File size: 10,836 Bytes
561c629
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
import math
from math import prod

import torch
import torch.nn as nn
import torch.nn.functional as F
from architecture.grl_common.ops import (
    calculate_mask,
    get_relative_coords_table,
    get_relative_position_index,
    window_partition,
    window_reverse,
)
from architecture.grl_common.swin_v1_block import Mlp
from timm.models.layers import DropPath, to_2tuple


class WindowAttentionV2(nn.Module):
    r"""Window based multi-head self attention (W-MSA) module with relative position bias.
    It supports both of shifted and non-shifted window.
    Args:
        dim (int): Number of input channels.
        window_size (tuple[int]): The height and width of the window.
        num_heads (int): Number of attention heads.
        qkv_bias (bool, optional):  If True, add a learnable bias to query, key, value. Default: True
        attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
        proj_drop (float, optional): Dropout ratio of output. Default: 0.0
        pretrained_window_size (tuple[int]): The height and width of the window in pre-training.
    """

    def __init__(
        self,
        dim,
        window_size,
        num_heads,
        qkv_bias=True,
        attn_drop=0.0,
        proj_drop=0.0,
        pretrained_window_size=[0, 0],
        use_pe=True,
    ):

        super().__init__()
        self.dim = dim
        self.window_size = window_size  # Wh, Ww
        self.pretrained_window_size = pretrained_window_size
        self.num_heads = num_heads
        self.use_pe = use_pe

        self.logit_scale = nn.Parameter(
            torch.log(10 * torch.ones((num_heads, 1, 1))), requires_grad=True
        )

        if self.use_pe:
            # mlp to generate continuous relative position bias
            self.cpb_mlp = nn.Sequential(
                nn.Linear(2, 512, bias=True),
                nn.ReLU(inplace=True),
                nn.Linear(512, num_heads, bias=False),
            )
            table = get_relative_coords_table(window_size, pretrained_window_size)
            index = get_relative_position_index(window_size)
            self.register_buffer("relative_coords_table", table)
            self.register_buffer("relative_position_index", index)

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        # self.qkv = nn.Linear(dim, dim * 3, bias=False)
        # if qkv_bias:
        #     self.q_bias = nn.Parameter(torch.zeros(dim))
        #     self.v_bias = nn.Parameter(torch.zeros(dim))
        # else:
        #     self.q_bias = None
        #     self.v_bias = None
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)
        self.softmax = nn.Softmax(dim=-1)

    def forward(self, x, mask=None):
        """
        Args:
            x: input features with shape of (num_windows*B, N, C)
            mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
        """
        B_, N, C = x.shape

        # qkv projection
        # qkv_bias = None
        # if self.q_bias is not None:
        #     qkv_bias = torch.cat(
        #         (
        #             self.q_bias,
        #             torch.zeros_like(self.v_bias, requires_grad=False),
        #             self.v_bias,
        #         )
        #     )
        # qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
        qkv = self.qkv(x)
        qkv = qkv.reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]

        # cosine attention map
        attn = F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1)
        logit_scale = torch.clamp(self.logit_scale, max=math.log(1.0 / 0.01)).exp()
        attn = attn * logit_scale

        # positional encoding
        if self.use_pe:
            bias_table = self.cpb_mlp(self.relative_coords_table)
            bias_table = bias_table.view(-1, self.num_heads)

            win_dim = prod(self.window_size)
            bias = bias_table[self.relative_position_index.view(-1)]
            bias = bias.view(win_dim, win_dim, -1).permute(2, 0, 1).contiguous()
            # nH, Wh*Ww, Wh*Ww
            bias = 16 * torch.sigmoid(bias)
            attn = attn + bias.unsqueeze(0)

        # shift attention mask
        if mask is not None:
            nW = mask.shape[0]
            mask = mask.unsqueeze(1).unsqueeze(0)
            attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask
            attn = attn.view(-1, self.num_heads, N, N)

        # attention
        attn = self.softmax(attn)
        attn = self.attn_drop(attn)
        x = (attn @ v).transpose(1, 2).reshape(B_, N, C)

        # output projection
        x = self.proj(x)
        x = self.proj_drop(x)
        return x

    def extra_repr(self) -> str:
        return (
            f"dim={self.dim}, window_size={self.window_size}, "
            f"pretrained_window_size={self.pretrained_window_size}, num_heads={self.num_heads}"
        )

    def flops(self, N):
        # calculate flops for 1 window with token length of N
        flops = 0
        # qkv = self.qkv(x)
        flops += N * self.dim * 3 * self.dim
        # attn = (q @ k.transpose(-2, -1))
        flops += self.num_heads * N * (self.dim // self.num_heads) * N
        #  x = (attn @ v)
        flops += self.num_heads * N * N * (self.dim // self.num_heads)
        # x = self.proj(x)
        flops += N * self.dim * self.dim
        return flops


class WindowAttentionWrapperV2(WindowAttentionV2):
    def __init__(self, shift_size, input_resolution, **kwargs):
        super(WindowAttentionWrapperV2, self).__init__(**kwargs)
        self.shift_size = shift_size
        self.input_resolution = input_resolution

        if self.shift_size > 0:
            attn_mask = calculate_mask(input_resolution, self.window_size, shift_size)
        else:
            attn_mask = None
        self.register_buffer("attn_mask", attn_mask)

    def forward(self, x, x_size):
        H, W = x_size
        B, L, C = x.shape
        x = x.view(B, H, W, C)

        # cyclic shift
        if self.shift_size > 0:
            x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))

        # partition windows
        x = window_partition(x, self.window_size)  # nW*B, wh, ww, C
        x = x.view(-1, prod(self.window_size), C)  # nW*B, wh*ww, C

        # W-MSA/SW-MSA
        if self.input_resolution == x_size:
            attn_mask = self.attn_mask
        else:
            attn_mask = calculate_mask(x_size, self.window_size, self.shift_size)
            attn_mask = attn_mask.to(x.device)

        # attention
        x = super(WindowAttentionWrapperV2, self).forward(x, mask=attn_mask)
        # nW*B, wh*ww, C

        # merge windows
        x = x.view(-1, *self.window_size, C)
        x = window_reverse(x, self.window_size, x_size)  # B, H, W, C

        # reverse cyclic shift
        if self.shift_size > 0:
            x = torch.roll(x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
        x = x.view(B, H * W, C)

        return x


class SwinTransformerBlockV2(nn.Module):
    r"""Swin Transformer Block.
    Args:
        dim (int): Number of input channels.
        input_resolution (tuple[int]): Input resulotion.
        num_heads (int): Number of attention heads.
        window_size (int): Window size.
        shift_size (int): Shift size for SW-MSA.
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
        qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
        drop (float, optional): Dropout rate. Default: 0.0
        attn_drop (float, optional): Attention dropout rate. Default: 0.0
        drop_path (float, optional): Stochastic depth rate. Default: 0.0
        act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
        norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm
        pretrained_window_size (int): Window size in pre-training.
    """

    def __init__(
        self,
        dim,
        input_resolution,
        num_heads,
        window_size=7,
        shift_size=0,
        mlp_ratio=4.0,
        qkv_bias=True,
        drop=0.0,
        attn_drop=0.0,
        drop_path=0.0,
        act_layer=nn.GELU,
        norm_layer=nn.LayerNorm,
        pretrained_window_size=0,
        use_pe=True,
        res_scale=1.0,
    ):
        super().__init__()
        self.dim = dim
        self.input_resolution = input_resolution
        self.num_heads = num_heads
        self.window_size = window_size
        self.shift_size = shift_size
        self.mlp_ratio = mlp_ratio
        if min(self.input_resolution) <= self.window_size:
            # if window size is larger than input resolution, we don't partition windows
            self.shift_size = 0
            self.window_size = min(self.input_resolution)
        assert (
            0 <= self.shift_size < self.window_size
        ), "shift_size must in 0-window_size"
        self.res_scale = res_scale

        self.attn = WindowAttentionWrapperV2(
            shift_size=self.shift_size,
            input_resolution=self.input_resolution,
            dim=dim,
            window_size=to_2tuple(self.window_size),
            num_heads=num_heads,
            qkv_bias=qkv_bias,
            attn_drop=attn_drop,
            proj_drop=drop,
            pretrained_window_size=to_2tuple(pretrained_window_size),
            use_pe=use_pe,
        )
        self.norm1 = norm_layer(dim)

        self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()

        self.mlp = Mlp(
            in_features=dim,
            hidden_features=int(dim * mlp_ratio),
            act_layer=act_layer,
            drop=drop,
        )
        self.norm2 = norm_layer(dim)

    def forward(self, x, x_size):
        # Window attention
        x = x + self.res_scale * self.drop_path(self.norm1(self.attn(x, x_size)))
        # FFN
        x = x + self.res_scale * self.drop_path(self.norm2(self.mlp(x)))

        return x

    def extra_repr(self) -> str:
        return (
            f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, "
            f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}, res_scale={self.res_scale}"
        )

    def flops(self):
        flops = 0
        H, W = self.input_resolution
        # norm1
        flops += self.dim * H * W
        # W-MSA/SW-MSA
        nW = H * W / self.window_size / self.window_size
        flops += nW * self.attn.flops(self.window_size * self.window_size)
        # mlp
        flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio
        # norm2
        flops += self.dim * H * W
        return flops