File size: 6,293 Bytes
561c629
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
# Github Repository: https://github.com/bilibili/ailab/blob/main/Real-CUGAN/README_EN.md
# Code snippet (with certain modificaiton) from: https://github.com/bilibili/ailab/blob/main/Real-CUGAN/VapourSynth/upcunet_v3_vs.py

import torch
from torch import nn as nn
from torch.nn import functional as F
import os, sys
import numpy as np
from time import time as ttime, sleep


class UNet_Full(nn.Module):

    def __init__(self):
        super(UNet_Full, self).__init__()
        self.unet1 = UNet1(3, 3, deconv=True)
        self.unet2 = UNet2(3, 3, deconv=False)

    def forward(self, x):
        n, c, h0, w0 = x.shape
        
        ph = ((h0 - 1) // 2 + 1) * 2
        pw = ((w0 - 1) // 2 + 1) * 2
        x = F.pad(x, (18, 18 + pw - w0, 18, 18 + ph - h0), 'reflect')  # In order to ensure that it can be divided by 2

        x1 = self.unet1(x)
        x2 = self.unet2(x1)
        
        x1 = F.pad(x1, (-20, -20, -20, -20))
        output = torch.add(x2, x1)

        if (w0 != pw or h0 != ph): 
            output = output[:, :, :h0 * 2, :w0 * 2]
        
        return output


class SEBlock(nn.Module):
    def __init__(self, in_channels, reduction=8, bias=False):
        super(SEBlock, self).__init__()
        self.conv1 = nn.Conv2d(in_channels, in_channels // reduction, 1, 1, 0, bias=bias)
        self.conv2 = nn.Conv2d(in_channels // reduction, in_channels, 1, 1, 0, bias=bias)

    def forward(self, x):
        if ("Half" in x.type()):  # torch.HalfTensor/torch.cuda.HalfTensor
            x0 = torch.mean(x.float(), dim=(2, 3), keepdim=True).half()
        else:
            x0 = torch.mean(x, dim=(2, 3), keepdim=True)
        x0 = self.conv1(x0)
        x0 = F.relu(x0, inplace=True)
        x0 = self.conv2(x0)
        x0 = torch.sigmoid(x0)
        x = torch.mul(x, x0)
        return x

class UNetConv(nn.Module):
    def __init__(self, in_channels, mid_channels, out_channels, se):
        super(UNetConv, self).__init__()
        self.conv = nn.Sequential(
            nn.Conv2d(in_channels, mid_channels, 3, 1, 0),
            nn.LeakyReLU(0.1, inplace=True),
            nn.Conv2d(mid_channels, out_channels, 3, 1, 0),
            nn.LeakyReLU(0.1, inplace=True),
        )
        if se:
            self.seblock = SEBlock(out_channels, reduction=8, bias=True)
        else:
            self.seblock = None

    def forward(self, x):
        z = self.conv(x)
        if self.seblock is not None:
            z = self.seblock(z)
        return z

class UNet1(nn.Module):
    def __init__(self, in_channels, out_channels, deconv):
        super(UNet1, self).__init__()
        self.conv1 = UNetConv(in_channels, 32, 64, se=False)
        self.conv1_down = nn.Conv2d(64, 64, 2, 2, 0)
        self.conv2 = UNetConv(64, 128, 64, se=True)
        self.conv2_up = nn.ConvTranspose2d(64, 64, 2, 2, 0)
        self.conv3 = nn.Conv2d(64, 64, 3, 1, 0)

        if deconv:
            self.conv_bottom = nn.ConvTranspose2d(64, out_channels, 4, 2, 3)
        else:
            self.conv_bottom = nn.Conv2d(64, out_channels, 3, 1, 0)

        for m in self.modules():
            if isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
            elif isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, 0, 0.01)
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)

    def forward(self, x):
        x1 = self.conv1(x)
        x2 = self.conv1_down(x1)
        x2 = F.leaky_relu(x2, 0.1, inplace=True)
        x2 = self.conv2(x2)
        x2 = self.conv2_up(x2)
        x2 = F.leaky_relu(x2, 0.1, inplace=True)

        x1 = F.pad(x1, (-4, -4, -4, -4))
        x3 = self.conv3(x1 + x2)
        x3 = F.leaky_relu(x3, 0.1, inplace=True)
        z = self.conv_bottom(x3)
        return z


class UNet2(nn.Module):
    def __init__(self, in_channels, out_channels, deconv):
        super(UNet2, self).__init__()

        self.conv1 = UNetConv(in_channels, 32, 64, se=False)
        self.conv1_down = nn.Conv2d(64, 64, 2, 2, 0)
        self.conv2 = UNetConv(64, 64, 128, se=True)
        self.conv2_down = nn.Conv2d(128, 128, 2, 2, 0)
        self.conv3 = UNetConv(128, 256, 128, se=True)
        self.conv3_up = nn.ConvTranspose2d(128, 128, 2, 2, 0)
        self.conv4 = UNetConv(128, 64, 64, se=True)
        self.conv4_up = nn.ConvTranspose2d(64, 64, 2, 2, 0)
        self.conv5 = nn.Conv2d(64, 64, 3, 1, 0)

        if deconv:
            self.conv_bottom = nn.ConvTranspose2d(64, out_channels, 4, 2, 3)
        else:
            self.conv_bottom = nn.Conv2d(64, out_channels, 3, 1, 0)

        for m in self.modules():
            if isinstance(m, (nn.Conv2d, nn.ConvTranspose2d)):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
            elif isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, 0, 0.01)
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)

    def forward(self, x):
        x1 = self.conv1(x)
        x2 = self.conv1_down(x1)
        x2 = F.leaky_relu(x2, 0.1, inplace=True)
        x2 = self.conv2(x2)

        x3 = self.conv2_down(x2)
        x3 = F.leaky_relu(x3, 0.1, inplace=True)
        x3 = self.conv3(x3)
        x3 = self.conv3_up(x3)
        x3 = F.leaky_relu(x3, 0.1, inplace=True)

        x2 = F.pad(x2, (-4, -4, -4, -4))
        x4 = self.conv4(x2 + x3)
        x4 = self.conv4_up(x4)
        x4 = F.leaky_relu(x4, 0.1, inplace=True)

        x1 = F.pad(x1, (-16, -16, -16, -16))
        x5 = self.conv5(x1 + x4)
        x5 = F.leaky_relu(x5, 0.1, inplace=True)

        z = self.conv_bottom(x5)
        return z

 

def main():
    root_path = os.path.abspath('.')
    sys.path.append(root_path)

    from opt import opt                 # Manage GPU to choose
    import time
    
    model = UNet_Full().cuda()
    pytorch_total_params = sum(p.numel() for p in model.parameters())
    print(f"CuNet has param {pytorch_total_params//1000} K params")


    # Count the number of FLOPs to double check
    x = torch.randn((1, 3, 180, 180)).cuda()
    start = time.time()
    x = model(x)
    print("output size is ", x.shape)
    total = time.time() - start
    print(total)



if __name__ == "__main__":
    main()