File size: 7,297 Bytes
da67e9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "import json\n",
    "import math\n",
    "from pathlib import Path\n",
    "\n",
    "import numpy as np\n",
    "import pandas as pd\n",
    "from datasets import Dataset\n",
    "from sklearn.metrics import f1_score, accuracy_score, log_loss\n",
    "from tqdm import tqdm\n",
    "\n",
    "from models.models import language_to_models"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "en = \"en\"\n",
    "ru = \"ru\"\n",
    "datasets_dir = Path(\"datasets\")\n",
    "test_filename = \"arxiv_test\"\n",
    "test_dataset_filename = {\n",
    "    en: datasets_dir / en / test_filename,\n",
    "    ru: datasets_dir / ru / test_filename,\n",
    "}"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "test_datasets = {}\n",
    "for lang in (en, ru):\n",
    "    csv_file = str(test_dataset_filename[lang]) + \".csv\"\n",
    "    json_file = str(test_dataset_filename[lang]) + \".json\"\n",
    "    if Path(csv_file).exists():\n",
    "        test_datasets[lang] = pd.read_csv(csv_file)\n",
    "    else:\n",
    "        test_datasets[lang] = pd.read_json(json_file, lines=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "test_results_filename = Path(\"test_results.json\")\n",
    "if test_results_filename.exists():\n",
    "    with open(test_results_filename, \"r\") as f:\n",
    "        test_results = json.load(f)\n",
    "else:\n",
    "    test_results = {}"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def pred_to_1d(pred):\n",
    "    return pred.idxmax(axis=1)\n",
    "\n",
    "\n",
    "def true_to_nd(true, columns):\n",
    "    columns = list(columns)\n",
    "    true_arr = np.zeros((len(true), len(columns)))\n",
    "    column_numbers = true.apply(lambda label: columns.index(label)).to_numpy()\n",
    "    one_inds = np.column_stack((np.arange(len(true)), column_numbers))\n",
    "    true_arr[one_inds] = 1\n",
    "    true = pd.DataFrame(true_arr, columns=columns)\n",
    "    return true\n",
    "\n",
    "\n",
    "def accuracy(pred, true):\n",
    "    return accuracy_score(true, pred_to_1d(pred))\n",
    "\n",
    "\n",
    "def f1(pred, true):\n",
    "    return f1_score(true, pred_to_1d(pred), average=\"macro\")\n",
    "\n",
    "\n",
    "def cross_entropy(pred, true):\n",
    "    pred = pd.DataFrame(\n",
    "        pred.to_numpy() / pred.sum(axis=1).to_numpy()[:, None], columns=pred.columns\n",
    "    )\n",
    "    return log_loss(true_to_nd(true, pred.columns), pred)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "metrics = {\"Macro F1\": f1, \"Accuracy\": accuracy, \"Cross-entropy loss\": cross_entropy}"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "predications_dir = Path(\"pred\")\n",
    "predications_dir.mkdir(exist_ok=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def canonicalize_label(label):\n",
    "    if \".\" in label:\n",
    "        return label[: label.index(\".\")]\n",
    "    return label\n",
    "\n",
    "\n",
    "def predict(model_name, model, dataset: pd.DataFrame, batch_size=32, first: int = 3000):\n",
    "    label = \"category\"\n",
    "    all_labels = list(dataset[label].unique())\n",
    "    if first is not None:\n",
    "        dataset = dataset[:first]\n",
    "    true = dataset[label]\n",
    "    prediction_file_path = predications_dir / (model_name + \".csv\")\n",
    "    dataset_size = len(dataset)\n",
    "    if not prediction_file_path.exists():\n",
    "        preds = []\n",
    "        for i in tqdm(\n",
    "            range(0, dataset_size + batch_size, batch_size),\n",
    "            desc=f\"Predicting using {model_name}\",\n",
    "            total=math.ceil(dataset_size / batch_size),\n",
    "            unit=\"batch\",\n",
    "        ):\n",
    "            data = dataset.iloc[i : i + batch_size]\n",
    "            if data.empty:\n",
    "                break\n",
    "            data = Dataset.from_pandas(data)\n",
    "            batch_pred = model(data)\n",
    "            batch_pred_canonicalised = []\n",
    "            for paper_pred in batch_pred:\n",
    "                labels_dict = {}\n",
    "                for label_score in paper_pred:\n",
    "                    label = canonicalize_label(label_score[\"label\"])\n",
    "                    if label not in all_labels:\n",
    "                        return None, None\n",
    "                    labels_dict[label] = label_score[\"score\"]\n",
    "                batch_pred_canonicalised.append(labels_dict)\n",
    "            preds.extend(batch_pred_canonicalised)\n",
    "    else:\n",
    "        preds = pd.read_csv(prediction_file_path, index_col=0)\n",
    "    preds = pd.DataFrame(preds).fillna(0)\n",
    "    for label in all_labels:\n",
    "        if label not in preds.columns:\n",
    "            preds[label] = 0\n",
    "    preds = preds.reindex(sorted(preds.columns), axis=1)\n",
    "    if not prediction_file_path.exists():\n",
    "        preds.to_csv(prediction_file_path)\n",
    "    return preds, true\n",
    "\n",
    "\n",
    "for lang, name_get_model in language_to_models.items():\n",
    "    lang_results = test_results.setdefault(lang, {})\n",
    "    for metric_name, metic in metrics.items():\n",
    "        metrics_results = lang_results.setdefault(metric_name, {})\n",
    "        for model_name, get_model in name_get_model.items():\n",
    "            model_name = model_name.replace(\"/\", \".\")\n",
    "            if model_name not in metrics_results:\n",
    "                test_size = 3000 if en == lang else 500\n",
    "                pred, true = predict(model_name, get_model(), test_datasets[lang], first=test_size)\n",
    "                if pred is None:\n",
    "                    print(f\"{model_name} does not produce labels that we can estimate\")\n",
    "                    continue\n",
    "                metrics_results[model_name] = metic(pred, true)\n",
    "                print(f\"{metric_name} for {model_name} = {metrics_results[model_name]}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "with open(test_results_filename, \"w\") as f:\n",
    "    json.dump(test_results, f)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": ".venv",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.12"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}