File size: 5,785 Bytes
3c74b8c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import time
import streamlit as st
from params import *
from stable_baselines3 import SAC
import pandas as pd
import pydeck as pdk
from TwoDimEnv import TwoDimEnv

import gymnasium as gym

def run_episode(env, model, lat_tg, lon_tg, rho_init=RHO_INIT, theta_init=THETA_INIT, zed=Z_INIT):
    '''
    runs the episode given an observation init ... and an env and a model
    :param env: TwoDimEnv
    :param model:
    :param lat_tg:  lattitude de la target (0,0)
    :param lon_tg: longitude de la target (0,0)
    :param rho_init:
    :param theta_init:
    :param zed:
    :return:
    '''
    obs = env.reset(training=False, rho_init=rho_init, theta_init=theta_init, z_init=zed)
    step = 0
    lat, lon = rhotheta_to_latlon(MOVE_TO_METERS * rho_init, theta_init, lat_tg, lon_tg)
    path = [[lon, lat, MOVE_TO_METERS * zed]]
    traj = [lat, lon, MOVE_TO_METERS * zed]
    while step < zed:
        step += 1
        action, _ = model.predict(obs, deterministic=True)
        obs, _, _, _ = env.step(action)
        rho = obs[0] * env.space_limits
        theta = obs[1] * 2 * PI
        lat, lon = rhotheta_to_latlon(MOVE_TO_METERS*rho, theta, lat_tg, lon_tg)
        traj = np.vstack((traj, [lat, lon, MOVE_TO_METERS*(zed - step)]))
        path.append([lon, lat, MOVE_TO_METERS*(zed - step)])
    df_col = pd.DataFrame(traj, columns=['lat', 'lon', 'zed'])
    df_path = pd.DataFrame([{
        'color': [0, 0, 200, 120],
        'path': path
    }])
    return df_path, df_col

def rhotheta_to_latlon(rho, theta, lat_tg, lon_tg):
    '''
    transforms polar coordinates into lat, lon
    :param rho:
    :param theta:
    :param lat_tg: latitude de la target (0,0)
    :param lon_tg: longitude de la target (0,0)
    :return:
    '''
    z = rho * np.exp(1j * theta)
    lat = np.imag(z)*360/(40075*1000) + lat_tg
    lon = np.real(z)*360/(40075*1000*np.cos(PI/180*lat)) + lon_tg
    return lat, lon


def get_layers(df, df_past, df_target, df_path, df_col):
    '''
    renders the layers to be displayed with df in different formats as entries
    :param df:
    :param df_past:
    :param df_target:
    :param df_path:
    :param df_col:
    :return:
    '''
    return [
        pdk.Layer(
            'ScatterplotLayer',
            data=df,
            get_position='[lon, lat]',
            get_color='[200, 30, 0, 160, 40]',
            get_radius=10,
        ),
        pdk.Layer(
            'ScatterplotLayer',
            data=df_target,
            get_position='[lon, lat]',
            get_color='[200, 30, 0]',
            get_radius=65,
        ),
        pdk.Layer(
            'ScatterplotLayer',
            data=df_target,
            get_position='[lon, lat]',
            get_color='[255, 255, 255]',
            get_radius=45,
        ),
        pdk.Layer(
            'ScatterplotLayer',
            data=df_target,
            get_position='[lon, lat]',
            get_color='[0, 0, 200]',
            get_radius=25,
        ),
        pdk.Layer(
            'ScatterplotLayer',
            data=df_past,
            get_position='[lon, lat]',
            get_color='[200, 30, 0, 40]',
            get_radius=10,
        ),
        pdk.Layer(
            type="PathLayer",
            data=df_path,
            pickable=True,
            get_color="color",
            width_scale=20,
            width_min_pixels=1,
            get_path="path",
            get_width=1,
        ),
        pdk.Layer(
            type="ColumnLayer",
            data=df_col,
            get_position=['lon', 'lat'],
            get_elevation="zed",
            elevation_scale=1,
            radius=10,
            get_fill_color=[160, 20, 0, 10],
            pickable=True,
            auto_highlight=True
        ),
    ]


def show():
    '''
    shows the i-PADS in Streamlit
    :return:
    '''
    env = TwoDimEnv()
    model = SAC.load("longModel")
    st.title('Intelligent PADS by hexamind')
    st.write('This is a quick demo of an autonomous Parachute (Precision Air Delivery System) controlled by Reinforcement learning. ')
    st.text('<- Set the starting point')

    st.sidebar.write("Where do you want the parachute to start from?")
    rho = st.sidebar.slider('What distance? (in m)', 0, 3000, 1500) / MOVE_TO_METERS
    theta = 2*PI/360 * st.sidebar.slider('What angle?', 0, 360, 90)
    zed = int(st.sidebar.slider('What elevation? (in m)', 0, 1200, 600) / MOVE_TO_METERS)

    location = st.sidebar.radio("Location", ['San Francisco', 'Paris', 'Puilaurens'])
    lat_tg = LOC[location]['lat']
    lon_tg = LOC[location]['lon']
    df_path, df_col = run_episode(env, model, lat_tg, lon_tg, rho_init=rho, theta_init=theta, zed=zed)
    st.sidebar.write(
        'If you like to play, you will probably find some starting points where the parachute is out of control :) '
        'No worries, we have plenty more efficient models at www.hexamind.com ')

    df_target = pd.DataFrame({'lat': [lat_tg], 'lon': [lon_tg]})
    deck_map = st.empty()
    pitch = st.slider('pitch', 0, 100, 50)
    initial_view_state = pdk.ViewState(
            latitude=lat_tg,
            longitude=lon_tg,
            zoom=12,
            pitch=pitch
    )
    deck_map.pydeck_chart(pdk.Deck(
        map_style='mapbox://styles/mapbox/light-v9',
        initial_view_state=initial_view_state
    ))
    df_pathi = df_path.copy()
    for i in range(zed):
        df_pathi['path'][0] = df_path['path'][0][0:i+1]
        layers = get_layers(df_col[i:i+1], df_col[0:i], df_target, df_pathi, df_col[0:i+1])
        deck_map.pydeck_chart(pdk.Deck(
            map_style='mapbox://styles/mapbox/light-v9',
            initial_view_state=initial_view_state,
            layers=layers
        ))
        time.sleep(TIMESLEEP)


show()

# to uncomment for debug
#show_print()