File size: 10,391 Bytes
aca01f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8da02bf
aca01f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8da02bf
aca01f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8da02bf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
import json
import os
import sys
import traceback
from timeit import default_timer as timer

import gradio as gr
import torch
from PIL import Image
from torchvision import transforms
from dotenv import load_dotenv
import boto3

# --- Setup ---
load_dotenv()
print("Starting application with debug info...")
print(f"Python version: {sys.version}")
print(f"Torch version: {torch.__version__}")
print(f"Device: {torch.device('cuda' if torch.cuda.is_available() else 'cpu')}")

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
try:
    torch.set_default_device(device)
    print(f"Default device set to: {device}")
except Exception as e:
    print(f"Error setting default device: {e}")
    # Fall back to older method if needed
    if torch.__version__ < '2.0.0':
        print("Using older torch version method for device handling")

# --- Download from S3 (CPU models only) ---
def download_from_s3():
    print("Attempting to download artifacts from S3...")
    BUCKET_NAME = 'emlo-project'
    ARTIFACTS = [
        'kserve-ig/vegfruits-classifier-prod/pths/vegfruits_cpu.pt',
        'kserve-ig/sports-classifier-prod/pths/sports_cpu.pt',

        'kserve-ig/vegfruits-classifier-prod/index_to_name.json',
        'kserve-ig/sports-classifier-prod/index_to_name.json',
    ]
    os.makedirs("vegfruits", exist_ok=True)
    os.makedirs("sports", exist_ok=True)

    try:
        aws_key = os.getenv("AWS_ACCESS_KEY_ID")
        aws_secret = os.getenv("AWS_SECRET_ACCESS_KEY")
        print(f"AWS credentials available: {bool(aws_key and aws_secret)}")
        
        s3 = boto3.client(
            "s3",
            aws_access_key_id=aws_key,
            aws_secret_access_key=aws_secret,
            region_name="ap-south-1"
        )

        for artifact in ARTIFACTS:
            if not os.path.exists(artifact):
                artifact_extract = artifact.split("/")[-1]
                if "vegfruits" in artifact:
                    local_name = "vegfruits"
                if "sports" in artifact:
                    local_name = "sports"
                s3.download_file(BUCKET_NAME, artifact, os.path.join(local_name, artifact_extract))
                print(f"Successfully downloaded {artifact} as {os.path.join(local_name, artifact_extract)}")
            else:
                print(f"{artifact} already exists, skipping download")
    except Exception as e:
        print(f"Error during S3 download: {e}")
        traceback.print_exc()

# --- Image Transform ---
transform = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406],
                         std=[0.229, 0.224, 0.225])
])

# --- Load models ---
def load_model(name):
    print(f"Loading model: {name}")
    # emlo-project/kserve-ig/vegfruits-classifier-prod/pths/
    path = f"{name}/{name}_cpu.pt"
    try:
        if not os.path.exists(path):
            print(f"ERROR: Model file not found at {path}")
            return None
        
        model = torch.jit.load(path)
        print(f"Model loaded successfully from {path}")
        model.to(device)
        print(f"Model moved to {device}")
        model.eval()
        print(f"Model set to evaluation mode")
        return model
    except Exception as e:
        print(f"Error loading model {name}: {e}")
        traceback.print_exc()
        return None

# --- Load class mappings ---
def load_classnames(name):
    print(f"Loading class mappings for: {name}")
    file_path = f"{name}/index_to_name.json"
    try:
        if not os.path.exists(file_path):
            print(f"ERROR: Class mapping file not found at {file_path}")
            return {}
            
        with open(file_path) as f:
            mapping = json.load(f)
        print(f"Class mappings loaded successfully from {file_path}")
        return mapping
        # # Debug info
        # print(f"Raw mapping sample (first 3 items): {list(mapping.items())[:3]}")
        
        # # Convert keys to integers and create reverse mapping
        # try:
        #     idx2lbl = {int(v): k for k, v in mapping.items()}
        #     print(f"Converted mapping sample (first 3 items): {list(idx2lbl.items())[:3]}")
        #     return idx2lbl, mapping
        # except Exception as e:
        #     print(f"Error converting class mappings: {e}")
        #     # Fallback to string keys if int conversion fails
        #     return {v: k for k, v in mapping.items()}
    except Exception as e:
        print(f"Error loading class mappings for {name}: {e}")
        traceback.print_exc()
        return {}

# --- Predict functions ---
@torch.no_grad()
def predict(img, model, idx2lbl):
    print(f"Prediction request received. Input type: {type(img)}")
    
    # Handle non-image inputs
    if img is None:
        print("Received None image")
        return {"No image provided": 1.0}, 0.0
    
    if isinstance(img, bool):
        print(f"Received boolean input: {img}")
        return {"Boolean input received, expected image": 1.0}, 0.0
    
    # Verify we have a valid image
    if not isinstance(img, Image.Image):
        print(f"WARNING: Input is not a PIL Image but {type(img)}")
        try:
            if hasattr(img, 'convert'):
                print("Object has convert method, attempting to use as image")
            else:
                print("Object cannot be used as an image")
                return {"Invalid image format": 1.0}, 0.0
        except Exception as e:
            print(f"Error checking image: {e}")
            return {"Error processing input": 1.0}, 0.0
    
    try:
        print("Starting prediction process")
        start = timer()
        
        # Debug image properties
        print(f"Image size: {img.size if hasattr(img, 'size') else 'unknown'}")
        print(f"Image mode: {img.mode if hasattr(img, 'mode') else 'unknown'}")
        
        # Transform image
        print("Transforming image")
        img_tensor = transform(img).to(device)
        print(f"Image transformed to tensor of shape {img_tensor.shape}")
        
        # Run model
        print("Running model inference")
        logits = model(img_tensor.unsqueeze(0))
        print(f"Model output shape: {logits.shape}")
        
        # Process output
        print("Processing model output")
        probs = torch.softmax(logits, dim=-1)
        top5 = torch.topk(probs, min(5, probs.shape[1]))
        
        # Create predictions dictionary
        print("Creating predictions dictionary")
        preds = {}
        for i, (v, idx) in enumerate(zip(top5.values[0], top5.indices[0])):
            idx_item = idx.item()
            print(f"Processing top prediction {i+1}: idx={idx_item}, value={v.item():.4f}")
            
            if str(idx_item) in idx2lbl:
                print(f"inside predict - {idx_item}")
                label = idx2lbl[str(idx_item)]
                preds[label] = round(v.item(), 4)
                print(f"Mapped to label: {label}")
            else:
                print(f"WARNING: Index {idx_item} not found in class mapping")
                preds[f"Unknown-{idx_item}"] = round(v.item(), 4)
        
        elapsed = round(timer() - start, 4)
        print(f"Prediction completed in {elapsed}s")
        return preds, elapsed
    except Exception as e:
        print(f"Prediction error: {e}")
        traceback.print_exc()
        return {"Error": 0.0}, 0.0

# --- App logic ---
def main():
    print("Initializing application...")
    
    try:
        download_from_s3()
    except Exception as e:
        print(f"Error in S3 download: {e}")
        traceback.print_exc()
    
    print("Loading models and class mappings")
    smodel = load_model("sports")
    vfmodel = load_model("vegfruits")
    sports_map = load_classnames("sports")
    vegfruits_map = load_classnames("vegfruits")

    def sports_fn(img):
        print("\n--- Sports Classification Request ---")
        print(f"Input type: {type(img)}")
        if img is None:
            print("No image provided")
            return {"No image provided": 1.0}, 0.0
        if isinstance(img, bool):
            print(f"Received boolean: {img}")
            return {"Boolean received (expected image)": 1.0}, 0.0
        try:
            return predict(img, smodel, sports_map)
        except Exception as e:
            print(f"Error in sports_fn: {e}")
            traceback.print_exc()
            return {"Error in sports classifier": 1.0}, 0.0
    
    def veg_fn(img):
        print("\n--- VegFruits Classification Request ---")
        print(f"Input type: {type(img)}")
        if img is None:
            print("No image provided")
            return {"No image provided": 1.0}, 0.0
        if isinstance(img, bool):
            print(f"Received boolean: {img}")
            return {"Boolean received (expected image)": 1.0}, 0.0
        try:
            return predict(img, vfmodel, vegfruits_map)
        except Exception as e:
            print(f"Error in veg_fn: {e}")
            traceback.print_exc()
            return {"Error in vegfruits classifier": 1.0}, 0.0
    
    print("Creating Gradio interfaces")
    try:
        sports_interface = gr.Interface(
            fn=sports_fn,
            inputs=gr.Image(type="pil"),
            outputs=[
                gr.Label(num_top_classes=5),
                gr.Number(label="Prediction Time (s)")
            ],
            title="Sports Classifier",
            cache_examples=False
        )
        print("Sports interface created successfully")
        
        veg_interface = gr.Interface(
            fn=veg_fn,
            inputs=gr.Image(type="pil"),
            outputs=[
                gr.Label(num_top_classes=5),
                gr.Number(label="Prediction Time (s)")
            ],
            title="VegFruits Classifier",
            cache_examples=False
        )
        print("VegFruits interface created successfully")
        
        demo = gr.TabbedInterface(
            interface_list=[sports_interface, veg_interface],
            tab_names=["Sports", "VegFruits"]
        )
        print("TabbedInterface created successfully")
        
        print("Launching Gradio app...")
        demo.launch(share=True)
    except Exception as e:
        print(f"Error creating Gradio interface: {e}")
        traceback.print_exc()

if __name__ == "__main__":
    main()