File size: 12,514 Bytes
561c629
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
# -*- coding: utf-8 -*-
import os


opt = {}
##################################################### Frequently Changed Setting ###########################################################
opt['description'] = "4x_GRL_paper"             # Description to add to the log  

opt['architecture'] = "GRL"                # "ESRNET" || "ESRGAN" || "GRL" || "GRLGAN" (GRL only support 4x)


# Essential Setting
opt['scale'] = 4                                                    # In default, this is 4x
opt["full_patch_source"] = "../datasets_anime/APISR_dataset"        # The HR image without cropping 
opt["degrade_hr_dataset_path"] = "datasets/train_hr"                # The cropped GT images
opt["train_hr_dataset_path"] = "datasets/train_hr_enhanced"         # The cropped Pseudo-GT path (after hand-drawn line enhancement)
################################################################################################################################

# GPU setting
opt['CUDA_VISIBLE_DEVICES'] = '0'           #   '0' / '1' based on different GPU you have.
os.environ['CUDA_VISIBLE_DEVICES'] = opt['CUDA_VISIBLE_DEVICES']  


##################################################### Setting for General Training #############################################

# Dataset Setting
opt["lr_dataset_path"] = "datasets/train_lr"                        # Where you temporally store the LR synthetic images
opt['hr_size'] = 256


# Loss function
opt['pixel_loss'] = "L1"                                # Usually it is "L1" 


# Adam optimizer setting
opt["adam_beta1"] = 0.9
opt["adam_beta2"] = 0.99
opt['decay_gamma'] = 0.5                                # Decay the learning rate per decay_iteration


# Miscellaneous Setting
opt['degradate_generation_freq'] = 1     # How frequent we degradate HR to LR (1: means Real-Time Degrade) [No need to change this]
opt['train_dataloader_workers'] = 5      # Number of workers for DataLoader
opt['checkpoints_freq'] = 50             # frequency to store checkpoints in the folder (unit: epoch)


#################################################################################################################################


# Add setting for different architecture (Please go through the model architecture you want!)
if opt['architecture'] == "ESRNET":
    
    # Setting for ESRNET Training 
    opt['ESR_blocks_num'] = 6                # How many RRDB blocks you need
    opt['train_iterations'] = 500000         # Training Iterations (500K for large resolution large dataset overlap training)
    opt['train_batch_size'] = 32             # 

    # Learning Rate
    opt["start_learning_rate"] = 0.0002      # Training Epoch, use the as Real-ESRGAN: 0.0001 - 0.0002 is ok, based on your need
    opt['decay_iteration'] = 100000          # Decay iteration  
    opt['double_milestones'] = []            # Iteration based time you double your learning rate


elif opt['architecture'] == "ESRGAN":
    
    # Setting for ESRGAN Training 
    opt['ESR_blocks_num'] = 6                # How many RRDB blocks you need
    opt['train_iterations'] = 200000         # Training Iterations
    opt['train_batch_size'] = 32             #      
    
    # Learning Rate
    opt["start_learning_rate"] = 0.0001     # Training Epoch, use the as Real-ESRGAN: 0.0001 - 0.0002 is ok, based on your need
    opt['decay_iteration'] = 100000         # Fixed decay gap
    opt['double_milestones'] = []           # Just put this empty
    
    # Perceptual loss
    opt["danbooru_perceptual_loss_weight"] = 0.5        # ResNet50 Danbooru Perceptual loss weight scale
    opt["vgg_perceptual_loss_weight"] = 0.5             # VGG PhotoRealistic Perceptual loss weight scale
    opt['train_perceptual_vgg_type'] = 'vgg19'          # VGG16/19 (Just use 19 by default)
    opt['train_perceptual_layer_weights'] = {'conv1_2': 0.1, 'conv2_2': 0.1, 'conv3_4': 1, 'conv4_4': 1, 'conv5_4': 1}      # Middle-Layer weight for VGG
    opt['Danbooru_layer_weights'] = {"0": 0.1, "4_2_conv3": 20, "5_3_conv3": 25, "6_5_conv3": 1, "7_2_conv3": 1}            # Middle-Layer weight for ResNet
    
    # GAN loss
    opt["discriminator_type"] = "PatchDiscriminator"        # "PatchDiscriminator" || "UNetDiscriminator" 
    opt["gan_loss_weight"] = 0.2                            # 



elif opt['architecture'] == "CUNET":
    # Setting for CUNET Training 
    opt['train_iterations'] = 500000         # Training Iterations (700K for large resolution large dataset overlap training)
    opt['train_batch_size'] = 16          

    opt["start_learning_rate"] = 0.0002      # Training Epoch, use the as Real-ESRGAN: 0.0001 - 0.0002 is ok, based on your need
    opt['decay_iteration'] = 100000           # Decay iteration  
    opt['double_milestones'] = []         # Iteration based time you double your learning rate


elif opt['architecture'] == "CUGAN":
    # Setting for ESRGAN Training 
    opt['ESR_blocks_num'] = 6                # How many RRDB blocks you need
    opt['train_iterations'] = 200000         # Training Iterations
    opt['train_batch_size'] = 16        
    opt["start_learning_rate"] = 0.0001      # Training Epoch, use the as Real-ESRGAN: 0.0001 - 0.0002 is ok, based on your need

    opt["perceptual_loss_weight"] = 1.0
    opt['train_perceptual_vgg_type'] = 'vgg19'
    opt['train_perceptual_layer_weights'] = {'conv1_2': 0.1, 'conv2_2': 0.1, 'conv3_4': 1, 'conv4_4': 1, 'conv5_4': 1}
    opt['Danbooru_layer_weights'] = {"0": 0.1, "4_2_conv3": 20, "5_3_conv3": 25, "6_5_conv3": 1, "7_2_conv3": 1}            # Middle-Layer weight for ResNet
    opt["gan_loss_weight"] = 0.2   # This one is very important, Don't neglect it. Based on the paper, it should be 0.1 scale

    opt['decay_iteration'] = 100000                              # Decay iteration  
    opt['double_milestones'] = []            # Iteration based time you double your learning rate


elif opt['architecture'] == "GRL":           # L1 loss training version
    # Setting for GRL Training 
    opt['model_size'] = "tiny2"              # "tiny2" in default
    
    opt['train_iterations'] = 300000         # Training Iterations
    opt['train_batch_size'] = 32             # 4x: 32 (256x256); 2x:  4?  
    
    # Learning Rate
    opt["start_learning_rate"] = 0.0002      # Training Epoch, use the as Real-ESRGAN: 0.0001 - 0.0002 is ok, based on your need
    opt['decay_iteration'] = 100000          # Decay iteration  
    opt['double_milestones'] = []            # Iteration based time you double your learning rate (Just ignore this one)


elif opt['architecture'] == "GRLGAN":         # L1 + Preceptual + Discriminator Loss version
    # Setting for GRL Training
    opt['model_size'] = "tiny2"               # "small" || "tiny" || "tiny2"  (Use tiny2 by default, No need to change)

    # Setting for GRL-GAN Traning
    opt['train_iterations'] = 300000         # Training Iterations
    opt['train_batch_size'] = 32             # 4x: 32 batch size (for 256x256); 2x: 4        
    
    # Learning Rate
    opt["start_learning_rate"] = 0.0001      # Training Epoch, use the as Real-ESRGAN: 0.0001 - 0.0002 is ok, based on your need
    opt['decay_iteration'] = 100000          # Fixed decay gap
    opt['double_milestones'] = []            # Just put this empty
    
    # Perceptual loss
    opt["danbooru_perceptual_loss_weight"] = 0.5        # ResNet50 Danbooru Perceptual loss weight scale
    opt["vgg_perceptual_loss_weight"] = 0.5             # VGG PhotoRealistic Perceptual loss weight scale
    opt['train_perceptual_vgg_type'] = 'vgg19'          # VGG16/19 (Just use 19 by default)
    opt['train_perceptual_layer_weights'] = {'conv1_2': 0.1, 'conv2_2': 0.1, 'conv3_4': 1, 'conv4_4': 1, 'conv5_4': 1}      # Middle-Layer weight for VGG
    opt['Danbooru_layer_weights'] = {"0": 0.1, "4_2_conv3": 20, "5_3_conv3": 25, "6_5_conv3": 1, "7_2_conv3": 1}            # Middle-Layer weight for ResNet
    
    # GAN loss
    opt["discriminator_type"] = "PatchDiscriminator"        # "PatchDiscriminator" || "UNetDiscriminator" 
    opt["gan_loss_weight"] = 0.2                            # 
    
else:
    raise NotImplementedError("Please check you architecture option setting!")




# Basic setting for degradation
opt["degradation_batch_size"] = 128                 # Degradation batch size
opt["augment_prob"] = 0.5                           # Probability of augmenting (Flip, Rotate) the HR and LR dataset in dataset loading part                                


if opt['architecture'] in ["ESRNET", "ESRGAN", "GRL", "GRLGAN", "CUNET", "CUGAN"]:       
    # Parallel Process
    opt['parallel_num'] = 8  # Multi-Processing num; Recommend 6

    # Blur kernel1
    opt['kernel_range'] = [3, 11]      
    opt['kernel_list'] = ['iso', 'aniso', 'generalized_iso', 'generalized_aniso', 'plateau_iso', 'plateau_aniso']
    opt['kernel_prob'] = [0.45, 0.25, 0.12, 0.03, 0.12, 0.03]  
    opt['sinc_prob'] = 0.1             
    opt['blur_sigma'] = [0.2, 3]      
    opt['betag_range'] = [0.5, 4]       
    opt['betap_range'] = [1, 2]      

    # Blur kernel2 
    opt['kernel_list2'] = ['iso', 'aniso', 'generalized_iso', 'generalized_aniso', 'plateau_iso', 'plateau_aniso']
    opt['kernel_prob2'] = [0.45, 0.25, 0.12, 0.03, 0.12, 0.03]   
    opt['sinc_prob2'] = 0.1            
    opt['blur_sigma2'] = [0.2, 1.5]    
    opt['betag_range2'] = [0.5, 4]      
    opt['betap_range2'] = [1, 2]        

    # The first degradation process
    opt['resize_prob'] = [0.2, 0.7, 0.1]       
    opt['resize_range'] = [0.1, 1.2]               # Was [0.15, 1.5] in Real-ESRGAN
    opt['gaussian_noise_prob'] = 0.5            
    opt['noise_range'] =  [1, 30]               
    opt['poisson_scale_range'] = [0.05, 3]    
    opt['gray_noise_prob'] =  0.4               
    opt['jpeg_range'] = [30, 95]              

    # The second degradation process
    opt['second_blur_prob'] =  0.8             
    opt['resize_prob2'] = [0.2, 0.7, 0.1]           # [up, down, keep] Resize Probability
    opt['resize_range2'] = [0.15, 1.2]               
    opt['gaussian_noise_prob2'] = 0.5          
    opt['noise_range2'] = [1, 25]               
    opt['poisson_scale_range2'] = [0.05, 2.5]    
    opt['gray_noise_prob2'] = 0.4           
    
    # Other common settings
    opt['resize_options'] = ['area', 'bilinear', 'bicubic']     # Should be supported by F.interpolate


    # First image compression
    opt['compression_codec1'] = ["jpeg", "webp", "heif", "avif"]     # Compression codec: heif is the intra frame version of HEVC (H.265) and avif is the intra frame version of AV1
    opt['compression_codec_prob1'] = [0.4, 0.6, 0.0, 0.0] 

    # Specific Setting
    opt["jpeg_quality_range1"] = [20, 95]
    opt["webp_quality_range1"] = [20, 95]
    opt["webp_encode_speed1"] = [0, 6]
    opt["heif_quality_range1"] = [30, 100]
    opt["heif_encode_speed1"] = [0, 6]       # Useless now
    opt["avif_quality_range1"] = [30, 100]
    opt["avif_encode_speed1"] = [0, 6]       # Useless now

    
    ######################################## Setting for Degradation with Intra-Prediction ########################################
    opt['compression_codec2'] = ["jpeg", "webp", "avif", "mpeg2", "mpeg4", "h264", "h265"]     # Compression codec: similar to VCISR but more intense degradation settings
    opt['compression_codec_prob2'] = [0.06, 0.1, 0.1, 0.12, 0.12, 0.3, 0.2] 

    # Image compression setting
    opt["jpeg_quality_range2"] = [20, 95]

    opt["webp_quality_range2"] = [20, 95]
    opt["webp_encode_speed2"] = [0, 6]

    opt["avif_quality_range2"] = [20, 95]
    opt["avif_encode_speed2"] = [0, 6]       # Useless now

    # Video compression I-Frame setting
    opt['h264_crf_range2'] = [23, 38]
    opt['h264_preset_mode2'] = ["slow", "medium", "fast", "faster", "superfast"]
    opt['h264_preset_prob2'] = [0.05, 0.35, 0.3, 0.2, 0.1]

    opt['h265_crf_range2'] = [28, 42]
    opt['h265_preset_mode2'] = ["slow", "medium", "fast", "faster", "superfast"]
    opt['h265_preset_prob2'] = [0.05, 0.35, 0.3, 0.2, 0.1]

    opt['mpeg2_quality2'] = [8, 31]         #  linear scale 2-31 (the lower the higher quality)
    opt['mpeg2_preset_mode2'] = ["slow", "medium", "fast", "faster", "superfast"]
    opt['mpeg2_preset_prob2'] = [0.05, 0.35, 0.3, 0.2, 0.1]

    opt['mpeg4_quality2'] = [8, 31]         #  should be the same as mpeg2_quality2
    opt['mpeg4_preset_mode2'] = ["slow", "medium", "fast", "faster", "superfast"]
    opt['mpeg4_preset_prob2'] = [0.05, 0.35, 0.3, 0.2, 0.1]