File size: 15,105 Bytes
19aaa42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
#!/usr/bin/env python3
"""
Vector Store Manager for Maternal Health RAG Chatbot
Uses FAISS with the optimal all-MiniLM-L6-v2 embedding model
"""

import json
import numpy as np
import faiss
from pathlib import Path
from typing import List, Dict, Any, Tuple, Optional
import logging
from sentence_transformers import SentenceTransformer
import pickle
import time
from dataclasses import dataclass

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

@dataclass
class SearchResult:
    """Container for search results"""
    content: str
    score: float
    metadata: Dict[str, Any]
    chunk_index: int
    source_document: str
    chunk_type: str
    clinical_importance: float

class MaternalHealthVectorStore:
    """Vector store for maternal health guidelines with clinical context filtering"""
    
    def __init__(self, 
                 vector_store_dir: str = "vector_store",
                 embedding_model: str = "sentence-transformers/all-MiniLM-L6-v2",
                 chunks_dir: str = "comprehensive_chunks"):
        
        self.vector_store_dir = Path(vector_store_dir)
        self.vector_store_dir.mkdir(exist_ok=True)
        
        self.chunks_dir = Path(chunks_dir)
        self.embedding_model_name = embedding_model
        
        # Initialize components
        self.embedding_model = None
        self.index = None
        self.documents = []
        self.metadata = []
        
        # Vector store files
        self.index_file = self.vector_store_dir / "faiss_index.bin"
        self.documents_file = self.vector_store_dir / "documents.json"
        self.metadata_file = self.vector_store_dir / "metadata.json"
        self.config_file = self.vector_store_dir / "config.json"
        
        # Search parameters
        self.default_k = 5
        self.similarity_threshold = 0.3
        
    def initialize_embedding_model(self):
        """Initialize the optimal embedding model"""
        logger.info(f"Initializing embedding model: {self.embedding_model_name}")
        
        try:
            self.embedding_model = SentenceTransformer(self.embedding_model_name)
            logger.info("βœ… Embedding model loaded successfully")
            
            # Get embedding dimension
            test_embedding = self.embedding_model.encode(["test"])
            self.embedding_dimension = test_embedding.shape[1]
            logger.info(f"πŸ“ Embedding dimension: {self.embedding_dimension}")
            
        except Exception as e:
            logger.error(f"❌ Failed to load embedding model: {e}")
            raise
    
    def load_medical_documents(self) -> List[Dict[str, Any]]:
        """Load processed medical documents"""
        logger.info("Loading medical documents for vector store...")
        
        langchain_file = self.chunks_dir / "langchain_documents_comprehensive.json"
        if not langchain_file.exists():
            raise FileNotFoundError(f"Medical documents not found: {langchain_file}")
        
        with open(langchain_file, 'r', encoding='utf-8') as f:
            documents = json.load(f)
        
        logger.info(f"πŸ“š Loaded {len(documents)} medical document chunks")
        return documents
    
    def create_vector_index(self, force_rebuild: bool = False) -> bool:
        """Create or load FAISS vector index"""
        
        # Check if existing index can be loaded
        if not force_rebuild and self.index_file.exists():
            try:
                return self.load_existing_index()
            except Exception as e:
                logger.warning(f"Failed to load existing index: {e}")
                logger.info("Rebuilding index from scratch...")
        
        # Initialize embedding model if not done
        if self.embedding_model is None:
            self.initialize_embedding_model()
        
        # Load documents
        documents = self.load_medical_documents()
        
        logger.info("Creating vector embeddings for all medical chunks...")
        
        # Extract content and metadata
        texts = []
        metadata = []
        
        for doc in documents:
            content = doc['page_content']
            meta = doc['metadata']
            
            # Skip very short chunks
            if len(content.strip()) < 50:
                continue
            
            texts.append(content)
            metadata.append(meta)
        
        # Generate embeddings in batches
        logger.info(f"Generating embeddings for {len(texts)} chunks...")
        start_time = time.time()
        
        embeddings = self.embedding_model.encode(
            texts, 
            batch_size=32,
            show_progress_bar=True,
            convert_to_numpy=True
        )
        
        embed_time = time.time() - start_time
        logger.info(f"⚑ Embeddings generated in {embed_time:.2f} seconds")
        
        # Create FAISS index
        logger.info("Building FAISS index...")
        
        # Use IndexFlatIP for inner product (cosine similarity)
        # Normalize embeddings for cosine similarity
        faiss.normalize_L2(embeddings)
        
        # Create index
        index = faiss.IndexFlatIP(self.embedding_dimension)
        index.add(embeddings.astype('float32'))
        
        # Store components
        self.index = index
        self.documents = texts
        self.metadata = metadata
        
        # Save to disk
        self.save_index()
        
        logger.info(f"βœ… Vector store created with {index.ntotal} embeddings")
        return True
    
    def load_existing_index(self) -> bool:
        """Load existing FAISS index from disk"""
        logger.info("Loading existing vector store...")
        
        try:
            # Load FAISS index
            self.index = faiss.read_index(str(self.index_file))
            
            # Load documents
            with open(self.documents_file, 'r', encoding='utf-8') as f:
                self.documents = json.load(f)
            
            # Load metadata
            with open(self.metadata_file, 'r', encoding='utf-8') as f:
                self.metadata = json.load(f)
            
            # Load config
            with open(self.config_file, 'r') as f:
                config = json.load(f)
                self.embedding_model_name = config['embedding_model']
                self.embedding_dimension = config['embedding_dimension']
            
            # Initialize embedding model
            self.initialize_embedding_model()
            
            logger.info(f"βœ… Loaded existing vector store with {self.index.ntotal} embeddings")
            return True
            
        except Exception as e:
            logger.error(f"❌ Failed to load existing index: {e}")
            return False
    
    def save_index(self):
        """Save FAISS index and metadata to disk"""
        logger.info("Saving vector store to disk...")
        
        try:
            # Save FAISS index
            faiss.write_index(self.index, str(self.index_file))
            
            # Save documents
            with open(self.documents_file, 'w', encoding='utf-8') as f:
                json.dump(self.documents, f, ensure_ascii=False, indent=2)
            
            # Save metadata
            with open(self.metadata_file, 'w', encoding='utf-8') as f:
                json.dump(self.metadata, f, ensure_ascii=False, indent=2)
            
            # Save config
            config = {
                'embedding_model': self.embedding_model_name,
                'embedding_dimension': self.embedding_dimension,
                'total_chunks': len(self.documents),
                'created_at': time.strftime('%Y-%m-%d %H:%M:%S')
            }
            
            with open(self.config_file, 'w') as f:
                json.dump(config, f, indent=2)
            
            logger.info(f"πŸ’Ύ Vector store saved to {self.vector_store_dir}")
            
        except Exception as e:
            logger.error(f"❌ Failed to save vector store: {e}")
            raise
    
    def search(self, 
               query: str, 
               k: int = None,
               filters: Dict[str, Any] = None,
               min_score: float = None) -> List[SearchResult]:
        """Search for relevant medical content"""
        
        if self.index is None:
            raise ValueError("Vector store not initialized. Call create_vector_index() first.")
        
        if k is None:
            k = self.default_k
        
        if min_score is None:
            min_score = self.similarity_threshold
        
        # Generate query embedding
        query_embedding = self.embedding_model.encode([query])
        faiss.normalize_L2(query_embedding)
        
        # Search in FAISS index
        scores, indices = self.index.search(query_embedding.astype('float32'), k * 2)  # Get more for filtering
        
        # Process results
        results = []
        for score, idx in zip(scores[0], indices[0]):
            if idx == -1 or score < min_score:
                continue
            
            # Get document and metadata
            content = self.documents[idx]
            metadata = self.metadata[idx]
            
            # Apply filters if specified
            if filters and not self._matches_filters(metadata, filters):
                continue
            
            # Create search result
            result = SearchResult(
                content=content,
                score=float(score),
                metadata=metadata,
                chunk_index=idx,
                source_document=metadata.get('source', ''),
                chunk_type=metadata.get('chunk_type', 'text'),
                clinical_importance=metadata.get('clinical_importance', 0.5)
            )
            
            results.append(result)
            
            # Stop when we have enough results
            if len(results) >= k:
                break
        
        return results
    
    def _matches_filters(self, metadata: Dict[str, Any], filters: Dict[str, Any]) -> bool:
        """Check if metadata matches the specified filters"""
        
        for key, value in filters.items():
            if key not in metadata:
                return False
            
            meta_value = metadata[key]
            
            # Handle different filter types
            if isinstance(value, list):
                if meta_value not in value:
                    return False
            elif isinstance(value, dict):
                if 'min' in value and meta_value < value['min']:
                    return False
                if 'max' in value and meta_value > value['max']:
                    return False
            else:
                if meta_value != value:
                    return False
        
        return True
    
    def search_by_medical_context(self, 
                                  query: str,
                                  content_types: List[str] = None,
                                  min_importance: float = 0.5,
                                  k: int = 5) -> List[SearchResult]:
        """Search with medical context filtering"""
        
        filters = {}
        
        # Filter by content types
        if content_types:
            filters['chunk_type'] = content_types
        
        # Filter by clinical importance
        if min_importance > 0:
            filters['clinical_importance'] = {'min': min_importance}
        
        return self.search(query, k=k, filters=filters)
    
    def get_statistics(self) -> Dict[str, Any]:
        """Get vector store statistics"""
        
        if self.index is None:
            return {'error': 'Vector store not initialized'}
        
        # Calculate statistics from metadata
        chunk_types = {}
        importance_distribution = {'low': 0, 'medium': 0, 'high': 0, 'critical': 0}
        sources = {}
        
        for meta in self.metadata:
            # Chunk types
            chunk_type = meta.get('chunk_type', 'unknown')
            chunk_types[chunk_type] = chunk_types.get(chunk_type, 0) + 1
            
            # Importance distribution
            importance = meta.get('clinical_importance', 0)
            if importance >= 0.9:
                importance_distribution['critical'] += 1
            elif importance >= 0.7:
                importance_distribution['high'] += 1
            elif importance >= 0.5:
                importance_distribution['medium'] += 1
            else:
                importance_distribution['low'] += 1
            
            # Sources
            source = meta.get('source', 'unknown')
            sources[source] = sources.get(source, 0) + 1
        
        return {
            'total_chunks': self.index.ntotal,
            'embedding_dimension': self.embedding_dimension,
            'embedding_model': self.embedding_model_name,
            'chunk_type_distribution': chunk_types,
            'clinical_importance_distribution': importance_distribution,
            'source_distribution': dict(list(sources.items())[:10]),  # Top 10 sources
            'vector_store_size_mb': self.index_file.stat().st_size / (1024*1024) if self.index_file.exists() else 0
        }

def main():
    """Main function to create and test vector store"""
    logger.info("πŸš€ Creating Maternal Health Vector Store...")
    
    # Create vector store manager
    vector_store = MaternalHealthVectorStore()
    
    # Create the vector index
    success = vector_store.create_vector_index()
    
    if not success:
        logger.error("❌ Failed to create vector store")
        return
    
    # Test searches
    logger.info("\nπŸ” Testing search functionality...")
    
    test_queries = [
        "What is the recommended dosage of magnesium sulfate for preeclampsia?",
        "How to manage postpartum hemorrhage in emergency situations?",
        "Signs and symptoms of puerperal sepsis",
        "Normal fetal heart rate during labor"
    ]
    
    for query in test_queries:
        logger.info(f"\nπŸ“ Query: {query}")
        
        results = vector_store.search(query, k=3)
        
        for i, result in enumerate(results, 1):
            logger.info(f"  {i}. Score: {result.score:.3f} | Type: {result.chunk_type} | "
                       f"Importance: {result.clinical_importance:.2f}")
            logger.info(f"     Content: {result.content[:100]}...")
    
    # Get statistics
    stats = vector_store.get_statistics()
    logger.info("\nπŸ“Š Vector Store Statistics:")
    logger.info(f"  Total chunks: {stats['total_chunks']}")
    logger.info(f"  Embedding dimension: {stats['embedding_dimension']}")
    logger.info(f"  High importance chunks: {stats['clinical_importance_distribution']['high'] + stats['clinical_importance_distribution']['critical']}")
    logger.info(f"  Vector store size: {stats['vector_store_size_mb']:.1f} MB")
    
    logger.info("\nβœ… Vector store creation and testing complete!")

if __name__ == "__main__":
    main()