File size: 11,389 Bytes
b293d47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import os
import traceback

import gradio as gr

from gui.asset_components import AssetComponentsUtils
from gui.ui_abstract_component import AbstractComponentUI
from gui.ui_components_html import GradioComponentsHTML
from shortGPT.audio.edge_voice_module import EdgeTTSVoiceModule
from shortGPT.audio.eleven_voice_module import ElevenLabsVoiceModule
from shortGPT.audio.coqui_voice_module import CoquiVoiceModule
from shortGPT.config.api_db import ApiKeyManager
from shortGPT.config.languages import (EDGE_TTS_VOICENAME_MAPPING,
                                       ELEVEN_SUPPORTED_LANGUAGES,
                                       COQUI_SUPPORTED_LANGUAGES,
                                       LANGUAGE_ACRONYM_MAPPING,
                                       Language)
from shortGPT.engine.facts_short_engine import FactsShortEngine
from shortGPT.engine.reddit_short_engine import RedditShortEngine


class ShortAutomationUI(AbstractComponentUI):
    def __init__(self, shortGptUI: gr.Blocks):
        self.shortGptUI = shortGptUI
        self.embedHTML = '<div style="display: flex; overflow-x: auto; gap: 20px;">'
        self.progress_counter = 0
        self.short_automation = None

    def create_ui(self):
        with gr.Row(visible=False) as short_automation:
            with gr.Column():
                numShorts = gr.Number(label="Number of shorts", minimum=1, value=1)
                short_type = gr.Radio(["Reddit Story shorts", "Historical Facts shorts", "Scientific Facts shorts", "Custom Facts shorts"], label="Type of shorts generated", value="Scientific Facts shorts", interactive=True)
                facts_subject = gr.Textbox(label="Write a subject for your facts (example: Football facts)", interactive=True, visible=False)
                short_type.change(lambda x: gr.update(visible=x == "Custom Facts shorts"), [short_type], [facts_subject])
                tts_engine = gr.Radio([AssetComponentsUtils.ELEVEN_TTS, AssetComponentsUtils.EDGE_TTS, AssetComponentsUtils.COQUI_TTS], label="Text to speech engine", value=AssetComponentsUtils.ELEVEN_TTS, interactive=True)
                self.tts_engine = tts_engine.value
                with gr.Column(visible=True) as eleven_tts:
                    language_eleven = gr.Radio([lang.value for lang in ELEVEN_SUPPORTED_LANGUAGES], label="Language", value="English", interactive=True)
                    voice_eleven = AssetComponentsUtils.voiceChoice(provider=AssetComponentsUtils.ELEVEN_TTS)
                with gr.Column(visible=False) as edge_tts:
                    language_edge = gr.Dropdown([lang.value.upper() for lang in Language], label="Language", value="ENGLISH", interactive=True)
                with gr.Column(visible=False) as coqui_tts:
                    language_coqui = gr.Radio([lang.value for lang in COQUI_SUPPORTED_LANGUAGES], label="Language", value="English", interactive=True)
                    voice_coqui = AssetComponentsUtils.voiceChoice(provider=AssetComponentsUtils.COQUI_TTS)

                def tts_engine_change(x):
                    self.tts_engine = x
                    return gr.update(visible=x == AssetComponentsUtils.ELEVEN_TTS), gr.update(visible=x == AssetComponentsUtils.EDGE_TTS), gr.update(visible=x == AssetComponentsUtils.COQUI_TTS)
                tts_engine.change(tts_engine_change, tts_engine, [eleven_tts, edge_tts, coqui_tts])

                useImages = gr.Checkbox(label="Use images", value=True)
                numImages = gr.Radio([5, 10, 25], value=25, label="Number of images per short", visible=True, interactive=True)
                useImages.change(lambda x: gr.update(visible=x), useImages, numImages)

                addWatermark = gr.Checkbox(label="Add watermark")
                watermark = gr.Textbox(label="Watermark (your channel name)", visible=False)
                addWatermark.change(lambda x: gr.update(visible=x), [addWatermark], [watermark])

                AssetComponentsUtils.background_video_checkbox()
                AssetComponentsUtils.background_music_checkbox()

                createButton = gr.Button(label="Create Shorts")

                generation_error = gr.HTML(visible=True)
                video_folder = gr.Button("πŸ“", visible=True)
                output = gr.HTML()

            video_folder.click(lambda _: AssetComponentsUtils.start_file(os.path.abspath("videos/")))

            createButton.click(self.inspect_create_inputs, inputs=[AssetComponentsUtils.background_video_checkbox(), AssetComponentsUtils.background_music_checkbox(), watermark, short_type, facts_subject], outputs=[generation_error]).success(self.create_short, inputs=[
                numShorts,
                short_type,
                tts_engine,
                language_eleven,
                language_edge,
                language_coqui,
                numImages,
                watermark,
                AssetComponentsUtils.background_video_checkbox(),
                AssetComponentsUtils.background_music_checkbox(),
                facts_subject,
                voice_eleven,
                voice_coqui
            ], outputs=[output, video_folder, generation_error])
        self.short_automation = short_automation
        return self.short_automation

    def create_short(self, numShorts, short_type, tts_engine, language_eleven, language_edge, language_coqui, numImages, watermark, background_video_list, background_music_list, facts_subject, voice_eleven, voice_coqui, progress=gr.Progress()):
        '''Creates a short'''
        try:
            numShorts = int(numShorts)
            numImages = int(numImages) if numImages else None
            background_videos = (background_video_list * ((numShorts // len(background_video_list)) + 1))[:numShorts]
            background_musics = (background_music_list * ((numShorts // len(background_music_list)) + 1))[:numShorts]
            if tts_engine == AssetComponentsUtils.ELEVEN_TTS:
                language = Language(language_eleven.lower().capitalize())
                voice_module = ElevenLabsVoiceModule(ApiKeyManager.get_api_key('ELEVEN LABS'), voice_eleven, checkElevenCredits=True)
            elif tts_engine == AssetComponentsUtils.EDGE_TTS:
                language = Language(language_edge.lower().capitalize())
                voice_module = EdgeTTSVoiceModule(EDGE_TTS_VOICENAME_MAPPING[language]['male'])
            elif tts_engine == AssetComponentsUtils.COQUI_TTS:
                language = Language(language_coqui.lower().capitalize())
                voice_module = CoquiVoiceModule(voice_coqui, LANGUAGE_ACRONYM_MAPPING[language])
            for i in range(numShorts):
                shortEngine = self.create_short_engine(short_type=short_type, voice_module=voice_module, language=language, numImages=numImages, watermark=watermark,
                                                       background_video=background_videos[i], background_music=background_musics[i], facts_subject=facts_subject)
                num_steps = shortEngine.get_total_steps()

                def logger(prog_str):
                    progress(self.progress_counter / (num_steps * numShorts), f"Making short {i+1}/{numShorts} - {prog_str}")
                shortEngine.set_logger(logger)

                for step_num, step_info in shortEngine.makeContent():
                    progress(self.progress_counter / (num_steps * numShorts), f"Making short {i+1}/{numShorts} - {step_info}")
                    self.progress_counter += 1

                video_path = shortEngine.get_video_output_path()
                current_url = self.shortGptUI.share_url+"/" if self.shortGptUI.share else self.shortGptUI.local_url
                file_url_path = f"{current_url}file={video_path}"
                file_name = video_path.split("/")[-1].split("\\")[-1]
                self.embedHTML += f'''
                <div style="display: flex; flex-direction: column; align-items: center;">
                    <video width="{250}" height="{500}" style="max-height: 100%;" controls>
                        <source src="{file_url_path}" type="video/mp4">
                        Your browser does not support the video tag.
                    </video>
                    <a href="{file_url_path}" download="{file_name}" style="margin-top: 10px;">
                        <button style="font-size: 1em; padding: 10px; border: none; cursor: pointer; color: white; background: #007bff;">Download Video</button>
                    </a>
                </div>'''
                yield self.embedHTML + '</div>', gr.Button.update(visible=True), gr.update(visible=False)
        except Exception as e:
            traceback_str = ''.join(traceback.format_tb(e.__traceback__))
            error_name = type(e).__name__.capitalize() + " : " + f"{e.args[0]}"
            print("Error", traceback_str)
            error_html = GradioComponentsHTML.get_html_error_template().format(error_message=error_name, stack_trace=traceback_str)
            yield self.embedHTML + '</div>', gr.Button.update(visible=True), gr.HTML.update(value=error_html, visible=True)

    def inspect_create_inputs(self, background_video_list, background_music_list, watermark, short_type, facts_subject):
        if short_type == "Custom Facts shorts":
            if not facts_subject:
                raise gr.Error("Please write down your facts short's subject")
        if not background_video_list:
            raise gr.Error("Please select at least one background video.")

        if not background_music_list:
            raise gr.Error("Please select at least one background music.")

        if watermark != "":
            if not watermark.replace(" ", "").isalnum():
                raise gr.Error("Watermark should only contain letters and numbers.")
            if len(watermark) > 25:
                raise gr.Error("Watermark should not exceed 25 characters.")
            if len(watermark) < 3:
                raise gr.Error("Watermark should be at least 3 characters long.")

        openai_key = ApiKeyManager.get_api_key("OPENAI")
        if not openai_key:
            raise gr.Error("OPENAI API key is missing. Please go to the config tab and enter the API key.")
        eleven_labs_key = ApiKeyManager.get_api_key("ELEVEN LABS")
        if self.tts_engine == AssetComponentsUtils.ELEVEN_TTS and not eleven_labs_key:
            raise gr.Error("ELEVEN LABS API key is missing. Please go to the config tab and enter the API key.")
        return gr.update(visible=False)

    def create_short_engine(self, short_type, voice_module, language, numImages, watermark, background_video, background_music, facts_subject):
        if short_type == "Reddit Story shorts":
            return RedditShortEngine(voice_module, background_video_name=background_video, background_music_name=background_music, num_images=numImages, watermark=watermark, language=language)
        if "fact" in short_type.lower():
            if "custom" in short_type.lower():
                facts_subject = facts_subject
            else:
                facts_subject = short_type
            return FactsShortEngine(voice_module, facts_type=facts_subject, background_video_name=background_video, background_music_name=background_music, num_images=50, watermark=watermark, language=language)
        raise gr.Error(f"Short type does not have a valid short engine: {short_type}")