate predictions on the given tasks.
        Fill self._results with the metrics of the tasks.
        """
        self._logger.info("Preparing results for COCO format ...")
        coco_results = list(itertools.chain(*[x["instances"] for x in predictions]))

        # unmap the category ids for COCO
        if hasattr(self._metadata, "thing_dataset_id_to_contiguous_id"):
            reverse_id_mapping = {
                v: k for k, v in self._metadata.thing_dataset_id_to_contiguous_id.items()
            }
            for result in coco_results:
                result["category_id"] = reverse_id_mapping[result["category_id"]]

        if self._output_dir:
            file_path = os.path.join(self._output_dir, "coco_instances_results.json")
            self._logger.info("Saving results to {}".format(file_path))
            with PathManager.open(file_path, "w") as f:
                f.write(json.dumps(coco_results))
                f.flush()

        if not self._do_evaluation:
            self._logger.info("Annotations are not available for evaluation.")
            return

        self._logger.info("Evaluating predictions ...")

        assert self._tasks is None or set(self._tasks) == {
            "bbox"
        }, "[RotatedCOCOEvaluator] Only bbox evaluation is supported"
        coco_eval = (
            self._evaluate_predictions_on_coco(self._coco_api, coco_results)
            if len(coco_results) > 0
            else None  # cocoapi does not handle empty results very well
        )

        task = "bbox"
        res = self._derive_coco_results(
            coco_eval, task, class_names=self._metadata.get("thing_classes")
        )
        self._results[task] = res

    def _evaluate_predictions_on_coco(self, coco_gt, coco_results):
        """
        Evaluate the coco results using COCOEval API.
        """
        assert len(coco_results) > 0

        coco_dt = coco_gt.loadRes(coco_results)

        # Only bbox is supported for now
        coco_eval = RotatedCOCOeval(coco_gt, coco_dt, iouType="bbox")

        coco_eval.evaluate()
        coco_eval.accumulate()
        coco_eval.summarize()

        return coco_eval