Spaces:
Running
Running
File size: 14,099 Bytes
fc94552 82211db fc94552 5224787 fc94552 05dad7c 5224787 05dad7c 8e27b3a fc94552 b6cdcfd fc94552 05dad7c fc94552 9aa56c6 fc94552 9da624c 90267c3 1a945f1 fc94552 05dad7c fc94552 b6cdcfd fc94552 5094d9c 9aa56c6 fc94552 05dad7c 996d2c2 fc94552 8e27b3a 4ce1c62 9aa56c6 3a342ac fc94552 82b3c12 fc94552 4ce1c62 3a342ac 4ce1c62 05dad7c 82b3c12 9aa56c6 fc94552 c88afb5 fc94552 4ce1c62 fc94552 b6cdcfd 82b3c12 fc94552 4ce1c62 fc94552 05dad7c fc94552 1959778 fc94552 9aa56c6 fc94552 9aa56c6 fc94552 571f6f2 fc94552 33c45f1 b6cdcfd 5224787 63a3c84 05dad7c 5224787 9aa56c6 68804d2 996d2c2 68804d2 996d2c2 05dad7c 996d2c2 68804d2 996d2c2 c88afb5 05dad7c c88afb5 05dad7c c88afb5 571f6f2 c88afb5 1959778 c88afb5 05dad7c c88afb5 05dad7c 727b706 05dad7c 996d2c2 05dad7c 996d2c2 0f55ff6 05dad7c b6cdcfd 58ae022 996d2c2 05dad7c 996d2c2 05dad7c 1959778 05dad7c 1959778 25a23d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
import streamlit as st
import requests
import pandas as pd
import tempfile
import os
import plotly.express as px
from datetime import datetime
import uuid
# Simulated in-memory storage for churn log
if "churn_log" not in st.session_state:
st.session_state.churn_log = []
st.set_page_config(page_title="ChurnSight AI", page_icon="π§ ", layout="wide")
if os.path.exists("logo.png"):
st.image("logo.png", width=180)
# Session state setup
defaults = {
"review": "",
"dark_mode": False,
"intelligence_mode": True,
"trigger_example_analysis": False,
"last_response": None,
"followup_answer": None,
"use_aspects": False,
"use_explain_bulk": False
}
for k, v in defaults.items():
if k not in st.session_state:
st.session_state[k] = v
# Dark mode styling
if st.session_state.dark_mode:
st.markdown("""
<style>
html, body, [class*="st-"] {
background-color: #121212;
color: #f5f5f5;
}
</style>
""", unsafe_allow_html=True)
# Sidebar config
with st.sidebar:
st.header("βοΈ PM Config")
st.session_state.dark_mode = st.toggle("π Dark Mode", value=st.session_state.dark_mode)
st.session_state.intelligence_mode = st.toggle("π§ Intelligence Mode", value=st.session_state.intelligence_mode)
api_token = st.text_input("π API Token", value="my-secret-key", type="password")
if api_token.strip() == "my-secret-key":
st.warning("π§ͺ Demo Mode β Not all features are active. Add your API token to unlock full features.")
backend_url = st.text_input("π Backend URL", value="http://localhost:8000")
sentiment_model = st.selectbox("π Sentiment Model", ["Auto-detect", "distilbert-base-uncased-finetuned-sst-2-english"])
industry = st.selectbox("π Industry", ["Auto-detect", "Generic", "E-commerce", "Healthcare", "Education"])
product_category = st.selectbox("π§© Product Category", ["Auto-detect", "General", "Mobile Devices", "Laptops"])
st.session_state.use_aspects = st.checkbox("π Detect Pain Points", value=st.session_state.get("use_aspects", False))
st.session_state.use_explain_bulk = st.checkbox("π§ Generate PM Insight (Bulk)", value=st.session_state.get("use_explain_bulk", False))
verbosity = st.radio("π£οΈ Response Style", ["Brief", "Detailed"])
tab1, tab2 = st.tabs(["π§ Analyze Review", "π Bulk Reviews"])
# === SINGLE REVIEW ANALYSIS ===
with tab1:
st.title("π ChurnSight AI β Product Feedback Assistant")
st.markdown("Analyze feedback to detect churn risk, extract pain points, and support product decisions.")
review = st.text_area("π Enter Customer Feedback", value=st.session_state.review, height=180)
if review and (len(review.split()) < 20 or len(review.split()) > 50):
st.warning("β οΈ For best results, keep the review between 20 to 50 words.")
st.session_state.review = review
analyze = False
col1, col2, col3 = st.columns(3)
with col1:
analyze = st.button("π Analyze", disabled=not (20 <= len(review.split()) <= 50))
with col2:
if st.button("π² Example"):
st.session_state.review = (
"The app crashes every time I try to checkout. It's so slow and unresponsive. "
"Customer support never replied. I'm switching to another brand."
)
st.session_state.trigger_example_analysis = True
st.rerun()
with col3:
if st.button("π§Ή Clear"):
for key in ["review", "last_response", "followup_answer"]:
st.session_state[key] = ""
st.rerun()
if st.session_state.review and (analyze or st.session_state.get("trigger_example_analysis")):
with st.spinner("Analyzing feedback..."):
try:
model_used = None if sentiment_model == "Auto-detect" else sentiment_model
payload = {
"text": st.session_state.review,
"model": model_used or "distilbert-base-uncased-finetuned-sst-2-english",
"industry": industry,
"product_category": product_category,
"verbosity": verbosity,
"aspects": st.session_state.use_aspects,
"intelligence": st.session_state.get("intelligence_mode", False)
}
headers = {"x-api-key": st.session_state.get("api_token", "my-secret-key")}
res = requests.post(f"{backend_url}/analyze/", json=payload, headers=headers)
if res.ok:
st.session_state.last_response = res.json()
else:
try:
err_detail = res.json().get("detail", "No detail provided.")
except Exception:
err_detail = res.text
st.error(f"β Backend Error ({res.status_code}): {err_detail}")
except Exception as e:
st.error(f"π« Exception: {e}")
data = st.session_state.last_response
if data:
st.subheader("π PM Insight Summary")
st.info(data["summary"])
st.markdown(f"**Industry:** `{data['industry']}` | **Category:** `{data['product_category']}` | **Device:** Web")
st.metric("π Sentiment", data["sentiment"]["label"], delta=f"{data['sentiment']['score']:.2%}")
st.progress(data["sentiment"]["score"])
st.info(f"π’ Emotion: {data['emotion']}")
if "churn_risk" in data:
risk = data["churn_risk"]
color = "π΄" if risk == "High Risk" else "π’"
st.metric("π¨ Churn Risk", f"{color} {risk}")
if st.session_state.use_aspects:
if data.get("pain_points"):
st.error("π Pain Points: " + ", ".join(data["pain_points"]))
else:
st.info("β
No specific pain points were detected.")
try:
st.session_state.churn_log.append({
"timestamp": datetime.now(),
"product": data.get("product_category", "General"),
"churn_risk": data.get("churn_risk", "Unknown"),
"session_id": str(uuid.uuid4())
})
if len(st.session_state.churn_log) > 1000:
st.session_state.churn_log = st.session_state.churn_log[-1000:]
except Exception as e:
st.warning(f"π§ͺ Logging failed: {e}")
st.markdown("### π Ask a Follow-Up")
sentiment = data["sentiment"]["label"].lower()
churn = data.get("churn_risk", "")
pain = data.get("pain_points", [])
if sentiment == "positive" and churn == "Low Risk":
suggestions = [
"What features impressed the user?",
"Would they recommend the product?",
"What benefits did they mention?",
"What made their experience smooth?"
]
elif churn == "High Risk":
suggestions = [
"What made the user upset?",
"Is this user likely to churn?",
"What were the major complaints?",
"What could improve their experience?"
]
else:
suggestions = [
"What are the key takeaways?",
"Is there any concern raised?",
"Did the user express dissatisfaction?",
"Is this feedback actionable?"
]
selected_q = st.selectbox("π‘ Suggested Questions", ["Type your own..."] + suggestions)
q_input = st.text_input("π Your Question") if selected_q == "Type your own..." else selected_q
if q_input:
try:
follow_payload = {
"text": st.session_state.review,
"question": q_input,
"verbosity": verbosity
}
headers = {"x-api-key": api_token}
res = requests.post(f"{backend_url}/followup/", json=follow_payload, headers=headers)
if res.ok:
st.success(res.json().get("answer"))
else:
try:
err_detail = res.json().get("detail", "No detail provided.")
except Exception:
err_detail = res.text
st.error(f"β Follow-up API Error ({res.status_code}): {err_detail}")
except Exception as e:
st.error(f"β οΈ Follow-up error: {e}")
if st.checkbox("π Show Churn Risk Trends"):
try:
df = pd.DataFrame(st.session_state.churn_log)
df["date"] = pd.to_datetime(df["timestamp"]).dt.date
trend = df.groupby(["date", "churn_risk"]).size().unstack(fill_value=0).reset_index()
y_columns = [col for col in trend.columns if col != "date"]
st.markdown("#### π
Daily Churn Trend")
fig = px.bar(trend, x="date", y=y_columns, barmode="group")
st.plotly_chart(fig, use_container_width=True)
st.download_button("β¬οΈ Export Trend CSV", trend.to_csv(index=False), "churn_trend.csv")
except Exception as e:
st.error(f"Trend error: {e}")
# === BULK REVIEW ANALYSIS ===
with tab2:
st.title("π Bulk Feedback Analysis")
st.markdown("#### π₯ Upload CSV or Paste Reviews")
uploaded_file = st.file_uploader("Upload a CSV with a 'review' column", type=["csv"])
bulk_input = st.text_area("Or paste multiple reviews (one per line)", height=180)
reviews = []
if uploaded_file is not None:
try:
df_csv = pd.read_csv(uploaded_file)
if "review" in df_csv.columns:
reviews = df_csv["review"].dropna().astype(str).tolist()
else:
st.warning("CSV must contain a 'review' column.")
except Exception as e:
st.error(f"CSV error: {e}")
elif bulk_input.strip():
reviews = [line.strip() for line in bulk_input.split("\\n") if line.strip()]
st.markdown("#### π§ Bulk Analysis Configuration")
explain_bulk = st.checkbox("π§ Generate Explanations", value=st.session_state.get("use_explain_bulk", False))
enable_followups = st.checkbox("π¬ Generate Follow-Up Q&A", value=True)
if st.button("π Analyze Bulk") and reviews:
payload = {
"reviews": reviews,
"model": "distilbert-base-uncased-finetuned-sst-2-english" if sentiment_model == "Auto-detect" else sentiment_model,
"industry": None,
"product_category": None,
"device": None,
"aspects": st.session_state.use_aspects,
"intelligence": st.session_state.intelligence_mode,
"explain_bulk": explain_bulk,
"follow_up": [["What is the issue here?", "What could be improved?"]] * len(reviews) if enable_followups else None
}
try:
res = requests.post(f"{backend_url}/bulk/?token={api_token}", json=payload)
if res.ok:
results = res.json().get("results", [])
df = pd.DataFrame(results)
st.dataframe(df)
if any("follow_up" in r for r in results):
st.markdown("### π¬ Follow-Up Answers")
for r in results:
st.markdown(f"**Review:** {r['review']}")
if isinstance(r.get("follow_up"), list):
for ans in r["follow_up"]:
st.info(ans)
elif "follow_up" in r:
st.info(r["follow_up"])
if "churn_risk" in df.columns:
st.markdown("### π Churn Risk Chart")
churn_summary = df["churn_risk"].value_counts().reset_index()
churn_summary.columns = ["Churn Risk", "Count"]
fig = px.pie(churn_summary, names="Churn Risk", values="Count", title="Churn Risk Distribution")
st.plotly_chart(fig, use_container_width=True)
st.download_button("β¬οΈ Export Results CSV", df.to_csv(index=False), "bulk_results.csv")
else:
try:
err_detail = res.json().get("detail", "No detail provided.")
except Exception:
err_detail = res.text
st.error(f"β Bulk API Error ({res.status_code}): {err_detail}")
except Exception as e:
st.error(f"Bulk analysis failed: {e}")
# === ROOT CAUSE & FIX (AI Product Triage) ===
tab3 = st.container()
with tab3:
st.title("π οΈ Root Cause & Fix Suggestion")
st.markdown("Get AI-generated issue triage from user feedback.")
triage_input = st.text_area("π Paste a customer review or complaint here")
if st.button("π€ Analyze Root Cause"):
if len(triage_input.strip().split()) < 5:
st.warning("Please enter at least one complete issue or sentence.")
else:
with st.spinner("Analyzing..."):
try:
res = requests.post(f"{backend_url}/rootcause/", json={"text": triage_input}, headers={"x-api-key": api_token})
if res.ok:
triage = res.json()
st.success("β
Analysis complete")
st.markdown("### π§© Detected Problem")
st.info(triage.get("problem", "β"))
st.markdown("### π οΈ Inferred Root Cause")
st.warning(triage.get("cause", "β"))
st.markdown("### π‘ Suggested Fix or Team")
st.success(triage.get("suggestion", "β"))
else:
st.error(f"API Error: {res.status_code}")
except Exception as e:
st.error(f"Root cause analysis failed: {e}") |