Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,834 Bytes
b213d84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
# Copyright (c) Facebook, Inc. and its affiliates.
import copy
import numpy as np
import torch
from fvcore.transforms import HFlipTransform, TransformList
from torch.nn import functional as F
from detectron2.data.transforms import RandomRotation, RotationTransform, apply_transform_gens
from detectron2.modeling.postprocessing import detector_postprocess
from detectron2.modeling.test_time_augmentation import DatasetMapperTTA, GeneralizedRCNNWithTTA
from ..converters import HFlipConverter
class DensePoseDatasetMapperTTA(DatasetMapperTTA):
def __init__(self, cfg):
super().__init__(cfg=cfg)
self.angles = cfg.TEST.AUG.ROTATION_ANGLES
def __call__(self, dataset_dict):
ret = super().__call__(dataset_dict=dataset_dict)
numpy_image = dataset_dict["image"].permute(1, 2, 0).numpy()
for angle in self.angles:
rotate = RandomRotation(angle=angle, expand=True)
new_numpy_image, tfms = apply_transform_gens([rotate], np.copy(numpy_image))
torch_image = torch.from_numpy(np.ascontiguousarray(new_numpy_image.transpose(2, 0, 1)))
dic = copy.deepcopy(dataset_dict)
# In DatasetMapperTTA, there is a pre_tfm transform (resize or no-op) that is
# added at the beginning of each TransformList. That's '.transforms[0]'.
dic["transforms"] = TransformList(
[ret[-1]["transforms"].transforms[0]] + tfms.transforms
)
dic["image"] = torch_image
ret.append(dic)
return ret
class DensePoseGeneralizedRCNNWithTTA(GeneralizedRCNNWithTTA):
def __init__(self, cfg, model, transform_data, tta_mapper=None, batch_size=1):
"""
Args:
cfg (CfgNode):
model (GeneralizedRCNN): a GeneralizedRCNN to apply TTA on.
transform_data (DensePoseTransformData): contains symmetry label
transforms used for horizontal flip
tta_mapper (callable): takes a dataset dict and returns a list of
augmented versions of the dataset dict. Defaults to
`DatasetMapperTTA(cfg)`.
batch_size (int): batch the augmented images into this batch size for inference.
"""
self._transform_data = transform_data.to(model.device)
super().__init__(cfg=cfg, model=model, tta_mapper=tta_mapper, batch_size=batch_size)
# the implementation follows closely the one from detectron2/modeling
def _inference_one_image(self, input):
"""
Args:
input (dict): one dataset dict with "image" field being a CHW tensor
Returns:
dict: one output dict
"""
orig_shape = (input["height"], input["width"])
# For some reason, resize with uint8 slightly increases box AP but decreases densepose AP
input["image"] = input["image"].to(torch.uint8)
augmented_inputs, tfms = self._get_augmented_inputs(input)
# Detect boxes from all augmented versions
with self._turn_off_roi_heads(["mask_on", "keypoint_on", "densepose_on"]):
# temporarily disable roi heads
all_boxes, all_scores, all_classes = self._get_augmented_boxes(augmented_inputs, tfms)
merged_instances = self._merge_detections(all_boxes, all_scores, all_classes, orig_shape)
if self.cfg.MODEL.MASK_ON or self.cfg.MODEL.DENSEPOSE_ON:
# Use the detected boxes to obtain new fields
augmented_instances = self._rescale_detected_boxes(
augmented_inputs, merged_instances, tfms
)
# run forward on the detected boxes
outputs = self._batch_inference(augmented_inputs, augmented_instances)
# Delete now useless variables to avoid being out of memory
del augmented_inputs, augmented_instances
# average the predictions
if self.cfg.MODEL.MASK_ON:
merged_instances.pred_masks = self._reduce_pred_masks(outputs, tfms)
if self.cfg.MODEL.DENSEPOSE_ON:
merged_instances.pred_densepose = self._reduce_pred_densepose(outputs, tfms)
# postprocess
merged_instances = detector_postprocess(merged_instances, *orig_shape)
return {"instances": merged_instances}
else:
return {"instances": merged_instances}
def _get_augmented_boxes(self, augmented_inputs, tfms):
# Heavily based on detectron2/modeling/test_time_augmentation.py
# Only difference is that RotationTransform is excluded from bbox computation
# 1: forward with all augmented images
outputs = self._batch_inference(augmented_inputs)
# 2: union the results
all_boxes = []
all_scores = []
all_classes = []
for output, tfm in zip(outputs, tfms):
# Need to inverse the transforms on boxes, to obtain results on original image
if not any(isinstance(t, RotationTransform) for t in tfm.transforms):
# Some transforms can't compute bbox correctly
pred_boxes = output.pred_boxes.tensor
original_pred_boxes = tfm.inverse().apply_box(pred_boxes.cpu().numpy())
all_boxes.append(torch.from_numpy(original_pred_boxes).to(pred_boxes.device))
all_scores.extend(output.scores)
all_classes.extend(output.pred_classes)
all_boxes = torch.cat(all_boxes, dim=0)
return all_boxes, all_scores, all_classes
def _reduce_pred_densepose(self, outputs, tfms):
# Should apply inverse transforms on densepose preds.
# We assume only rotation, resize & flip are used. pred_masks is a scale-invariant
# representation, so we handle the other ones specially
for idx, (output, tfm) in enumerate(zip(outputs, tfms)):
for t in tfm.transforms:
for attr in ["coarse_segm", "fine_segm", "u", "v"]:
setattr(
output.pred_densepose,
attr,
_inverse_rotation(
getattr(output.pred_densepose, attr), output.pred_boxes.tensor, t
),
)
if any(isinstance(t, HFlipTransform) for t in tfm.transforms):
output.pred_densepose = HFlipConverter.convert(
output.pred_densepose, self._transform_data
)
self._incremental_avg_dp(outputs[0].pred_densepose, output.pred_densepose, idx)
return outputs[0].pred_densepose
# incrementally computed average: u_(n + 1) = u_n + (x_(n+1) - u_n) / (n + 1).
def _incremental_avg_dp(self, avg, new_el, idx):
for attr in ["coarse_segm", "fine_segm", "u", "v"]:
setattr(avg, attr, (getattr(avg, attr) * idx + getattr(new_el, attr)) / (idx + 1))
if idx:
# Deletion of the > 0 index intermediary values to prevent GPU OOM
setattr(new_el, attr, None)
return avg
def _inverse_rotation(densepose_attrs, boxes, transform):
# resample outputs to image size and rotate back the densepose preds
# on the rotated images to the space of the original image
if len(boxes) == 0 or not isinstance(transform, RotationTransform):
return densepose_attrs
boxes = boxes.int().cpu().numpy()
wh_boxes = boxes[:, 2:] - boxes[:, :2] # bboxes in the rotated space
inv_boxes = rotate_box_inverse(transform, boxes).astype(int) # bboxes in original image
wh_diff = (inv_boxes[:, 2:] - inv_boxes[:, :2] - wh_boxes) // 2 # diff between new/old bboxes
rotation_matrix = torch.tensor([transform.rm_image]).to(device=densepose_attrs.device).float()
rotation_matrix[:, :, -1] = 0
# To apply grid_sample for rotation, we need to have enough space to fit the original and
# rotated bboxes. l_bds and r_bds are the left/right bounds that will be used to
# crop the difference once the rotation is done
l_bds = np.maximum(0, -wh_diff)
for i in range(len(densepose_attrs)):
if min(wh_boxes[i]) <= 0:
continue
densepose_attr = densepose_attrs[[i]].clone()
# 1. Interpolate densepose attribute to size of the rotated bbox
densepose_attr = F.interpolate(densepose_attr, wh_boxes[i].tolist()[::-1], mode="bilinear")
# 2. Pad the interpolated attribute so it has room for the original + rotated bbox
densepose_attr = F.pad(densepose_attr, tuple(np.repeat(np.maximum(0, wh_diff[i]), 2)))
# 3. Compute rotation grid and transform
grid = F.affine_grid(rotation_matrix, size=densepose_attr.shape)
densepose_attr = F.grid_sample(densepose_attr, grid)
# 4. Compute right bounds and crop the densepose_attr to the size of the original bbox
r_bds = densepose_attr.shape[2:][::-1] - l_bds[i]
densepose_attr = densepose_attr[:, :, l_bds[i][1] : r_bds[1], l_bds[i][0] : r_bds[0]]
if min(densepose_attr.shape) > 0:
# Interpolate back to the original size of the densepose attribute
densepose_attr = F.interpolate(
densepose_attr, densepose_attrs.shape[-2:], mode="bilinear"
)
# Adding a very small probability to the background class to fill padded zones
densepose_attr[:, 0] += 1e-10
densepose_attrs[i] = densepose_attr
return densepose_attrs
def rotate_box_inverse(rot_tfm, rotated_box):
"""
rotated_box is a N * 4 array of [x0, y0, x1, y1] boxes
When a bbox is rotated, it gets bigger, because we need to surround the tilted bbox
So when a bbox is rotated then inverse-rotated, it is much bigger than the original
This function aims to invert the rotation on the box, but also resize it to its original size
"""
# 1. Compute the inverse rotation of the rotated bboxes (bigger than it )
invrot_box = rot_tfm.inverse().apply_box(rotated_box)
h, w = rotated_box[:, 3] - rotated_box[:, 1], rotated_box[:, 2] - rotated_box[:, 0]
ih, iw = invrot_box[:, 3] - invrot_box[:, 1], invrot_box[:, 2] - invrot_box[:, 0]
assert 2 * rot_tfm.abs_sin**2 != 1, "45 degrees angle can't be inverted"
# 2. Inverse the corresponding computation in the rotation transform
# to get the original height/width of the rotated boxes
orig_h = (h * rot_tfm.abs_cos - w * rot_tfm.abs_sin) / (1 - 2 * rot_tfm.abs_sin**2)
orig_w = (w * rot_tfm.abs_cos - h * rot_tfm.abs_sin) / (1 - 2 * rot_tfm.abs_sin**2)
# 3. Resize the inverse-rotated bboxes to their original size
invrot_box[:, 0] += (iw - orig_w) / 2
invrot_box[:, 1] += (ih - orig_h) / 2
invrot_box[:, 2] -= (iw - orig_w) / 2
invrot_box[:, 3] -= (ih - orig_h) / 2
return invrot_box
|