File size: 10,072 Bytes
94973e7
2caf84c
94973e7
 
0e0ee20
94973e7
 
0e0ee20
94973e7
0e0ee20
568fd3b
94973e7
 
 
 
0e0ee20
c724573
94973e7
c957c32
c724573
94973e7
 
 
0e0ee20
94973e7
 
c59400c
94973e7
 
 
 
 
 
e2c1d93
94973e7
 
459b9da
94973e7
 
 
 
459b9da
94973e7
c724573
01b98d9
94973e7
41cb504
 
 
 
 
 
 
 
 
94973e7
 
 
41cb504
5ce58bf
94973e7
 
 
 
 
 
 
 
 
5ce58bf
94973e7
 
 
e9b83f7
22a9414
94973e7
c957c32
94973e7
c957c32
 
 
 
 
 
94973e7
 
c957c32
94973e7
 
c957c32
 
 
94973e7
e9b83f7
f647d1f
 
 
e9b83f7
94973e7
e9b83f7
94973e7
e9b83f7
94973e7
e9b83f7
 
94973e7
 
 
e9b83f7
c957c32
94973e7
e9b83f7
94973e7
e9b83f7
94973e7
e9b83f7
 
 
 
 
 
94973e7
 
e9b83f7
94973e7
e9b83f7
 
 
 
 
 
 
 
 
 
 
94973e7
e9b83f7
 
 
94973e7
e9b83f7
 
94973e7
e9b83f7
94973e7
e9b83f7
 
94973e7
e9b83f7
94973e7
 
 
 
e9b83f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c957c32
94973e7
f647d1f
 
94973e7
c957c32
5ce58bf
e9b83f7
 
 
94973e7
 
c957c32
4738ce5
22a9414
 
e9b83f7
22a9414
 
 
 
60e6a86
0e0ee20
22a9414
94973e7
e9b83f7
b62847f
459b9da
e9b83f7
22a9414
 
 
 
 
41cb504
22a9414
41cb504
22a9414
 
 
 
 
 
 
41cb504
22a9414
 
 
 
 
 
41cb504
22a9414
94973e7
22a9414
 
 
 
 
 
41cb504
22a9414
 
 
 
 
 
41cb504
22a9414
 
 
 
 
 
41cb504
22a9414
 
e9b83f7
 
 
 
41cb504
60e6a86
 
 
e9b83f7
0e0ee20
e9b83f7
94973e7
 
 
 
 
 
 
 
 
 
 
 
 
b62847f
5ce58bf
e9b83f7
60e6a86
5ce58bf
94973e7
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import random
import os
import uuid
from datetime import datetime
import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import DiffusionPipeline
from PIL import Image

# Create permanent storage directory
SAVE_DIR = "saved_images"  # Gradio will handle the persistence
if not os.path.exists(SAVE_DIR):
    os.makedirs(SAVE_DIR, exist_ok=True)

device = "cuda" if torch.cuda.is_available() else "cpu"
repo_id = "black-forest-labs/FLUX.1-dev"
adapter_id = "openfree/winslow-homer"  # Changed to Winslow Homer model

pipeline = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16)
pipeline.load_lora_weights(adapter_id)
pipeline = pipeline.to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

def save_generated_image(image, prompt):
    # Generate unique filename with timestamp
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    unique_id = str(uuid.uuid4())[:8]
    filename = f"{timestamp}_{unique_id}.png"
    filepath = os.path.join(SAVE_DIR, filename)
    
    # Save the image
    image.save(filepath)
    
    # Save metadata
    metadata_file = os.path.join(SAVE_DIR, "metadata.txt")
    with open(metadata_file, "a", encoding="utf-8") as f:
        f.write(f"{filename}|{prompt}|{timestamp}\n")
    
    return filepath

@spaces.GPU(duration=60)
def inference(
    prompt,
    seed=42,
    randomize_seed=True,
    width=1024,
    height=768,
    guidance_scale=3.5,
    num_inference_steps=30,
    lora_scale=1.0,
    progress=None,
):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator(device=device).manual_seed(int(seed))
    
    image = pipeline(
        prompt=prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_inference_steps,
        width=width,
        height=height,
        generator=generator,
        joint_attention_kwargs={"scale": lora_scale},
    ).images[0]
    
    # Save the generated image
    filepath = save_generated_image(image, prompt)
    
    # Return just the image and seed
    return image, seed

# Updated examples with 1880s clothing style for Winslow Homer
examples = [
    "Winslow Homer's painting of a lively outdoor gathering in the 1880s, with men in formal top hats, frock coats, and women in bustled dresses with elaborate hats, enjoying a summer afternoon. The scene captures the Belle Époque atmosphere with Homer's characteristic realism and attention to natural light, highlighting the fashionable attire of the period. [trigger]",
    "Winslow Homer's intimate portrait of a young woman from the 1880s, with her hair styled in a fashionable updo, wearing a high-necked dress with lace details and leg-of-mutton sleeves. She wears delicate jewelry and has the soft, naturalistic features characteristic of Homer's portraiture, set against a coastal backdrop with dramatic light and shadow. [trigger]",
    "Winslow Homer's painting of two young girls in 1880s attire seated near a window. One plays with a toy while the other stands nearby, both dressed in white frocks with ribbon details, sashes, and high collars typical of the period. The interior setting features natural sunlight streaming in, creating Homer's distinctive interplay of light and shadow. [trigger]",
    "Winslow Homer's painting of an elegant 1880s boating party, with gentlemen in striped boating blazers, straw boater hats, and formal trousers, alongside ladies in bustled day dresses with parasols. The scene captures the leisure activities near the water, with Homer's masterful depiction of reflections and maritime atmosphere. [trigger]",
    "Winslow Homer's painting of children playing in an 1880s seaside scene, dressed in formal period children's wear including sailor suits for boys and pinafores with full skirts for girls. Their Victorian-era clothing contrasts with their playful activities, set against Homer's dramatic seascapes with crashing waves and atmospheric skies. [trigger]",
    "Winslow Homer's depiction of figures in 1880s attire by a rugged coastline, showing the modest clothing of the period. Women wear full-coverage dark dresses with white details, while men are in work clothes or formal attire. The figures are arranged against a backdrop of dramatic ocean waves and weather, showcasing Homer's skill at capturing the relationship between humans and nature. [trigger]"
]

# Improved custom CSS with better visuals - updated colors for Winslow Homer theme
custom_css = """
:root {
    --color-primary: #2B5F75;
    --color-secondary: #D98542;
    --background-fill-primary: linear-gradient(to right, #e8f4f8, #f4e8d8);
}

footer {
    visibility: hidden;
}

.gradio-container {
    background: var(--background-fill-primary);
}

.title {
    color: var(--color-primary) !important;
    font-size: 3rem !important;
    font-weight: 700 !important;
    text-align: center;
    margin: 1rem 0;
    text-shadow: 2px 2px 4px rgba(0,0,0,0.05);
    font-family: 'Georgia', serif;
}

.subtitle {
    color: #4A5568 !important;
    font-size: 1.2rem !important;
    text-align: center;
    margin-bottom: 1.5rem;
    font-style: italic;
}

.collection-link {
    text-align: center;
    margin-bottom: 2rem;
    font-size: 1.1rem;
}

.collection-link a {
    color: var(--color-primary);
    text-decoration: underline;
    transition: color 0.3s ease;
}

.collection-link a:hover {
    color: var(--color-secondary);
}

.model-description {
    background-color: rgba(255, 255, 255, 0.8);
    border-radius: 12px;
    padding: 24px;
    margin: 20px 0;
    box-shadow: 0 4px 12px rgba(0, 0, 0, 0.05);
    border-left: 5px solid var(--color-primary);
}

button.primary {
    background-color: var(--color-primary) !important;
    transition: all 0.3s ease;
}

button:hover {
    transform: translateY(-2px);
    box-shadow: 0 5px 15px rgba(0,0,0,0.1);
}

.input-container {
    border-radius: 10px;
    box-shadow: 0 2px 8px rgba(0,0,0,0.05);
}

.advanced-settings {
    margin-top: 1rem;
    padding: 1rem;
    border-radius: 10px;
    background-color: rgba(255, 255, 255, 0.6);
}

.example-region {
    background-color: rgba(255, 255, 255, 0.5);
    border-radius: 10px;
    padding: 1rem;
    margin-top: 1rem;
    border: 1px solid #d0e0e3;
}
"""

with gr.Blocks(css=custom_css, analytics_enabled=False) as demo:
    gr.HTML('<div class="title">Winslow Homer STUDIO</div>')
    
    # Add collection link below title
    gr.HTML('<div class="collection-link"><a href="https://huggingface.co/collections/openfree/painting-art-ai-681453484ec15ef5978bbeb1" target="_blank">View the full Painting Art AI Collection</a></div>')
    
    # Model description with the requested content
    with gr.Group(elem_classes="model-description"):
        gr.HTML('<p>Generate beautiful artwork in the style of Winslow Homer, the renowned American landscape painter and printmaker. Homer is known for his marine subjects, dramatic seascapes, and realistic depictions of rural and coastal life. Add [trigger] at the end of your prompt for best results.</p>')

    # Simplified structure without tabs and gallery
    with gr.Column(elem_id="col-container"):
        with gr.Row(elem_classes="input-container"):
            prompt = gr.Text(
                label="Prompt",
                max_lines=1,
                placeholder="Enter your prompt (add [trigger] at the end)",
                value=examples[0]  # Set default text instead of generating an image
            )
            run_button = gr.Button("Generate", variant="primary", scale=0)

        result = gr.Image(label="Generated Image")
        seed_output = gr.Number(label="Seed", visible=True)

        with gr.Accordion("Advanced Settings", open=False, elem_classes="advanced-settings"):
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=42,
            )
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=768,
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=3.5,
                )
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=30,
                )
                lora_scale = gr.Slider(
                    label="LoRA scale",
                    minimum=0.0,
                    maximum=1.0,
                    step=0.1,
                    value=1.0,
                )

        with gr.Group(elem_classes="example-region"):
            gr.Markdown("### Examples")
            gr.Examples(
                examples=examples,
                inputs=prompt,
                outputs=None,  # Don't auto-run examples
                fn=None,  # No function to run for examples - just fill the prompt
                cache_examples=False,  # Disable caching
            )

    # Event handlers
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=inference,
        inputs=[
            prompt,
            seed,
            randomize_seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
            lora_scale,
        ],
        outputs=[result, seed_output],
    )
    
    # No preloading or automatic image generation

demo.queue()
demo.launch()