Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,072 Bytes
94973e7 2caf84c 94973e7 0e0ee20 94973e7 0e0ee20 94973e7 0e0ee20 568fd3b 94973e7 0e0ee20 c724573 94973e7 c957c32 c724573 94973e7 0e0ee20 94973e7 c59400c 94973e7 e2c1d93 94973e7 459b9da 94973e7 459b9da 94973e7 c724573 01b98d9 94973e7 41cb504 94973e7 41cb504 5ce58bf 94973e7 5ce58bf 94973e7 e9b83f7 22a9414 94973e7 c957c32 94973e7 c957c32 94973e7 c957c32 94973e7 c957c32 94973e7 e9b83f7 f647d1f e9b83f7 94973e7 e9b83f7 94973e7 e9b83f7 94973e7 e9b83f7 94973e7 e9b83f7 c957c32 94973e7 e9b83f7 94973e7 e9b83f7 94973e7 e9b83f7 94973e7 e9b83f7 94973e7 e9b83f7 94973e7 e9b83f7 94973e7 e9b83f7 94973e7 e9b83f7 94973e7 e9b83f7 94973e7 e9b83f7 94973e7 e9b83f7 c957c32 94973e7 f647d1f 94973e7 c957c32 5ce58bf e9b83f7 94973e7 c957c32 4738ce5 22a9414 e9b83f7 22a9414 60e6a86 0e0ee20 22a9414 94973e7 e9b83f7 b62847f 459b9da e9b83f7 22a9414 41cb504 22a9414 41cb504 22a9414 41cb504 22a9414 41cb504 22a9414 94973e7 22a9414 41cb504 22a9414 41cb504 22a9414 41cb504 22a9414 e9b83f7 41cb504 60e6a86 e9b83f7 0e0ee20 e9b83f7 94973e7 b62847f 5ce58bf e9b83f7 60e6a86 5ce58bf 94973e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
import random
import os
import uuid
from datetime import datetime
import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import DiffusionPipeline
from PIL import Image
# Create permanent storage directory
SAVE_DIR = "saved_images" # Gradio will handle the persistence
if not os.path.exists(SAVE_DIR):
os.makedirs(SAVE_DIR, exist_ok=True)
device = "cuda" if torch.cuda.is_available() else "cpu"
repo_id = "black-forest-labs/FLUX.1-dev"
adapter_id = "openfree/winslow-homer" # Changed to Winslow Homer model
pipeline = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16)
pipeline.load_lora_weights(adapter_id)
pipeline = pipeline.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
def save_generated_image(image, prompt):
# Generate unique filename with timestamp
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
unique_id = str(uuid.uuid4())[:8]
filename = f"{timestamp}_{unique_id}.png"
filepath = os.path.join(SAVE_DIR, filename)
# Save the image
image.save(filepath)
# Save metadata
metadata_file = os.path.join(SAVE_DIR, "metadata.txt")
with open(metadata_file, "a", encoding="utf-8") as f:
f.write(f"{filename}|{prompt}|{timestamp}\n")
return filepath
@spaces.GPU(duration=60)
def inference(
prompt,
seed=42,
randomize_seed=True,
width=1024,
height=768,
guidance_scale=3.5,
num_inference_steps=30,
lora_scale=1.0,
progress=None,
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(int(seed))
image = pipeline(
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
joint_attention_kwargs={"scale": lora_scale},
).images[0]
# Save the generated image
filepath = save_generated_image(image, prompt)
# Return just the image and seed
return image, seed
# Updated examples with 1880s clothing style for Winslow Homer
examples = [
"Winslow Homer's painting of a lively outdoor gathering in the 1880s, with men in formal top hats, frock coats, and women in bustled dresses with elaborate hats, enjoying a summer afternoon. The scene captures the Belle Époque atmosphere with Homer's characteristic realism and attention to natural light, highlighting the fashionable attire of the period. [trigger]",
"Winslow Homer's intimate portrait of a young woman from the 1880s, with her hair styled in a fashionable updo, wearing a high-necked dress with lace details and leg-of-mutton sleeves. She wears delicate jewelry and has the soft, naturalistic features characteristic of Homer's portraiture, set against a coastal backdrop with dramatic light and shadow. [trigger]",
"Winslow Homer's painting of two young girls in 1880s attire seated near a window. One plays with a toy while the other stands nearby, both dressed in white frocks with ribbon details, sashes, and high collars typical of the period. The interior setting features natural sunlight streaming in, creating Homer's distinctive interplay of light and shadow. [trigger]",
"Winslow Homer's painting of an elegant 1880s boating party, with gentlemen in striped boating blazers, straw boater hats, and formal trousers, alongside ladies in bustled day dresses with parasols. The scene captures the leisure activities near the water, with Homer's masterful depiction of reflections and maritime atmosphere. [trigger]",
"Winslow Homer's painting of children playing in an 1880s seaside scene, dressed in formal period children's wear including sailor suits for boys and pinafores with full skirts for girls. Their Victorian-era clothing contrasts with their playful activities, set against Homer's dramatic seascapes with crashing waves and atmospheric skies. [trigger]",
"Winslow Homer's depiction of figures in 1880s attire by a rugged coastline, showing the modest clothing of the period. Women wear full-coverage dark dresses with white details, while men are in work clothes or formal attire. The figures are arranged against a backdrop of dramatic ocean waves and weather, showcasing Homer's skill at capturing the relationship between humans and nature. [trigger]"
]
# Improved custom CSS with better visuals - updated colors for Winslow Homer theme
custom_css = """
:root {
--color-primary: #2B5F75;
--color-secondary: #D98542;
--background-fill-primary: linear-gradient(to right, #e8f4f8, #f4e8d8);
}
footer {
visibility: hidden;
}
.gradio-container {
background: var(--background-fill-primary);
}
.title {
color: var(--color-primary) !important;
font-size: 3rem !important;
font-weight: 700 !important;
text-align: center;
margin: 1rem 0;
text-shadow: 2px 2px 4px rgba(0,0,0,0.05);
font-family: 'Georgia', serif;
}
.subtitle {
color: #4A5568 !important;
font-size: 1.2rem !important;
text-align: center;
margin-bottom: 1.5rem;
font-style: italic;
}
.collection-link {
text-align: center;
margin-bottom: 2rem;
font-size: 1.1rem;
}
.collection-link a {
color: var(--color-primary);
text-decoration: underline;
transition: color 0.3s ease;
}
.collection-link a:hover {
color: var(--color-secondary);
}
.model-description {
background-color: rgba(255, 255, 255, 0.8);
border-radius: 12px;
padding: 24px;
margin: 20px 0;
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.05);
border-left: 5px solid var(--color-primary);
}
button.primary {
background-color: var(--color-primary) !important;
transition: all 0.3s ease;
}
button:hover {
transform: translateY(-2px);
box-shadow: 0 5px 15px rgba(0,0,0,0.1);
}
.input-container {
border-radius: 10px;
box-shadow: 0 2px 8px rgba(0,0,0,0.05);
}
.advanced-settings {
margin-top: 1rem;
padding: 1rem;
border-radius: 10px;
background-color: rgba(255, 255, 255, 0.6);
}
.example-region {
background-color: rgba(255, 255, 255, 0.5);
border-radius: 10px;
padding: 1rem;
margin-top: 1rem;
border: 1px solid #d0e0e3;
}
"""
with gr.Blocks(css=custom_css, analytics_enabled=False) as demo:
gr.HTML('<div class="title">Winslow Homer STUDIO</div>')
# Add collection link below title
gr.HTML('<div class="collection-link"><a href="https://huggingface.co/collections/openfree/painting-art-ai-681453484ec15ef5978bbeb1" target="_blank">View the full Painting Art AI Collection</a></div>')
# Model description with the requested content
with gr.Group(elem_classes="model-description"):
gr.HTML('<p>Generate beautiful artwork in the style of Winslow Homer, the renowned American landscape painter and printmaker. Homer is known for his marine subjects, dramatic seascapes, and realistic depictions of rural and coastal life. Add [trigger] at the end of your prompt for best results.</p>')
# Simplified structure without tabs and gallery
with gr.Column(elem_id="col-container"):
with gr.Row(elem_classes="input-container"):
prompt = gr.Text(
label="Prompt",
max_lines=1,
placeholder="Enter your prompt (add [trigger] at the end)",
value=examples[0] # Set default text instead of generating an image
)
run_button = gr.Button("Generate", variant="primary", scale=0)
result = gr.Image(label="Generated Image")
seed_output = gr.Number(label="Seed", visible=True)
with gr.Accordion("Advanced Settings", open=False, elem_classes="advanced-settings"):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=768,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=3.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=30,
)
lora_scale = gr.Slider(
label="LoRA scale",
minimum=0.0,
maximum=1.0,
step=0.1,
value=1.0,
)
with gr.Group(elem_classes="example-region"):
gr.Markdown("### Examples")
gr.Examples(
examples=examples,
inputs=prompt,
outputs=None, # Don't auto-run examples
fn=None, # No function to run for examples - just fill the prompt
cache_examples=False, # Disable caching
)
# Event handlers
gr.on(
triggers=[run_button.click, prompt.submit],
fn=inference,
inputs=[
prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
lora_scale,
],
outputs=[result, seed_output],
)
# No preloading or automatic image generation
demo.queue()
demo.launch() |