File size: 8,595 Bytes
7a8c937 472aaf0 7a8c937 472aaf0 7a8c937 59ec2c1 7a8c937 472aaf0 7a8c937 59ec2c1 0186279 59ec2c1 472aaf0 7a8c937 472aaf0 7a8c937 472aaf0 7a8c937 472aaf0 7a8c937 472aaf0 7a8c937 472aaf0 7a8c937 472aaf0 7a8c937 472aaf0 3f492a7 0186279 3f492a7 0186279 3f492a7 0186279 3f492a7 0186279 3f492a7 0186279 3f492a7 7a8c937 472aaf0 7a8c937 472aaf0 7a8c937 472aaf0 7a8c937 472aaf0 7a8c937 472aaf0 7a8c937 472aaf0 7a8c937 472aaf0 7a8c937 472aaf0 7a8c937 4f3310e 7a8c937 472aaf0 7a8c937 472aaf0 1dc1aec 7a8c937 472aaf0 7a8c937 472aaf0 7a8c937 472aaf0 7a8c937 472aaf0 7a8c937 472aaf0 7a8c937 472aaf0 7a8c937 472aaf0 4f3310e 472aaf0 4f3310e 7a8c937 472aaf0 7a8c937 472aaf0 7a8c937 472aaf0 7a8c937 472aaf0 7a8c937 472aaf0 7a8c937 472aaf0 7a8c937 472aaf0 7a8c937 472aaf0 7a8c937 472aaf0 7a8c937 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
import gradio as gr
import torch
import numpy as np
from transformers import OwlViTProcessor, OwlViTForObjectDetection
from torchvision import transforms
from PIL import Image, ImageDraw
import cv2
import torch.nn.functional as F
import tempfile
import os
from SuperGluePretrainedNetwork.models.matching import Matching
from SuperGluePretrainedNetwork.models.utils import read_image
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from io import BytesIO
# Set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load models
mixin = OwlViTForObjectDetection.from_pretrained("google/owlvit-base-patch32")
processor = OwlViTProcessor.from_pretrained("google/owlvit-base-patch32")
model = mixin.to(device)
matching = Matching({
'superpoint': {'nms_radius': 4, 'keypoint_threshold': 0.005, 'max_keypoints': 1024},
'superglue': {'weights': 'outdoor', 'sinkhorn_iterations': 20, 'match_threshold': 0.2}
}).eval().to(device)
# Utility functions
def preprocess_image(image):
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
return transform(image).unsqueeze(0)
def save_array_to_temp_image(arr):
rgb_arr = cv2.cvtColor(arr, cv2.COLOR_BGR2RGB)
img = Image.fromarray(rgb_arr)
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.png')
temp_file_name = temp_file.name
temp_file.close()
img.save(temp_file_name)
return temp_file_name
def stitch_images(images):
if not images:
return Image.new('RGB', (100, 100), color='gray')
max_width = max([img.width for img in images])
total_height = sum(img.height for img in images)
composite = Image.new('RGB', (max_width, total_height))
y_offset = 0
for img in images:
composite.paste(img, (0, y_offset))
y_offset += img.height
return composite
def unified_matching_plot2(image0, image1, kpts0, kpts1, mkpts0, mkpts1, color, text, path=None, show_keypoints=False, fast_viz=False, opencv_display=False, opencv_title='matches', small_text=[]):
# Resize images to have the same height
height = min(image0.shape[0], image1.shape[0])
image0_resized = cv2.resize(image0, (int(image0.shape[1] * height / image0.shape[0]), height))
image1_resized = cv2.resize(image1, (int(image1.shape[1] * height / image1.shape[0]), height))
plt.figure(figsize=(15, 15))
plt.subplot(1, 2, 1)
plt.imshow(image0_resized)
plt.scatter(kpts0[:, 0], kpts0[:, 1], color='r', s=1)
plt.axis('off')
plt.subplot(1, 2, 2)
plt.imshow(image1_resized)
plt.scatter(kpts1[:, 0], kpts1[:, 1], color='r', s=1)
plt.axis('off')
fig, ax = plt.subplots(figsize=(20, 20))
plt.plot([mkpts0[:, 0], mkpts1[:, 0] + image0_resized.shape[1]], [mkpts0[:, 1], mkpts1[:, 1]], 'r', lw=0.5)
plt.scatter(mkpts0[:, 0], mkpts0[:, 1], s=2, marker='o', color='b')
plt.scatter(mkpts1[:, 0] + image0_resized.shape[1], mkpts1[:, 1], s=2, marker='o', color='g')
plt.imshow(np.hstack([image0_resized, image1_resized]), aspect='auto')
plt.suptitle('\n'.join(text), fontsize=20, fontweight='bold')
plt.tight_layout()
plt.show()
buf = BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
img_arr = np.frombuffer(buf.getvalue(), dtype=np.uint8)
buf.close()
img = cv2.imdecode(img_arr, 1)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
plt.close(fig)
return img
# Main functions
def detect_and_crop(target_image, query_image, threshold=0.5, nms_threshold=0.3):
target_sizes = torch.Tensor([target_image.size[::-1]])
inputs = processor(images=target_image, query_images=query_image, return_tensors="pt").to(device)
with torch.no_grad():
outputs = model.image_guided_detection(**inputs)
img = cv2.cvtColor(np.array(target_image), cv2.COLOR_BGR2RGB)
outputs.logits = outputs.logits.cpu()
outputs.target_pred_boxes = outputs.target_pred_boxes.cpu()
results = processor.post_process_image_guided_detection(outputs=outputs, threshold=threshold, nms_threshold=nms_threshold, target_sizes=target_sizes)
boxes, scores = results[0]["boxes"], results[0]["scores"]
if len(boxes) == 0:
return [], None
filtered_boxes = []
for box in boxes:
x1, y1, x2, y2 = [int(i) for i in box.tolist()]
cropped_img = img[y1:y2, x1:x2]
if cropped_img.size != 0:
filtered_boxes.append(cropped_img)
draw = ImageDraw.Draw(target_image)
for box in boxes:
draw.rectangle(box.tolist(), outline="red", width=3)
return filtered_boxes, target_image
def image_matching_no_pyramid(query_img, target_img, visualize=True):
temp_query = save_array_to_temp_image(np.array(query_img))
temp_target = save_array_to_temp_image(np.array(target_img))
image1, inp1, scales1 = read_image(temp_target, device, [640*2], 0, True)
image0, inp0, scales0 = read_image(temp_query, device, [640*2], 0, True)
if image0 is None or image1 is None:
return None
pred = matching({'image0': inp0, 'image1': inp1})
pred = {k: v[0] for k, v in pred.items()}
kpts0, kpts1 = pred['keypoints0'], pred['keypoints1']
matches, conf = pred['matches0'], pred['matching_scores0']
valid = matches > -1
mkpts0 = kpts0[valid]
mkpts1 = kpts1[matches[valid]]
mconf = conf[valid]
color = cm.jet(mconf.detach().cpu().numpy())[:len(mkpts0)]
valid_count = np.sum(valid.tolist())
mkpts0_np = mkpts0.cpu().numpy()
mkpts1_np = mkpts1.cpu().numpy()
try:
H, inliers = cv2.findHomography(mkpts0_np, mkpts1_np, cv2.RANSAC, 5.0)
except:
inliers = 0
num_inliers = np.sum(inliers)
if visualize:
visualized_img = unified_matching_plot2(
image0, image1, kpts0, kpts1, mkpts0, mkpts1, color, ['Matches'], True, False, True, 'Matches', [])
else:
visualized_img = None
return {
'valid': [valid_count],
'inliers': [num_inliers],
'visualized_image': [visualized_img]
}
def check_object_in_image(query_image, target_image, threshold=50, scale_factor=[0.33, 0.66, 1]):
images_to_return = []
cropped_images, bbox_image = detect_and_crop(target_image, query_image)
temp_files = [save_array_to_temp_image(i) for i in cropped_images]
crop_results = [image_matching_no_pyramid(query_image, Image.open(i), visualize=True) for i in temp_files]
cropped_visuals = []
cropped_inliers = []
for result in crop_results:
if result:
for img in result['visualized_image']:
cropped_visuals.append(Image.fromarray(img))
for inliers_ in result['inliers']:
cropped_inliers.append(inliers_)
images_to_return.append(stitch_images(cropped_visuals))
is_present = any(value >= threshold for value in cropped_inliers)
return {
'is_present': is_present,
'images': images_to_return,
'object detection inliers': [int(i) for i in cropped_inliers],
'bbox_image': bbox_image,
}
def interface(poster_source, media_source, threshold, scale_factor):
result1 = check_object_in_image(poster_source, media_source, threshold, scale_factor)
if result1['is_present']:
return result1
result2 = check_object_in_image(poster_source, media_source, threshold, scale_factor)
return result2 if result2['is_present'] else result1
iface = gr.Interface(
fn=interface,
inputs=[
gr.Image(type="pil", label="Upload a Query Image (Poster)"),
gr.Image(type="pil", label="Upload a Target Image (Media)"),
gr.Slider(minimum=0, maximum=100, step=1, value=50, label="Threshold"),
gr.CheckboxGroup(choices=[0.33, 0.66, 1.0], value=[0.33, 0.66, 1.0], label="Scale Factors")
],
outputs=[
gr.JSON(label="Result")
],
title="Object Detection in Image",
description="""
**Instructions:**
1. **Upload a Query Image (Poster)**: Select an image file that contains the object you want to detect.
2. **Upload a Target Image (Media)**: Select an image file where you want to detect the object.
3. **Set Threshold**: Adjust the slider to set the threshold for object detection.
4. **Set Scale Factors**: Select the scale factors for image pyramid.
5. **View Results**: The result will show whether the object is present in the image along with additional details.
"""
)
if __name__ == "__main__":
iface.launch()
|