File size: 11,894 Bytes
260bcd1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 |
"""
监控中间件
提供自动化的性能监控装饰器和工具
"""
import time
import functools
import threading
from typing import Callable, Any, Dict, Optional
from datetime import datetime
from .metrics_service import get_metrics_service, MetricsService
from ..logging.logging_service import get_logging_service, ILoggingService
class MonitoringMiddleware:
"""监控中间件类"""
def __init__(self,
metrics_service: Optional[MetricsService] = None,
logger_service: Optional[ILoggingService] = None):
"""初始化监控中间件
Args:
metrics_service: 指标服务实例
logger_service: 日志服务实例
"""
self._metrics_service = metrics_service or get_metrics_service()
self._logger = logger_service or get_logging_service()
# 线程本地存储,用于跟踪请求上下文
self._local = threading.local()
self._logger.info("监控中间件初始化完成")
def set_request_context(self, **context):
"""设置请求上下文
Args:
**context: 上下文键值对
"""
if not hasattr(self._local, 'context'):
self._local.context = {}
self._local.context.update(context)
def get_request_context(self) -> Dict[str, Any]:
"""获取当前请求上下文
Returns:
上下文字典
"""
if hasattr(self._local, 'context'):
return self._local.context.copy()
return {}
def clear_request_context(self):
"""清除请求上下文"""
if hasattr(self._local, 'context'):
self._local.context.clear()
# 全局中间件实例
_middleware_instance: Optional[MonitoringMiddleware] = None
_middleware_lock = threading.Lock()
def get_monitoring_middleware() -> MonitoringMiddleware:
"""获取监控中间件单例实例"""
global _middleware_instance
if _middleware_instance is None:
with _middleware_lock:
if _middleware_instance is None:
_middleware_instance = MonitoringMiddleware()
return _middleware_instance
def monitor_performance(
metric_name: Optional[str] = None,
include_args: bool = False,
include_result: bool = False,
tags: Optional[Dict[str, str]] = None
):
"""性能监控装饰器
Args:
metric_name: 自定义指标名称,默认使用函数名
include_args: 是否在日志中包含参数
include_result: 是否在日志中包含返回值
tags: 额外的标签
"""
def decorator(func: Callable) -> Callable:
@functools.wraps(func)
def wrapper(*args, **kwargs):
middleware = get_monitoring_middleware()
metrics_service = middleware._metrics_service
logger = middleware._logger
# 生成指标名称
name = metric_name or f"{func.__module__}.{func.__name__}"
# 获取上下文
context = middleware.get_request_context()
# 合并标签
all_tags = {
'function': func.__name__,
'module': func.__module__,
**context,
**(tags or {})
}
start_time = time.time()
try:
# 记录函数开始
logger.debug(f"开始执行函数: {name}", extra={
'function_name': name,
'args': args if include_args else '<隐藏>',
'kwargs': kwargs if include_args else '<隐藏>',
'tags': all_tags
})
# 执行函数
result = func(*args, **kwargs)
# 计算执行时间
execution_time = time.time() - start_time
# 记录性能指标
metrics_service.record_histogram(
f"{name}_duration",
execution_time,
all_tags
)
# 记录成功计数
metrics_service.increment_counter(
f"{name}_success_total",
all_tags
)
# 记录函数完成
logger.debug(f"函数执行完成: {name}", extra={
'function_name': name,
'execution_time': execution_time,
'result': result if include_result else '<隐藏>',
'success': True,
'tags': all_tags
})
return result
except Exception as e:
# 计算执行时间(即使失败)
execution_time = time.time() - start_time
# 记录错误指标
error_tags = {**all_tags, 'error_type': type(e).__name__}
metrics_service.record_histogram(
f"{name}_duration",
execution_time,
error_tags
)
metrics_service.increment_counter(
f"{name}_error_total",
error_tags
)
# 记录错误日志
logger.error(f"函数执行失败: {name}", exception=e, extra={
'function_name': name,
'execution_time': execution_time,
'error_type': type(e).__name__,
'success': False,
'tags': all_tags
})
raise
return wrapper
return decorator
def track_metrics(
counter_name: Optional[str] = None,
gauge_name: Optional[str] = None,
histogram_name: Optional[str] = None,
tags: Optional[Dict[str, str]] = None
):
"""指标跟踪装饰器
Args:
counter_name: 计数器名称
gauge_name: 测量值名称
histogram_name: 直方图名称
tags: 标签
"""
def decorator(func: Callable) -> Callable:
@functools.wraps(func)
def wrapper(*args, **kwargs):
middleware = get_monitoring_middleware()
metrics_service = middleware._metrics_service
# 获取上下文
context = middleware.get_request_context()
all_tags = {**context, **(tags or {})}
try:
# 记录计数器
if counter_name:
metrics_service.increment_counter(counter_name, all_tags)
# 执行函数
result = func(*args, **kwargs)
# 记录测量值(如果结果是数字)
if gauge_name and isinstance(result, (int, float)):
metrics_service.record_metric(gauge_name, result, all_tags)
# 记录直方图(如果结果是数字)
if histogram_name and isinstance(result, (int, float)):
metrics_service.record_histogram(histogram_name, result, all_tags)
return result
except Exception:
# 记录错误计数
if counter_name:
error_tags = {**all_tags, 'status': 'error'}
metrics_service.increment_counter(f"{counter_name}_error", error_tags)
raise
return wrapper
return decorator
class RAGMetricsTracker:
"""RAG特定指标跟踪器"""
def __init__(self, metrics_service: Optional[MetricsService] = None):
"""初始化RAG指标跟踪器
Args:
metrics_service: 指标服务实例
"""
self._metrics_service = metrics_service or get_metrics_service()
def track_document_processing(self,
document_count: int,
processing_time: float,
**tags):
"""跟踪文档处理指标
Args:
document_count: 处理的文档数量
processing_time: 处理时间
**tags: 额外标签
"""
base_tags = {'operation': 'document_processing', **tags}
self._metrics_service.record_metric(
'rag_documents_processed',
document_count,
base_tags
)
self._metrics_service.record_histogram(
'rag_document_processing_time',
processing_time,
base_tags
)
self._metrics_service.increment_counter(
'rag_document_processing_total',
base_tags
)
def track_query_processing(self,
query: str,
response_time: float,
retrieval_count: int,
context_length: int,
**tags):
"""跟踪查询处理指标
Args:
query: 查询内容
response_time: 响应时间
retrieval_count: 检索文档数量
context_length: 上下文长度
**tags: 额外标签
"""
base_tags = {
'operation': 'query_processing',
'query_length_bucket': self._get_length_bucket(len(query)),
**tags
}
# 使用现有的record_rag_metrics方法
self._metrics_service.record_rag_metrics(
query=query,
response_time=response_time,
retrieval_count=retrieval_count,
context_length=context_length,
**base_tags
)
def track_vector_operation(self,
operation: str,
vector_count: int,
operation_time: float,
**tags):
"""跟踪向量操作指标
Args:
operation: 操作类型 (index, search, etc.)
vector_count: 向量数量
operation_time: 操作时间
**tags: 额外标签
"""
base_tags = {
'operation': f'vector_{operation}',
'vector_count_bucket': self._get_count_bucket(vector_count),
**tags
}
self._metrics_service.record_metric(
f'rag_vector_{operation}_count',
vector_count,
base_tags
)
self._metrics_service.record_histogram(
f'rag_vector_{operation}_time',
operation_time,
base_tags
)
self._metrics_service.increment_counter(
f'rag_vector_{operation}_total',
base_tags
)
def _get_length_bucket(self, length: int) -> str:
"""获取长度分桶
Args:
length: 长度值
Returns:
分桶名称
"""
if length <= 50:
return 'short'
elif length <= 200:
return 'medium'
elif length <= 500:
return 'long'
else:
return 'very_long'
def _get_count_bucket(self, count: int) -> str:
"""获取计数分桶
Args:
count: 计数值
Returns:
分桶名称
"""
if count <= 5:
return 'small'
elif count <= 20:
return 'medium'
elif count <= 100:
return 'large'
else:
return 'very_large'
# RAG指标跟踪器实例
_rag_tracker_instance: Optional[RAGMetricsTracker] = None
_rag_tracker_lock = threading.Lock()
def get_rag_metrics_tracker() -> RAGMetricsTracker:
"""获取RAG指标跟踪器单例实例"""
global _rag_tracker_instance
if _rag_tracker_instance is None:
with _rag_tracker_lock:
if _rag_tracker_instance is None:
_rag_tracker_instance = RAGMetricsTracker()
return _rag_tracker_instance |