File size: 2,762 Bytes
12c7fb3
 
 
 
07eb4b6
12c7fb3
 
 
 
 
ad0f590
12c7fb3
 
 
 
 
 
 
 
 
 
 
 
 
07eb4b6
12c7fb3
 
07eb4b6
12c7fb3
 
 
 
750fee8
12c7fb3
 
750fee8
12c7fb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07eb4b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12c7fb3
 
750fee8
 
 
 
 
ad0f590
 
 
12c7fb3
750fee8
ad0f590
12c7fb3
 
750fee8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import os
import gradio as gr
import google.generativeai as genai
from dotenv import load_dotenv
import time

# Load environment variables from .env file
load_dotenv()

# Retrieve API key from environment variable
GEMINI_API_KEY = "AIzaSyA0SnGcdEuesDusLiM93N68-vaFF14RCYg" # public api 

# Configure Google Gemini API
genai.configure(api_key=GEMINI_API_KEY)

# Create the model configuration
generation_config = {
    "temperature": 0.7,
    "top_p": 0.95,
    "top_k": 64,
    "max_output_tokens": 512,  # Adjust as needed
    "response_mime_type": "text/plain",
}

# Simplified safety settings (or try removing them to test)
safety_settings = [
    {"category": "HARM_CATEGORY_HARASSMENT", "threshold": "BLOCK_NONE"},
    {"category": "HARM_CATEGORY_HATE_SPEECH", "threshold": "BLOCK_NONE"}
]

# Function to generate a response based on user input and chat history
def generate_response(user_input, chat_history):
    """Generates a response based on user input and chat history."""

    # Update system content with the full character description
    updated_system_content = "You are Shadow the Hedgehog and you must act like Shadow the Hedgehog's personality."

    # Create the generative model
    model = genai.GenerativeModel(
        model_name="gemini-1.5-pro", 
        generation_config=generation_config,
        safety_settings=safety_settings,
        system_instruction=updated_system_content,
    )

    # Add user input to history
    chat_history.append(user_input)

    # Limit history length to the last 10 messages
    chat_history = chat_history[-10:]

    retry_attempts = 3
    for attempt in range(retry_attempts):
        try:
            # Start a new chat session
            chat_session = model.start_chat()

            # Send the entire chat history as the first message
            response = chat_session.send_message("\n".join(chat_history))
            return response.text, chat_history

        except Exception as e:
            if attempt < retry_attempts - 1:
                time.sleep(2)  # Delay before retrying
                continue
            else:
                return f"Error after {retry_attempts} attempts: {str(e)}", chat_history

# Build the Gradio interface
with gr.Blocks(theme="Hev832/Applio") as iface:
    chat_input = gr.Textbox(lines=2, label="Talk to AI", placeholder="Enter your message here...")
    chat_history_state = gr.State([])  # State input for chat history
    response_output = gr.Textbox(label="Response")

    # Define the layout and components
    generate_button = gr.Button("Generate Response")
    generate_button.click(
        fn=generate_response,
        inputs=[chat_input, chat_history_state],
        outputs=[response_output, chat_history_state]
    )

iface.launch()