Spaces:
Runtime error
Runtime error
File size: 10,890 Bytes
bd3703e 528d2f1 bd3703e 528d2f1 bd3703e 528d2f1 b5c1236 c623cd2 b5c1236 528d2f1 eb65f34 528d2f1 b5c1236 a937125 b5c1236 a937125 b5c1236 528d2f1 a937125 b5c1236 528d2f1 a937125 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
import streamlit as st
# import inflect
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
import string
import plotly.express as px
import pandas as pd
import nltk
from nltk.tokenize import sent_tokenize
nltk.download('punkt')
# Note - USE "VBA_venv" environment in the local github folder
punctuations = string.punctuation
def prep_text(text):
# function for preprocessing text
# remove trailing characters (\s\n) and convert to lowercase
clean_sents = [] # append clean con sentences
sent_tokens = sent_tokenize(str(text))
for sent_token in sent_tokens:
word_tokens = [str(word_token).strip().lower() for word_token in sent_token.split()]
word_tokens = [word_token for word_token in word_tokens if word_token not in punctuations]
clean_sents.append(' '.join((word_tokens)))
joined = ' '.join(clean_sents).strip(' ')
return joined
# model name or path to model
checkpoint_1 = "Highway/SubCat"
checkpoint_2 = "Highway/ExtraOver"
checkpoint_3 = "Highway/Conversion"
@st.cache(allow_output_mutation=True)
def load_model_1():
return AutoModelForSequenceClassification.from_pretrained(checkpoint_1)
@st.cache(allow_output_mutation=True)
def load_tokenizer_1():
return AutoTokenizer.from_pretrained(checkpoint_1)
@st.cache(allow_output_mutation=True)
def load_model_2():
return AutoModelForSequenceClassification.from_pretrained(checkpoint_2)
@st.cache(allow_output_mutation=True)
def load_tokenizer_2():
return AutoTokenizer.from_pretrained(checkpoint_2)
@st.cache(allow_output_mutation=True)
def load_model_3():
return AutoModelForSequenceClassification.from_pretrained(checkpoint_3)
@st.cache(allow_output_mutation=True)
def load_tokenizer_3():
return AutoTokenizer.from_pretrained(checkpoint_3)
st.set_page_config(
page_title="Cost Data Classifier", layout= "wide", initial_sidebar_state="auto", page_icon="💷"
)
st.title("🚦 AI Infrastructure Cost Data Classifier")
# st.header("")
with st.expander("About this app", expanded=False):
st.write(
"""
- Artificial Intelligence (AI) and Machine learning (ML) tool for automatic classification of infrastructure cost data for benchmarking
- Classifies cost descriptions from documents such as Bills of Quantities (BOQs) and Schedule of Rates
- Can be trained to classify granular and itemised cost descriptions into any predefined categories for benchmarking
- Contact research team to discuss your data structures and suitability for the app
- It is best to use this app on a laptop or desktop computer
"""
)
st.markdown("##### Description")
with st.form(key="my_form"):
Text_entry = st.text_area(
"Paste or type infrastructure cost description in the text box below (i.e., input)"
)
submitted = st.form_submit_button(label="👉 Get SubCat and ExtraOver!")
if submitted:
# First prediction
label_list_1 = [
'Arrow, Triangle, Circle, Letter, Numeral, Symbol and Sundries',
'Binder',
'Cable',
'Catman Other Adjustment',
'Cold Milling',
'Disposal of Acceptable/Unacceptable Material',
'Drain/Service Duct In Trench',
'Erection & Dismantling of Temporary Accommodation/Facilities (All Types)',
'Excavate And Replace Filter Material/Recycle Filter Material',
'Excavation',
'General TM Item',
'Information boards',
'Joint/Termination',
'Line, Ancillary Line, Solid Area',
'Loop Detector Installation',
'Minimum Lining Visit Charge',
'Node Marker',
'PCC Kerb',
'Provision of Mobile Welfare Facilities',
'Removal of Deformable Safety Fence',
'Removal of Line, Ancillary Line, Solid Area',
'Removal of Traffic Sign and post(s)',
'Road Stud',
'Safety Barrier Or Bifurcation (Non-Concrete)',
'Servicing of Temporary Accommodation/Facilities (All Types) (day)',
'Tack Coat',
'Temporary Road Markings',
'Thin Surface Course',
'Traffic Sign - Unknown specification',
'Vegetation Clearance/Weed Control (m2)',
'Others'
]
joined_clean_sents = prep_text(Text_entry)
# tokenize
tokenizer_1 = load_tokenizer_1()
tokenized_text_1 = tokenizer_1(joined_clean_sents, return_tensors="pt")
# predict
model_1 = load_model_1()
text_logits_1 = model_1(**tokenized_text_1).logits
predictions_1 = torch.softmax(text_logits_1, dim=1).tolist()[0]
predictions_1 = [round(a, 3) for a in predictions_1]
# dictionary with label as key and percentage as value
pred_dict_1 = (dict(zip(label_list_1, predictions_1)))
# sort 'pred_dict' by value and index the highest at [0]
sorted_preds_1 = sorted(pred_dict_1.items(), key=lambda x: x[1], reverse=True)
# Make dataframe for plotly bar chart
u_1, v_1 = zip(*sorted_preds_1)
x_1 = list(u_1)
y_1 = list(v_1)
df2 = pd.DataFrame()
df2['SubCatName'] = x_1
df2['Likelihood'] = y_1
# Second prediction
label_list_2 = ["False", "True"]
joined_clean_sents = prep_text(Text_entry)
# tokenize
tokenizer_2 = load_tokenizer_2()
tokenized_text_2 = tokenizer_2(joined_clean_sents, return_tensors="pt")
# predict
model_2 = load_model_2()
text_logits_2 = model_2(**tokenized_text_2).logits
predictions_2 = torch.softmax(text_logits_2, dim=1).tolist()[0]
predictions_2 = [round(a_, 3) for a_ in predictions_2]
# dictionary with label as key and percentage as value
pred_dict_2 = (dict(zip(label_list_2, predictions_2)))
# sort 'pred_dict' by value and index the highest at [0]
sorted_preds_2 = sorted(pred_dict_2.items(), key=lambda x: x[1], reverse=True)
# Make dataframe for plotly bar chart
u_2, v_2 = zip(*sorted_preds_2)
x_2 = list(u_2)
y_2 = list(v_2)
df3 = pd.DataFrame()
df3['ExtraOver'] = x_2
df3['Likelihood'] = y_2
# Third prediction
label_list_3 = ['0.04', '0.045', '0.05', '0.1', '0.15', '0.2', '1.0', '7.0', '166.67', 'Others']
joined_clean_sents = prep_text(Text_entry)
# tokenize
tokenizer_3 = load_tokenizer_3()
tokenized_text_3 = tokenizer_3(joined_clean_sents, return_tensors="pt")
# predict
model_3 = load_model_3()
text_logits_3 = model_3(**tokenized_text_3).logits
predictions_3 = torch.softmax(text_logits_3, dim=1).tolist()[0]
predictions_3 = [round(a_, 3) for a_ in predictions_3]
# dictionary with label as key and percentage as value
pred_dict_3 = (dict(zip(label_list_3, predictions_3)))
# sort 'pred_dict' by value and index the highest at [0]
sorted_preds_3 = sorted(pred_dict_3.items(), key=lambda x: x[1], reverse=True)
# Make dataframe for plotly bar chart
u_3, v_3 = zip(*sorted_preds_3)
x_3 = list(u_3)
y_3 = list(v_3)
df4 = pd.DataFrame()
df4['Conversion_factor'] = x_3
df4['Likelihood'] = y_3
st.empty()
tab1, tab2, tab3, tab4 = st.tabs(["Subcategory", "Extra Over", "Conversion Factor", "Summary"])
with tab1:
st.header("SubCatName")
# plot graph of predictions
fig = px.bar(df2, x="Likelihood", y="SubCatName", orientation="h")
fig.update_layout(
# barmode='stack',
template='ggplot2',
font=dict(
family="Arial",
size=14,
color="black"
),
autosize=False,
width=900,
height=1000,
xaxis_title="Likelihood of SubCatName",
yaxis_title="SubCatNames",
# legend_title="Topics"
)
fig.update_xaxes(tickangle=0, tickfont=dict(family='Arial', color='black', size=14))
fig.update_yaxes(tickangle=0, tickfont=dict(family='Arial', color='black', size=14))
fig.update_annotations(font_size=14) # this changes y_axis, x_axis and subplot title font sizes
# Plot
st.plotly_chart(fig, use_container_width=False)
with tab2:
st.header("ExtraOver")
# plot graph of predictions
fig = px.bar(df3, x="Likelihood", y="ExtraOver", orientation="h")
fig.update_layout(
# barmode='stack',
template='ggplot2',
font=dict(
family="Arial",
size=14,
color="black"
),
autosize=False,
width=500,
height=200,
xaxis_title="Likelihood of ExtraOver",
yaxis_title="ExtraOver",
# legend_title="Topics"
)
fig.update_xaxes(tickangle=0, tickfont=dict(family='Arial', color='black', size=14))
fig.update_yaxes(tickangle=0, tickfont=dict(family='Arial', color='black', size=14))
fig.update_annotations(font_size=14) # this changes y_axis, x_axis and subplot title font sizes
# Plot
st.plotly_chart(fig, use_container_width=False)
with tab3:
st.header("Conversion_factor")
# plot graph of predictions
fig = px.bar(df4, x="Likelihood", y="Conversion_factor", orientation="h")
fig.update_layout(
# barmode='stack',
template='ggplot2',
font=dict(
family="Arial",
size=14,
color="black"
),
autosize=False,
width=500,
height=500,
xaxis_title="Likelihood of Conversion_factor",
yaxis_title="Conversion_factor",
# legend_title="Topics"
)
fig.update_xaxes(tickangle=0, tickfont=dict(family='Arial', color='black', size=14))
fig.update_yaxes(tickangle=0, tickfont=dict(family='Arial', color='black', size=14))
fig.update_annotations(font_size=14) # this changes y_axis, x_axis and subplot title font sizes
# Plot
st.plotly_chart(fig, use_container_width=False)
with tab4:
# subcatNames
st.header("")
predicted_1 = st.metric("➡️ Predicted SubCatName", sorted_preds_1[0][0])
Prediction_confidence_1 = st.metric("Prediction confidence", (str(round(sorted_preds_1[0][1] * 100, 1)) + "%"))
#ExtraOver
st.header("")
predicted_2 = st.metric("➡️ Predicted ExtraOver", sorted_preds_2[0][0])
Prediction_confidence_2 = st.metric("Prediction confidence", (str(round(sorted_preds_2[0][1] * 100, 1)) + "%"))
# Conversion_factor
st.header("")
predicted_3 = st.metric("➡️ Predicted Conversion_factor", sorted_preds_3[0][0])
Prediction_confidence_3 = st.metric("Prediction confidence", (str(round(sorted_preds_3[0][1] * 100, 1)) + "%"))
st.success("Great! Predictions successfully completed. ", icon="✅") |