File size: 1,700 Bytes
92d7f1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import streamlit as st
import torch
from transformers import AutoModelForCausalLM

def get_model_structure(model_id):
    model = AutoModelForCausalLM.from_pretrained(
        model_id,
        torch_dtype=torch.bfloat16,
        device_map="cpu",
    )
    structure = {k: v.shape for k, v in model.state_dict().items()}
    return structure

def compare_structures(struct1, struct2):
    keys1 = set(struct1.keys())
    keys2 = set(struct2.keys())
    all_keys = keys1.union(keys2)
    
    diff = []
    for key in all_keys:
        shape1 = struct1.get(key)
        shape2 = struct2.get(key)
        if shape1 != shape2:
            diff.append((key, shape1, shape2))
    return diff

def display_diff(diff):
    left_lines = []
    right_lines = []
    
    for key, shape1, shape2 in diff:
        left_lines.append(f"{key}: {shape1}")
        right_lines.append(f"{key}: {shape2}")
    
    left_html = "<br>".join(left_lines)
    right_html = "<br>".join(right_lines)
    
    return left_html, right_html

st.title("Model Structure Comparison Tool")
model_id1 = st.text_input("Enter the first HuggingFace Model ID")
model_id2 = st.text_input("Enter the second HuggingFace Model ID")

if model_id1 and model_id2:
    struct1 = get_model_structure(model_id1)
    struct2 = get_model_structure(model_id2)
    
    diff = compare_structures(struct1, struct2)
    left_html, right_html = display_diff(diff)
    
    st.write("### Comparison Result")
    col1, col2 = st.columns(2)
    
    with col1:
        st.write("### Model 1")
        st.markdown(left_html, unsafe_allow_html=True)
    
    with col2:
        st.write("### Model 2")
        st.markdown(right_html, unsafe_allow_html=True)