File size: 7,160 Bytes
1063690
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
"""

Image inference module for VAREdit model.

Supports 2B and 8B model variants for image editing with text instructions.

"""
import argparse
import logging
from typing import Tuple, Any, Optional
from torchvision.transforms.functional import to_tensor
import numpy as np
from PIL import Image
import PIL.Image as PImage
from tools.run_infinity import (
    load_tokenizer, load_visual_tokenizer, load_transformer,
    gen_one_img, h_div_w_templates, dynamic_resolution_h_w
)
import time
import torch

def transform(pil_img, target_image_size):
    # currently only support square image.
    width, height = pil_img.size
    max_dim = max(width, height)
    padded_image = Image.new("RGB", (max_dim, max_dim), (255, 255, 255))
    padded_image.paste(pil_img, (0, 0))
    def crop_op(image):
        image = image.resize((max_dim, max_dim), resample=PImage.LANCZOS)
        crop_image = image.crop((0, 0, width, height))
        return crop_image
    padded_image = padded_image.resize((target_image_size, target_image_size), resample=PImage.LANCZOS)
    im = to_tensor(np.array(padded_image))
    return im.add(im).add_(-1), crop_op

# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

# Model configurations
MODEL_CONFIGS = {
    '2B': {
        'vae_filename': 'infinity_vae_d32reg.pth',
        'vae_type': 32,
        'model_type': 'infinity_2b',
        'apply_spatial_patchify': 0,
    },
    '8B': {
        'vae_filename': 'infinity_vae_d56_f8_14_patchify.pth',
        'vae_type': 14,
        'model_type': 'infinity_8b',
        'apply_spatial_patchify': 1,
    }
}

# Common model arguments
COMMON_ARGS = {
    'cfg_insertion_layer': 0,
    'add_lvl_embeding_only_first_block': 1,
    'use_bit_label': 1,
    'rope2d_each_sa_layer': 1,
    'rope2d_normalized_by_hw': 2,
    'use_scale_schedule_embedding': 0,
    'sampling_per_bits': 1,
    'text_channels': 2048,
    'h_div_w_template': 1.000,
    'use_flex_attn': 0,
    'cache_dir': '/dev/shm',
    'checkpoint_type': 'torch',
    'bf16': 1,
    'enable_model_cache': 0,
}


def load_model(pretrain_root: str, model_path: str, model_size: str, image_size: int) -> Tuple[Any, ...]:
    """

    Load the model and its components.

    

    Args:

        pretrain_root: Root directory for pretrained models

        model_path: Path to the specific model checkpoint

        

    Returns:

        Tuple of (args, model, vae, tokenizer, text_encoder)

        

    Raises:

        ValueError: If unsupported model size is specified

    """
    if model_size not in MODEL_CONFIGS:
        raise ValueError(f"Unsupported model size: {model_size}. Choose '2B' or '8B'.")
    
    config = MODEL_CONFIGS[model_size]
    
    # Build arguments
    args_dict = {
        **COMMON_ARGS,
        **config,
        'model_path': model_path,
        'vae_path': f"{pretrain_root}/{config['vae_filename']}",
        'text_encoder_ckpt': f"{pretrain_root}/flan-t5-xl"
    }
    args = argparse.Namespace(**args_dict)
    if image_size == 512:
        args.pn = "0.25M"
    elif image_size == 1024:
        args.pn = "1M"
    else:
        raise ValueError(f"Unsupported image size: {image_size}. Choose 512 or 1024.")
    logger.info(f"Loading {model_size} model from {model_path}")
    
    # Load components
    text_tokenizer, text_encoder = load_tokenizer(t5_path=args.text_encoder_ckpt)
    vae = load_visual_tokenizer(args)
    model = load_transformer(vae, args)
    
    logger.info("Model loaded successfully")
    return args, model, vae, text_tokenizer, text_encoder, image_size


def generate_image(

    model_components: Tuple[Any, ...],

    src_img_path: str,

    instruction: str,

    cfg: float = 4.0,

    tau: float = 0.5,

    seed: Optional[int] = -1,

) -> None:
    """

    Generate edited image based on source image and text instruction.

    

    Args:

        model_components: Tuple of (args, model, vae, tokenizer, text_encoder)

        src_img_path: Path to source image

        instruction: Text instruction for editing

        cfg: Classifier-free guidance scale

        tau: Temperature parameter

    """
    args, model, vae, tokenizer, text_encoder, image_size = model_components
    
    # Set default image size
    assert image_size in [512, 1024], f"Invalid image size: {image_size}, expected 512 or 1024"
    if image_size == 512:
        pn = "0.25M"
    elif image_size == 1024:
        pn = "1M"
    
    # Load and preprocess source image
    try:
        with Image.open(src_img_path) as src_img:
            src_img = src_img.convert('RGB')
            src_img_tensor, crop_op = transform(src_img, image_size)
    except Exception as e:
        logger.error(f"Failed to load source image: {e}")
        raise
    
    # Set up generation parameters
    aspect_ratio = 1.0  # h:w ratio
    h_div_w_template = h_div_w_templates[np.argmin(np.abs(h_div_w_templates - aspect_ratio))]
    scale_schedule = [(1, h, w) for (_, h, w) in dynamic_resolution_h_w[h_div_w_template][pn]['scales']]
    
    logger.info(f"Generating image with instruction: '{instruction}'")
    
    # Generate image
    if seed == -1:
        seed = np.random.randint(0, 1000000)
    torch.cuda.empty_cache()
    start_time = time.time()
    generated_image = gen_one_img(
        model, vae, tokenizer, text_encoder,
        instruction, src_img_tensor,
        g_seed=seed,
        gt_leak=0,
        gt_ls_Bl=None,
        cfg_list=cfg,
        tau_list=tau,
        scale_schedule=scale_schedule,
        cfg_insertion_layer=[args.cfg_insertion_layer],
        vae_type=args.vae_type,
        sampling_per_bits=args.sampling_per_bits,
        enable_positive_prompt=0,
        apply_spatial_patchify=args.apply_spatial_patchify,
    )
    end_time = time.time()
    logger.info(f"Time taken: {end_time - start_time:.2f} seconds")
    max_memory = torch.cuda.max_memory_allocated() / 1024 ** 3
    logger.info(f"Max memory: {max_memory:.2f} GB")
    generated_image_np = generated_image.cpu().numpy()
    if generated_image_np.shape[2] == 3:
        generated_image_np = generated_image_np[..., ::-1]
    result_image = Image.fromarray(generated_image_np.astype(np.uint8))
    result_image = crop_op(result_image)
    return result_image

def main():
    """Main execution function with example usage."""
    try:
        # Load model
        model_components = load_model(
            "HiDream-ai/VAREdit",
            "HiDream-ai/VAREdit/8B-1024.pth",
            "8B",
            1024
        )
        
        # Generate image
        generate_image(
            model_components,
            "assets/test.jpg",
            "Add glasses to this girl and change hair color to red",
            cfg=3.0,
            tau=1.0,
            seed=42
        )

    except Exception as e:
        logger.error(f"Inference failed: {e}")
        raise


if __name__ == "__main__":
    main()