File size: 14,017 Bytes
19aaa42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
"""
Simple Medical Chatbot Interface v2.0
Beautiful Gradio interface for the simplified medical RAG system
"""

import gradio as gr
import time
import json
from datetime import datetime
from typing import List, Tuple, Dict, Any

# Import our simplified medical RAG system
from simple_medical_rag import SimpleMedicalRAG, MedicalResponse

class SimpleMedicalChatbot:
    """Professional medical chatbot interface using simplified RAG system"""
    
    def __init__(self):
        """Initialize the medical chatbot"""
        self.rag_system = None
        self.chat_history = []
        self.session_stats = {
            "queries_processed": 0,
            "total_response_time": 0,
            "avg_confidence": 0,
            "session_start": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
        }
        
        # Initialize RAG system
        self._initialize_rag_system()
    
    def _initialize_rag_system(self):
        """Initialize the RAG system"""
        try:
            print("πŸš€ Initializing Medical RAG System...")
            self.rag_system = SimpleMedicalRAG()
            print("βœ… Medical RAG System initialized successfully!")
        except Exception as e:
            print(f"❌ Error initializing RAG system: {e}")
            self.rag_system = None
    
    def process_query(self, query: str, history: List[Tuple[str, str]]) -> Tuple[List[Tuple[str, str]], str]:
        """Process medical query and return response"""
        if not self.rag_system:
            error_msg = "❌ **System Error**: Medical RAG system not initialized. Please refresh and try again."
            history.append((query, error_msg))
            return history, ""
        
        if not query.strip():
            return history, ""
        
        start_time = time.time()
        
        try:
            # Process query with RAG system
            response = self.rag_system.query(query, k=5)
            
            # Format response for display
            formatted_response = self._format_response_for_display(response)
            
            # Update session statistics
            query_time = time.time() - start_time
            self._update_session_stats(query_time, response.confidence)
            
            # Add to chat history
            history.append((query, formatted_response))
            
            return history, ""
            
        except Exception as e:
            error_msg = f"❌ **Error processing query**: {str(e)}\n\n⚠️ Please try rephrasing your question or contact support."
            history.append((query, error_msg))
            return history, ""
    
    def _format_response_for_display(self, response: MedicalResponse) -> str:
        """Format medical response for beautiful display in Gradio"""
        
        # Confidence level indicator
        confidence_emoji = "🟒" if response.confidence > 0.7 else "🟑" if response.confidence > 0.5 else "πŸ”΄"
        confidence_text = f"{confidence_emoji} **Confidence: {response.confidence:.1%}**"
        
        # Response type indicator
        type_emoji = "πŸ’Š" if "dosage" in response.response_type else "🚨" if "emergency" in response.response_type else "πŸ₯"
        
        # Main response
        formatted_response = f"""
{type_emoji} **Medical Information**

{response.answer}

---

πŸ“Š **Response Details**
{confidence_text}
πŸ“š **Sources**: {len(response.sources)} documents referenced

"""
        
        # Add top sources
        if response.sources:
            formatted_response += "πŸ“– **Primary Sources**:\n"
            for i, source in enumerate(response.sources[:3], 1):
                doc_name = source['document'].replace('.pdf', '').replace('-', ' ').title()
                formatted_response += f"{i}. {doc_name} (Relevance: {source['relevance_score']:.1%})\n"
            formatted_response += "\n"
        
        # Add medical disclaimer
        formatted_response += f"""
---

{response.medical_disclaimer}

πŸ”— **Note**: This response is based on Sri Lankan maternal health guidelines and should be used in conjunction with current clinical protocols.
"""
        
        return formatted_response
    
    def _update_session_stats(self, query_time: float, confidence: float):
        """Update session statistics"""
        self.session_stats["queries_processed"] += 1
        self.session_stats["total_response_time"] += query_time
        
        # Update average confidence
        current_avg = self.session_stats["avg_confidence"]
        queries = self.session_stats["queries_processed"]
        self.session_stats["avg_confidence"] = ((current_avg * (queries - 1)) + confidence) / queries
    
    def get_system_info(self) -> str:
        """Get system information for display"""
        if not self.rag_system:
            return "❌ **System Status**: Not initialized"
        
        try:
            stats = self.rag_system.get_system_stats()
            
            system_info = f"""
πŸ₯ **Sri Lankan Maternal Health Assistant v2.0**

πŸ“Š **System Status**: {stats['status'].upper()} βœ…

**Knowledge Base**:
β€’ πŸ“š Total Documents: {stats['vector_store']['total_chunks']:,} medical chunks
β€’ 🧠 Embedding Model: {stats['vector_store']['embedding_model']}
β€’ πŸ’Ύ Vector Store Size: {stats['vector_store']['vector_store_size_mb']} MB
β€’ ⚑ Approach: Simplified document-based retrieval

**Content Distribution**:
"""
            
            # Add content distribution
            for content_type, count in stats['vector_store']['content_type_distribution'].items():
                percentage = (count / stats['vector_store']['total_chunks']) * 100
                content_info = content_type.replace('_', ' ').title()
                system_info += f"β€’ {content_info}: {count:,} chunks ({percentage:.1f}%)\n"
            
            return system_info
            
        except Exception as e:
            return f"❌ **Error retrieving system info**: {str(e)}"
    
    def get_session_stats(self) -> str:
        """Get session statistics for display"""
        if self.session_stats["queries_processed"] == 0:
            return "πŸ“ˆ **Session Statistics**: No queries processed yet"
        
        avg_response_time = self.session_stats["total_response_time"] / self.session_stats["queries_processed"]
        
        return f"""
πŸ“ˆ **Session Statistics**

πŸ• **Session Started**: {self.session_stats["session_start"]}
πŸ“ **Queries Processed**: {self.session_stats["queries_processed"]}
⚑ **Avg Response Time**: {avg_response_time:.2f} seconds
🎯 **Avg Confidence**: {self.session_stats["avg_confidence"]:.1%}
"""
    
    def clear_chat(self) -> Tuple[List, str]:
        """Clear chat history"""
        self.chat_history = []
        return [], ""
    
    def get_example_queries(self) -> List[str]:
        """Get example medical queries"""
        return [
            "What is the dosage of magnesium sulfate for preeclampsia?",
            "How to manage postpartum hemorrhage emergency?",
            "Normal fetal heart rate during labor monitoring?",
            "Management protocol for breech delivery?",
            "Antenatal care schedule for high-risk pregnancies?",
            "Signs and symptoms of preeclampsia?",
            "When to perform cesarean delivery?",
            "Postpartum care guidelines for new mothers?"
        ]

def create_medical_chatbot_interface():
    """Create the main Gradio interface"""
    
    # Initialize chatbot
    chatbot = SimpleMedicalChatbot()
    
    # Custom CSS for medical theme
    css = """
    .gradio-container {
        background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
        font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
    }
    
    .medical-header {
        background: white;
        padding: 20px;
        border-radius: 10px;
        margin-bottom: 20px;
        box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
    }
    
    .chat-container {
        background: white;
        border-radius: 15px;
        box-shadow: 0 8px 25px rgba(0, 0, 0, 0.1);
    }
    
    .medical-disclaimer {
        background: #fff3cd;
        border: 1px solid #ffeaa7;
        border-radius: 8px;
        padding: 15px;
        margin: 10px 0;
        color: #856404;
    }
    
    .example-queries {
        background: #e8f5e8;
        border-radius: 8px;
        padding: 15px;
        margin: 10px 0;
    }
    """
    
    with gr.Blocks(css=css, title="Sri Lankan Maternal Health Assistant", theme=gr.themes.Soft()) as interface:
        
        # Header
        gr.Markdown("""
        # πŸ₯ Sri Lankan Maternal Health Assistant v2.0
        ### Simplified Document-Based Medical RAG System
        
        **Professional medical guidance based on Sri Lankan maternal health guidelines**
        """, elem_classes=["medical-header"])
        
        with gr.Row():
            with gr.Column(scale=2):
                # Main chat interface
                with gr.Group(elem_classes=["chat-container"]):
                    gr.Markdown("## πŸ’¬ Medical Query Interface")
                    
                    chatbot_display = gr.Chatbot(
                        label="Medical Assistant",
                        height=500,
                        show_label=False,
                        container=True,
                        bubble_full_width=False
                    )
                    
                    with gr.Row():
                        query_input = gr.Textbox(
                            placeholder="Ask a medical question about maternal health...",
                            label="Your Medical Query",
                            lines=2,
                            scale=4
                        )
                        submit_btn = gr.Button("πŸ” Ask", variant="primary", scale=1)
                    
                    with gr.Row():
                        clear_btn = gr.Button("πŸ—‘οΈ Clear Chat", variant="secondary")
                        refresh_btn = gr.Button("πŸ”„ Refresh System", variant="secondary")
            
            with gr.Column(scale=1):
                # System information and examples
                with gr.Group():
                    gr.Markdown("## πŸ“Š System Information")
                    system_info_display = gr.Markdown(
                        chatbot.get_system_info(),
                        label="System Status"
                    )
                
                with gr.Group():
                    gr.Markdown("## πŸ“ˆ Session Statistics")
                    session_stats_display = gr.Markdown(
                        chatbot.get_session_stats(),
                        label="Current Session"
                    )
                
                # Example queries
                with gr.Group(elem_classes=["example-queries"]):
                    gr.Markdown("## πŸ’‘ Example Queries")
                    example_queries = chatbot.get_example_queries()
                    
                    for i, example in enumerate(example_queries[:4]):
                        example_btn = gr.Button(
                            f"πŸ“ {example}",
                            variant="secondary",
                            size="sm"
                        )
                        example_btn.click(
                            fn=lambda x=example: x,
                            outputs=query_input
                        )
        
        # Medical disclaimer
        gr.Markdown("""
        ## ⚠️ Important Medical Disclaimer
        
        This system provides information from Sri Lankan maternal health guidelines for **educational purposes only**. 
        
        **Always consult qualified healthcare providers for**:
        - Medical decisions and patient care
        - Emergency medical situations  
        - Clinical diagnosis and treatment
        - Medication administration
        
        This tool is designed to **supplement**, not replace, professional medical judgment.
        """, elem_classes=["medical-disclaimer"])
        
        # Event handlers
        def submit_query(query, history):
            """Handle query submission"""
            new_history, _ = chatbot.process_query(query, history)
            return new_history, "", chatbot.get_session_stats()
        
        def refresh_system():
            """Refresh system information"""
            return chatbot.get_system_info(), chatbot.get_session_stats()
        
        def clear_chat_handler():
            """Handle chat clearing"""
            new_history, _ = chatbot.clear_chat()
            return new_history, "", chatbot.get_session_stats()
        
        # Connect event handlers
        submit_btn.click(
            fn=submit_query,
            inputs=[query_input, chatbot_display],
            outputs=[chatbot_display, query_input, session_stats_display]
        )
        
        query_input.submit(
            fn=submit_query,
            inputs=[query_input, chatbot_display],
            outputs=[chatbot_display, query_input, session_stats_display]
        )
        
        clear_btn.click(
            fn=clear_chat_handler,
            inputs=[],
            outputs=[chatbot_display, query_input, session_stats_display]
        )
        
        refresh_btn.click(
            fn=refresh_system,
            inputs=[],
            outputs=[system_info_display, session_stats_display]
        )
    
    return interface

def main():
    """Main function to launch the medical chatbot"""
    print("πŸš€ Launching Sri Lankan Maternal Health Assistant v2.0")
    print("=" * 60)
    
    # Create and launch interface
    interface = create_medical_chatbot_interface()
    
    # Launch with custom settings
    interface.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=True,  # Enable public sharing
        show_error=True,
        inbrowser=True,
        debug=True
    )

if __name__ == "__main__":
    main()