File size: 5,553 Bytes
0c870de
 
88bffaa
0c870de
88bffaa
0c870de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3068ee
 
 
0c870de
 
 
 
 
 
 
 
 
 
88bffaa
0c870de
 
88bffaa
0c870de
88bffaa
0c870de
 
 
 
 
 
 
 
 
 
 
 
33a7c97
 
 
0c870de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21e1a12
 
0c870de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88bffaa
0c870de
 
 
 
 
 
 
88bffaa
 
0c870de
 
88bffaa
0c870de
 
 
 
 
 
 
 
88bffaa
0c870de
 
 
 
 
88bffaa
0c870de
88bffaa
0c870de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88bffaa
0c870de
 
88bffaa
0c870de
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
from diffusers import DiffusionPipeline, LCMScheduler, AutoencoderTiny
from compel import Compel, ReturnedEmbeddingsType
import torch
import os

from PIL import Image
import numpy as np
import gradio as gr
import psutil
from sfast.compilers.stable_diffusion_pipeline_compiler import (
    compile,
    CompilationConfig,
)


SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", None)
HF_TOKEN = os.environ.get("HF_TOKEN", None)
# check if MPS is available OSX only M1/M2/M3 chips
mps_available = hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
xpu_available = hasattr(torch, "xpu") and torch.xpu.is_available()
device = torch.device(
    "cuda" if torch.cuda.is_available() else "xpu" if xpu_available else "cpu"
)
torch_device = device

#torch_dtype = torch.float16
torch_dtype = torch.bfloat16

print(f"SAFETY_CHECKER: {SAFETY_CHECKER}")
print(f"device: {device}")

if mps_available:
    device = torch.device("mps")
    torch_device = "cpu"
    torch_dtype = torch.float32

model_id = "stabilityai/stable-diffusion-xl-base-1.0"

if SAFETY_CHECKER == "True":
    pipe = DiffusionPipeline.from_pretrained(model_id)
else:
    pipe = DiffusionPipeline.from_pretrained(model_id, safety_checker=None)

pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
pipe.load_lora_weights(
    "latent-consistency/lcm-lora-sdxl",
    use_auth_token=HF_TOKEN,
)
if device.type != "mps":
    pipe.unet.to(memory_format=torch.channels_last)
pipe.to(device=torch_device, dtype=torch_dtype).to(device)

# Load LCM LoRA

config = CompilationConfig.Default()
config.enable_xformers = False
config.enable_triton = False
config.enable_cuda_graph = False
pipe = compile(pipe, config=config)

compel_proc = Compel(
    tokenizer=[pipe.tokenizer, pipe.tokenizer_2],
    text_encoder=[pipe.text_encoder, pipe.text_encoder_2],
    returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
    requires_pooled=[False, True],
)


def predict(
    prompt,
    guidance,
    steps,
    seed=1231231,
    randomize_bt=False,
    progress=gr.Progress(track_tqdm=True),
):
    if randomize_bt:
        seed = np.random.randint(0, 2**32 - 1)
    generator = torch.manual_seed(seed)
    prompt_embeds, pooled_prompt_embeds = compel_proc(prompt)

    results = pipe(
        prompt_embeds=prompt_embeds,
        pooled_prompt_embeds=pooled_prompt_embeds,
        generator=generator,
        num_inference_steps=steps,
        guidance_scale=guidance,
        width=512,
        height=512,
        # original_inference_steps=params.lcm_steps,
        output_type="pil",
    )
    nsfw_content_detected = (
        results.nsfw_content_detected[0]
        if "nsfw_content_detected" in results
        else False
    )
    if nsfw_content_detected:
        raise gr.Error("NSFW content detected.")
    return results.images[0], seed


css = """
#container{
    margin: 0 auto;
    max-width: 40rem;
}
#intro{
    max-width: 100%;
    text-align: center;
    margin: 0 auto;
}
"""
with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="container"):
        gr.Markdown(
            """# SDXL in 4 steps with Latent Consistency LoRAs
            SDXL is loaded with a LCM-LoRA, giving it the super power of doing inference in as little as 4 steps. [Learn more on our blog](https://huggingface.co/blog/lcm_lora) or [technical report](https://huggingface.co/papers/2311.05556).
            """,
            elem_id="intro",
        )
        with gr.Row():
            with gr.Row():
                prompt = gr.Textbox(
                    placeholder="Insert your prompt here:", scale=5, container=False
                )
                generate_bt = gr.Button("Generate", scale=1)

        image = gr.Image(type="filepath")
        with gr.Accordion("Advanced options", open=False):
            guidance = gr.Slider(
                label="Guidance", minimum=0.0, maximum=5, value=0.3, step=0.001
            )
            steps = gr.Slider(label="Steps", value=4, minimum=2, maximum=10, step=1)
            with gr.Row():
                seed = gr.Slider(
                    randomize=True,
                    minimum=0,
                    maximum=12013012031030,
                    label="Seed",
                    step=1,
                    scale=5,
                )
                with gr.Group():
                    randomize_bt = gr.Checkbox(label="Randomize", value=False)
                    random_seed = gr.Textbox(show_label=False)
        with gr.Accordion("Run with diffusers"):
            gr.Markdown(
                """## Running LCM-LoRAs it with `diffusers`
            ```bash
            pip install diffusers==0.23.0
            ```
            
            ```py
            from diffusers import DiffusionPipeline, LCMScheduler
            pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0").to("cuda") 
            pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
            pipe.load_lora_weights("latent-consistency/lcm-lora-sdxl") #yes, it's a normal LoRA
            results = pipe(
                prompt="The spirit of a tamagotchi wandering in the city of Vienna",
                num_inference_steps=4,
                guidance_scale=0.0,
            )
            results.images[0]
            ```
            """
            )

        inputs = [prompt, guidance, steps, seed, randomize_bt]
        generate_bt.click(fn=predict, inputs=inputs, outputs=[image, random_seed])

demo.queue(api_open=False)
demo.launch(show_api=False)