File size: 22,192 Bytes
b213d84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
# Copyright (c) Facebook, Inc. and its affiliates.

import math
from typing import Dict
import torch
import torch.nn.functional as F

from detectron2.layers import ShapeSpec, cat
from detectron2.layers.roi_align_rotated import ROIAlignRotated
from detectron2.modeling import poolers
from detectron2.modeling.proposal_generator import rpn
from detectron2.modeling.roi_heads.mask_head import mask_rcnn_inference
from detectron2.structures import Boxes, ImageList, Instances, Keypoints, RotatedBoxes

from .shared import alias, to_device


"""
This file contains caffe2-compatible implementation of several detectron2 components.
"""


class Caffe2Boxes(Boxes):
    """
    Representing a list of detectron2.structures.Boxes from minibatch, each box
    is represented by a 5d vector (batch index + 4 coordinates), or a 6d vector
    (batch index + 5 coordinates) for RotatedBoxes.
    """

    def __init__(self, tensor):
        assert isinstance(tensor, torch.Tensor)
        assert tensor.dim() == 2 and tensor.size(-1) in [4, 5, 6], tensor.size()
        # TODO: make tensor immutable when dim is Nx5 for Boxes,
        # and Nx6 for RotatedBoxes?
        self.tensor = tensor


# TODO clean up this class, maybe just extend Instances
class InstancesList:
    """
    Tensor representation of a list of Instances object for a batch of images.

    When dealing with a batch of images with Caffe2 ops, a list of bboxes
    (instances) are usually represented by single Tensor with size
    (sigma(Ni), 5) or (sigma(Ni), 4) plus a batch split Tensor. This class is
    for providing common functions to convert between these two representations.
    """

    def __init__(self, im_info, indices, extra_fields=None):
        # [N, 3] -> (H, W, Scale)
        self.im_info = im_info
        # [N,] -> indice of batch to which the instance belongs
        self.indices = indices
        # [N, ...]
        self.batch_extra_fields = extra_fields or {}

        self.image_size = self.im_info

    def get_fields(self):
        """like `get_fields` in the Instances object,
        but return each field in tensor representations"""
        ret = {}
        for k, v in self.batch_extra_fields.items():
            # if isinstance(v, torch.Tensor):
            #     tensor_rep = v
            # elif isinstance(v, (Boxes, Keypoints)):
            #     tensor_rep = v.tensor
            # else:
            #     raise ValueError("Can't find tensor representation for: {}".format())
            ret[k] = v
        return ret

    def has(self, name):
        return name in self.batch_extra_fields

    def set(self, name, value):
        # len(tensor) is a bad practice that generates ONNX constants during tracing.
        # Although not a problem for the `assert` statement below, torch ONNX exporter
        # still raises a misleading warning as it does not this call comes from `assert`
        if isinstance(value, Boxes):
            data_len = value.tensor.shape[0]
        elif isinstance(value, torch.Tensor):
            data_len = value.shape[0]
        else:
            data_len = len(value)
        if len(self.batch_extra_fields):
            assert (
                len(self) == data_len
            ), "Adding a field of length {} to a Instances of length {}".format(data_len, len(self))
        self.batch_extra_fields[name] = value

    def __getattr__(self, name):
        if name not in self.batch_extra_fields:
            raise AttributeError("Cannot find field '{}' in the given Instances!".format(name))
        return self.batch_extra_fields[name]

    def __len__(self):
        return len(self.indices)

    def flatten(self):
        ret = []
        for _, v in self.batch_extra_fields.items():
            if isinstance(v, (Boxes, Keypoints)):
                ret.append(v.tensor)
            else:
                ret.append(v)
        return ret

    @staticmethod
    def to_d2_instances_list(instances_list):
        """
        Convert InstancesList to List[Instances]. The input `instances_list` can
        also be a List[Instances], in this case this method is a non-op.
        """
        if not isinstance(instances_list, InstancesList):
            assert all(isinstance(x, Instances) for x in instances_list)
            return instances_list

        ret = []
        for i, info in enumerate(instances_list.im_info):
            instances = Instances(torch.Size([int(info[0].item()), int(info[1].item())]))

            ids = instances_list.indices == i
            for k, v in instances_list.batch_extra_fields.items():
                if isinstance(v, torch.Tensor):
                    instances.set(k, v[ids])
                    continue
                elif isinstance(v, Boxes):
                    instances.set(k, v[ids, -4:])
                    continue

                target_type, tensor_source = v
                assert isinstance(tensor_source, torch.Tensor)
                assert tensor_source.shape[0] == instances_list.indices.shape[0]
                tensor_source = tensor_source[ids]

                if issubclass(target_type, Boxes):
                    instances.set(k, Boxes(tensor_source[:, -4:]))
                elif issubclass(target_type, Keypoints):
                    instances.set(k, Keypoints(tensor_source))
                elif issubclass(target_type, torch.Tensor):
                    instances.set(k, tensor_source)
                else:
                    raise ValueError("Can't handle targe type: {}".format(target_type))

            ret.append(instances)
        return ret


class Caffe2Compatible:
    """
    A model can inherit this class to indicate that it can be traced and deployed with caffe2.
    """

    def _get_tensor_mode(self):
        return self._tensor_mode

    def _set_tensor_mode(self, v):
        self._tensor_mode = v

    tensor_mode = property(_get_tensor_mode, _set_tensor_mode)
    """
    If true, the model expects C2-style tensor only inputs/outputs format.
    """


class Caffe2RPN(Caffe2Compatible, rpn.RPN):
    @classmethod
    def from_config(cls, cfg, input_shape: Dict[str, ShapeSpec]):
        ret = super(Caffe2Compatible, cls).from_config(cfg, input_shape)
        assert tuple(cfg.MODEL.RPN.BBOX_REG_WEIGHTS) == (1.0, 1.0, 1.0, 1.0) or tuple(
            cfg.MODEL.RPN.BBOX_REG_WEIGHTS
        ) == (1.0, 1.0, 1.0, 1.0, 1.0)
        return ret

    def _generate_proposals(
        self, images, objectness_logits_pred, anchor_deltas_pred, gt_instances=None
    ):
        assert isinstance(images, ImageList)
        if self.tensor_mode:
            im_info = images.image_sizes
        else:
            im_info = torch.tensor([[im_sz[0], im_sz[1], 1.0] for im_sz in images.image_sizes]).to(
                images.tensor.device
            )
        assert isinstance(im_info, torch.Tensor)

        rpn_rois_list = []
        rpn_roi_probs_list = []
        for scores, bbox_deltas, cell_anchors_tensor, feat_stride in zip(
            objectness_logits_pred,
            anchor_deltas_pred,
            [b for (n, b) in self.anchor_generator.cell_anchors.named_buffers()],
            self.anchor_generator.strides,
        ):
            scores = scores.detach()
            bbox_deltas = bbox_deltas.detach()

            rpn_rois, rpn_roi_probs = torch.ops._caffe2.GenerateProposals(
                scores,
                bbox_deltas,
                im_info,
                cell_anchors_tensor,
                spatial_scale=1.0 / feat_stride,
                pre_nms_topN=self.pre_nms_topk[self.training],
                post_nms_topN=self.post_nms_topk[self.training],
                nms_thresh=self.nms_thresh,
                min_size=self.min_box_size,
                # correct_transform_coords=True,  # deprecated argument
                angle_bound_on=True,  # Default
                angle_bound_lo=-180,
                angle_bound_hi=180,
                clip_angle_thresh=1.0,  # Default
                legacy_plus_one=False,
            )
            rpn_rois_list.append(rpn_rois)
            rpn_roi_probs_list.append(rpn_roi_probs)

        # For FPN in D2, in RPN all proposals from different levels are concated
        # together, ranked and picked by top post_nms_topk. Then in ROIPooler
        # it calculates level_assignments and calls the RoIAlign from
        # the corresponding level.

        if len(objectness_logits_pred) == 1:
            rpn_rois = rpn_rois_list[0]
            rpn_roi_probs = rpn_roi_probs_list[0]
        else:
            assert len(rpn_rois_list) == len(rpn_roi_probs_list)
            rpn_post_nms_topN = self.post_nms_topk[self.training]

            device = rpn_rois_list[0].device
            input_list = [to_device(x, "cpu") for x in (rpn_rois_list + rpn_roi_probs_list)]

            # TODO remove this after confirming rpn_max_level/rpn_min_level
            # is not needed in CollectRpnProposals.
            feature_strides = list(self.anchor_generator.strides)
            rpn_min_level = int(math.log2(feature_strides[0]))
            rpn_max_level = int(math.log2(feature_strides[-1]))
            assert (rpn_max_level - rpn_min_level + 1) == len(
                rpn_rois_list
            ), "CollectRpnProposals requires continuous levels"

            rpn_rois = torch.ops._caffe2.CollectRpnProposals(
                input_list,
                # NOTE: in current implementation, rpn_max_level and rpn_min_level
                # are not needed, only the subtraction of two matters and it
                # can be infer from the number of inputs. Keep them now for
                # consistency.
                rpn_max_level=2 + len(rpn_rois_list) - 1,
                rpn_min_level=2,
                rpn_post_nms_topN=rpn_post_nms_topN,
            )
            rpn_rois = to_device(rpn_rois, device)
            rpn_roi_probs = []

        proposals = self.c2_postprocess(im_info, rpn_rois, rpn_roi_probs, self.tensor_mode)
        return proposals, {}

    def forward(self, images, features, gt_instances=None):
        assert not self.training
        features = [features[f] for f in self.in_features]
        objectness_logits_pred, anchor_deltas_pred = self.rpn_head(features)
        return self._generate_proposals(
            images,
            objectness_logits_pred,
            anchor_deltas_pred,
            gt_instances,
        )

    @staticmethod
    def c2_postprocess(im_info, rpn_rois, rpn_roi_probs, tensor_mode):
        proposals = InstancesList(
            im_info=im_info,
            indices=rpn_rois[:, 0],
            extra_fields={
                "proposal_boxes": Caffe2Boxes(rpn_rois),
                "objectness_logits": (torch.Tensor, rpn_roi_probs),
            },
        )
        if not tensor_mode:
            proposals = InstancesList.to_d2_instances_list(proposals)
        else:
            proposals = [proposals]
        return proposals


class Caffe2ROIPooler(Caffe2Compatible, poolers.ROIPooler):
    @staticmethod
    def c2_preprocess(box_lists):
        assert all(isinstance(x, Boxes) for x in box_lists)
        if all(isinstance(x, Caffe2Boxes) for x in box_lists):
            # input is pure-tensor based
            assert len(box_lists) == 1
            pooler_fmt_boxes = box_lists[0].tensor
        else:
            pooler_fmt_boxes = poolers.convert_boxes_to_pooler_format(box_lists)
        return pooler_fmt_boxes

    def forward(self, x, box_lists):
        assert not self.training

        pooler_fmt_boxes = self.c2_preprocess(box_lists)
        num_level_assignments = len(self.level_poolers)

        if num_level_assignments == 1:
            if isinstance(self.level_poolers[0], ROIAlignRotated):
                c2_roi_align = torch.ops._caffe2.RoIAlignRotated
                aligned = True
            else:
                c2_roi_align = torch.ops._caffe2.RoIAlign
                aligned = self.level_poolers[0].aligned

            x0 = x[0]
            if x0.is_quantized:
                x0 = x0.dequantize()

            out = c2_roi_align(
                x0,
                pooler_fmt_boxes,
                order="NCHW",
                spatial_scale=float(self.level_poolers[0].spatial_scale),
                pooled_h=int(self.output_size[0]),
                pooled_w=int(self.output_size[1]),
                sampling_ratio=int(self.level_poolers[0].sampling_ratio),
                aligned=aligned,
            )
            return out

        device = pooler_fmt_boxes.device
        assert (
            self.max_level - self.min_level + 1 == 4
        ), "Currently DistributeFpnProposals only support 4 levels"
        fpn_outputs = torch.ops._caffe2.DistributeFpnProposals(
            to_device(pooler_fmt_boxes, "cpu"),
            roi_canonical_scale=self.canonical_box_size,
            roi_canonical_level=self.canonical_level,
            roi_max_level=self.max_level,
            roi_min_level=self.min_level,
            legacy_plus_one=False,
        )
        fpn_outputs = [to_device(x, device) for x in fpn_outputs]

        rois_fpn_list = fpn_outputs[:-1]
        rois_idx_restore_int32 = fpn_outputs[-1]

        roi_feat_fpn_list = []
        for roi_fpn, x_level, pooler in zip(rois_fpn_list, x, self.level_poolers):
            if isinstance(pooler, ROIAlignRotated):
                c2_roi_align = torch.ops._caffe2.RoIAlignRotated
                aligned = True
            else:
                c2_roi_align = torch.ops._caffe2.RoIAlign
                aligned = bool(pooler.aligned)

            if x_level.is_quantized:
                x_level = x_level.dequantize()

            roi_feat_fpn = c2_roi_align(
                x_level,
                roi_fpn,
                order="NCHW",
                spatial_scale=float(pooler.spatial_scale),
                pooled_h=int(self.output_size[0]),
                pooled_w=int(self.output_size[1]),
                sampling_ratio=int(pooler.sampling_ratio),
                aligned=aligned,
            )
            roi_feat_fpn_list.append(roi_feat_fpn)

        roi_feat_shuffled = cat(roi_feat_fpn_list, dim=0)
        assert roi_feat_shuffled.numel() > 0 and rois_idx_restore_int32.numel() > 0, (
            "Caffe2 export requires tracing with a model checkpoint + input that can produce valid"
            " detections. But no detections were obtained with the given checkpoint and input!"
        )
        roi_feat = torch.ops._caffe2.BatchPermutation(roi_feat_shuffled, rois_idx_restore_int32)
        return roi_feat


def caffe2_fast_rcnn_outputs_inference(tensor_mode, box_predictor, predictions, proposals):
    """equivalent to FastRCNNOutputLayers.inference"""
    num_classes = box_predictor.num_classes
    score_thresh = box_predictor.test_score_thresh
    nms_thresh = box_predictor.test_nms_thresh
    topk_per_image = box_predictor.test_topk_per_image
    is_rotated = len(box_predictor.box2box_transform.weights) == 5

    if is_rotated:
        box_dim = 5
        assert box_predictor.box2box_transform.weights[4] == 1, (
            "The weights for Rotated BBoxTransform in C2 have only 4 dimensions,"
            + " thus enforcing the angle weight to be 1 for now"
        )
        box2box_transform_weights = box_predictor.box2box_transform.weights[:4]
    else:
        box_dim = 4
        box2box_transform_weights = box_predictor.box2box_transform.weights

    class_logits, box_regression = predictions
    if num_classes + 1 == class_logits.shape[1]:
        class_prob = F.softmax(class_logits, -1)
    else:
        assert num_classes == class_logits.shape[1]
        class_prob = F.sigmoid(class_logits)
        # BoxWithNMSLimit will infer num_classes from the shape of the class_prob
        # So append a zero column as placeholder for the background class
        class_prob = torch.cat((class_prob, torch.zeros(class_prob.shape[0], 1)), dim=1)

    assert box_regression.shape[1] % box_dim == 0
    cls_agnostic_bbox_reg = box_regression.shape[1] // box_dim == 1

    input_tensor_mode = proposals[0].proposal_boxes.tensor.shape[1] == box_dim + 1

    proposal_boxes = proposals[0].proposal_boxes
    if isinstance(proposal_boxes, Caffe2Boxes):
        rois = Caffe2Boxes.cat([p.proposal_boxes for p in proposals])
    elif isinstance(proposal_boxes, RotatedBoxes):
        rois = RotatedBoxes.cat([p.proposal_boxes for p in proposals])
    elif isinstance(proposal_boxes, Boxes):
        rois = Boxes.cat([p.proposal_boxes for p in proposals])
    else:
        raise NotImplementedError(
            'Expected proposals[0].proposal_boxes to be type "Boxes", '
            f"instead got {type(proposal_boxes)}"
        )

    device, dtype = rois.tensor.device, rois.tensor.dtype
    if input_tensor_mode:
        im_info = proposals[0].image_size
        rois = rois.tensor
    else:
        im_info = torch.tensor([[sz[0], sz[1], 1.0] for sz in [x.image_size for x in proposals]])
        batch_ids = cat(
            [
                torch.full((b, 1), i, dtype=dtype, device=device)
                for i, b in enumerate(len(p) for p in proposals)
            ],
            dim=0,
        )
        rois = torch.cat([batch_ids, rois.tensor], dim=1)

    roi_pred_bbox, roi_batch_splits = torch.ops._caffe2.BBoxTransform(
        to_device(rois, "cpu"),
        to_device(box_regression, "cpu"),
        to_device(im_info, "cpu"),
        weights=box2box_transform_weights,
        apply_scale=True,
        rotated=is_rotated,
        angle_bound_on=True,
        angle_bound_lo=-180,
        angle_bound_hi=180,
        clip_angle_thresh=1.0,
        legacy_plus_one=False,
    )
    roi_pred_bbox = to_device(roi_pred_bbox, device)
    roi_batch_splits = to_device(roi_batch_splits, device)

    nms_outputs = torch.ops._caffe2.BoxWithNMSLimit(
        to_device(class_prob, "cpu"),
        to_device(roi_pred_bbox, "cpu"),
        to_device(roi_batch_splits, "cpu"),
        score_thresh=float(score_thresh),
        nms=float(nms_thresh),
        detections_per_im=int(topk_per_image),
        soft_nms_enabled=False,
        soft_nms_method="linear",
        soft_nms_sigma=0.5,
        soft_nms_min_score_thres=0.001,
        rotated=is_rotated,
        cls_agnostic_bbox_reg=cls_agnostic_bbox_reg,
        input_boxes_include_bg_cls=False,
        output_classes_include_bg_cls=False,
        legacy_plus_one=False,
    )
    roi_score_nms = to_device(nms_outputs[0], device)
    roi_bbox_nms = to_device(nms_outputs[1], device)
    roi_class_nms = to_device(nms_outputs[2], device)
    roi_batch_splits_nms = to_device(nms_outputs[3], device)
    roi_keeps_nms = to_device(nms_outputs[4], device)
    roi_keeps_size_nms = to_device(nms_outputs[5], device)
    if not tensor_mode:
        roi_class_nms = roi_class_nms.to(torch.int64)

    roi_batch_ids = cat(
        [
            torch.full((b, 1), i, dtype=dtype, device=device)
            for i, b in enumerate(int(x.item()) for x in roi_batch_splits_nms)
        ],
        dim=0,
    )

    roi_class_nms = alias(roi_class_nms, "class_nms")
    roi_score_nms = alias(roi_score_nms, "score_nms")
    roi_bbox_nms = alias(roi_bbox_nms, "bbox_nms")
    roi_batch_splits_nms = alias(roi_batch_splits_nms, "batch_splits_nms")
    roi_keeps_nms = alias(roi_keeps_nms, "keeps_nms")
    roi_keeps_size_nms = alias(roi_keeps_size_nms, "keeps_size_nms")

    results = InstancesList(
        im_info=im_info,
        indices=roi_batch_ids[:, 0],
        extra_fields={
            "pred_boxes": Caffe2Boxes(roi_bbox_nms),
            "scores": roi_score_nms,
            "pred_classes": roi_class_nms,
        },
    )

    if not tensor_mode:
        results = InstancesList.to_d2_instances_list(results)
        batch_splits = roi_batch_splits_nms.int().tolist()
        kept_indices = list(roi_keeps_nms.to(torch.int64).split(batch_splits))
    else:
        results = [results]
        kept_indices = [roi_keeps_nms]

    return results, kept_indices


class Caffe2FastRCNNOutputsInference:
    def __init__(self, tensor_mode):
        self.tensor_mode = tensor_mode  # whether the output is caffe2 tensor mode

    def __call__(self, box_predictor, predictions, proposals):
        return caffe2_fast_rcnn_outputs_inference(
            self.tensor_mode, box_predictor, predictions, proposals
        )


def caffe2_mask_rcnn_inference(pred_mask_logits, pred_instances):
    """equivalent to mask_head.mask_rcnn_inference"""
    if all(isinstance(x, InstancesList) for x in pred_instances):
        assert len(pred_instances) == 1
        mask_probs_pred = pred_mask_logits.sigmoid()
        mask_probs_pred = alias(mask_probs_pred, "mask_fcn_probs")
        pred_instances[0].set("pred_masks", mask_probs_pred)
    else:
        mask_rcnn_inference(pred_mask_logits, pred_instances)


class Caffe2MaskRCNNInference:
    def __call__(self, pred_mask_logits, pred_instances):
        return caffe2_mask_rcnn_inference(pred_mask_logits, pred_instances)


def caffe2_keypoint_rcnn_inference(use_heatmap_max_keypoint, pred_keypoint_logits, pred_instances):
    # just return the keypoint heatmap for now,
    # there will be option to call HeatmapMaxKeypointOp
    output = alias(pred_keypoint_logits, "kps_score")
    if all(isinstance(x, InstancesList) for x in pred_instances):
        assert len(pred_instances) == 1
        if use_heatmap_max_keypoint:
            device = output.device
            output = torch.ops._caffe2.HeatmapMaxKeypoint(
                to_device(output, "cpu"),
                pred_instances[0].pred_boxes.tensor,
                should_output_softmax=True,  # worth make it configerable?
            )
            output = to_device(output, device)
            output = alias(output, "keypoints_out")
        pred_instances[0].set("pred_keypoints", output)
    return pred_keypoint_logits


class Caffe2KeypointRCNNInference:
    def __init__(self, use_heatmap_max_keypoint):
        self.use_heatmap_max_keypoint = use_heatmap_max_keypoint

    def __call__(self, pred_keypoint_logits, pred_instances):
        return caffe2_keypoint_rcnn_inference(
            self.use_heatmap_max_keypoint, pred_keypoint_logits, pred_instances
        )