File size: 44,571 Bytes
e50fe35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
{
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "view-in-github"
      },
      "source": [
        "<a href=\"https://colab.research.google.com/github/gowtham1997/indicTrans-1/blob/main/indictrans_fairseq_inference.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "P0uptOB6U7GW",
        "outputId": "988c867e-76ee-4a54-a232-e69abbc5c3db"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "/content/testing\n"
          ]
        }
      ],
      "source": [
        "# create a seperate folder to store everything\n",
        "!mkdir testing\n",
        "%cd testing"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "kQFRiLtSalzt",
        "outputId": "03070c7c-8299-46bf-de56-df09c3213a3f"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "Cloning into 'indicTrans'...\n",
            "remote: Enumerating objects: 398, done.\u001b[K\n",
            "remote: Counting objects: 100% (398/398), done.\u001b[K\n",
            "remote: Compressing objects: 100% (267/267), done.\u001b[K\n",
            "remote: Total 398 (delta 231), reused 251 (delta 126), pack-reused 0\u001b[K\n",
            "Receiving objects: 100% (398/398), 1.41 MiB | 6.82 MiB/s, done.\n",
            "Resolving deltas: 100% (231/231), done.\n",
            "/content/testing/indicTrans\n",
            "Cloning into 'indic_nlp_library'...\n",
            "remote: Enumerating objects: 1325, done.\u001b[K\n",
            "remote: Counting objects: 100% (147/147), done.\u001b[K\n",
            "remote: Compressing objects: 100% (103/103), done.\u001b[K\n",
            "remote: Total 1325 (delta 84), reused 89 (delta 41), pack-reused 1178\u001b[K\n",
            "Receiving objects: 100% (1325/1325), 9.57 MiB | 7.40 MiB/s, done.\n",
            "Resolving deltas: 100% (688/688), done.\n",
            "Cloning into 'indic_nlp_resources'...\n",
            "remote: Enumerating objects: 133, done.\u001b[K\n",
            "remote: Counting objects: 100% (7/7), done.\u001b[K\n",
            "remote: Compressing objects: 100% (7/7), done.\u001b[K\n",
            "remote: Total 133 (delta 0), reused 2 (delta 0), pack-reused 126\u001b[K\n",
            "Receiving objects: 100% (133/133), 149.77 MiB | 23.46 MiB/s, done.\n",
            "Resolving deltas: 100% (51/51), done.\n",
            "Cloning into 'subword-nmt'...\n",
            "remote: Enumerating objects: 580, done.\u001b[K\n",
            "remote: Counting objects: 100% (4/4), done.\u001b[K\n",
            "remote: Compressing objects: 100% (4/4), done.\u001b[K\n",
            "remote: Total 580 (delta 0), reused 0 (delta 0), pack-reused 576\u001b[K\n",
            "Receiving objects: 100% (580/580), 237.41 KiB | 1.57 MiB/s, done.\n",
            "Resolving deltas: 100% (349/349), done.\n",
            "/content/testing\n"
          ]
        }
      ],
      "source": [
        "# clone the repo for running evaluation\n",
        "!git clone https://github.com/AI4Bharat/indicTrans.git\n",
        "%cd indicTrans\n",
        "# clone requirements repositories\n",
        "!git clone https://github.com/anoopkunchukuttan/indic_nlp_library.git\n",
        "!git clone https://github.com/anoopkunchukuttan/indic_nlp_resources.git\n",
        "!git clone https://github.com/rsennrich/subword-nmt.git\n",
        "%cd .."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "FHUQGCACVvVf",
        "outputId": "67c7c3a0-f8bf-46a2-8214-e36556df989b"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "Collecting sacremoses\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/75/ee/67241dc87f266093c533a2d4d3d69438e57d7a90abb216fa076e7d475d4a/sacremoses-0.0.45-py3-none-any.whl (895kB)\n",
            "\u001b[K     |████████████████████████████████| 901kB 3.9MB/s \n",
            "\u001b[?25hRequirement already satisfied: pandas in /usr/local/lib/python3.7/dist-packages (1.1.5)\n",
            "Collecting mock\n",
            "  Downloading https://files.pythonhosted.org/packages/5c/03/b7e605db4a57c0f6fba744b11ef3ddf4ddebcada35022927a2b5fc623fdf/mock-4.0.3-py3-none-any.whl\n",
            "Collecting sacrebleu\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/7e/57/0c7ca4e31a126189dab99c19951910bd081dea5bbd25f24b77107750eae7/sacrebleu-1.5.1-py3-none-any.whl (54kB)\n",
            "\u001b[K     |████████████████████████████████| 61kB 8.3MB/s \n",
            "\u001b[?25hCollecting tensorboardX\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/07/84/46421bd3e0e89a92682b1a38b40efc22dafb6d8e3d947e4ceefd4a5fabc7/tensorboardX-2.2-py2.py3-none-any.whl (120kB)\n",
            "\u001b[K     |████████████████████████████████| 122kB 35.5MB/s \n",
            "\u001b[?25hRequirement already satisfied: pyarrow in /usr/local/lib/python3.7/dist-packages (3.0.0)\n",
            "Collecting indic-nlp-library\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/84/d4/495bb43b88a2a6d04b09c29fc5115f24872af74cd8317fe84026abd4ddb1/indic_nlp_library-0.81-py3-none-any.whl (40kB)\n",
            "\u001b[K     |████████████████████████████████| 40kB 5.8MB/s \n",
            "\u001b[?25hRequirement already satisfied: tqdm in /usr/local/lib/python3.7/dist-packages (from sacremoses) (4.41.1)\n",
            "Requirement already satisfied: six in /usr/local/lib/python3.7/dist-packages (from sacremoses) (1.15.0)\n",
            "Requirement already satisfied: click in /usr/local/lib/python3.7/dist-packages (from sacremoses) (7.1.2)\n",
            "Requirement already satisfied: regex in /usr/local/lib/python3.7/dist-packages (from sacremoses) (2019.12.20)\n",
            "Requirement already satisfied: joblib in /usr/local/lib/python3.7/dist-packages (from sacremoses) (1.0.1)\n",
            "Requirement already satisfied: numpy>=1.15.4 in /usr/local/lib/python3.7/dist-packages (from pandas) (1.19.5)\n",
            "Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.7/dist-packages (from pandas) (2.8.1)\n",
            "Requirement already satisfied: pytz>=2017.2 in /usr/local/lib/python3.7/dist-packages (from pandas) (2018.9)\n",
            "Collecting portalocker==2.0.0\n",
            "  Downloading https://files.pythonhosted.org/packages/89/a6/3814b7107e0788040870e8825eebf214d72166adf656ba7d4bf14759a06a/portalocker-2.0.0-py2.py3-none-any.whl\n",
            "Requirement already satisfied: protobuf>=3.8.0 in /usr/local/lib/python3.7/dist-packages (from tensorboardX) (3.12.4)\n",
            "Collecting morfessor\n",
            "  Downloading https://files.pythonhosted.org/packages/39/e6/7afea30be2ee4d29ce9de0fa53acbb033163615f849515c0b1956ad074ee/Morfessor-2.0.6-py3-none-any.whl\n",
            "Collecting sphinx-rtd-theme\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/ac/24/2475e8f83519b54b2148d4a56eb1111f9cec630d088c3ffc214492c12107/sphinx_rtd_theme-0.5.2-py2.py3-none-any.whl (9.1MB)\n",
            "\u001b[K     |████████████████████████████████| 9.2MB 28.0MB/s \n",
            "\u001b[?25hCollecting sphinx-argparse\n",
            "  Downloading https://files.pythonhosted.org/packages/06/2b/dfad6a1831c3aeeae25d8d3d417224684befbf45e10c7f2141631616a6ed/sphinx-argparse-0.2.5.tar.gz\n",
            "Requirement already satisfied: setuptools in /usr/local/lib/python3.7/dist-packages (from protobuf>=3.8.0->tensorboardX) (57.0.0)\n",
            "Collecting docutils<0.17\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/81/44/8a15e45ffa96e6cf82956dd8d7af9e666357e16b0d93b253903475ee947f/docutils-0.16-py2.py3-none-any.whl (548kB)\n",
            "\u001b[K     |████████████████████████████████| 552kB 30.6MB/s \n",
            "\u001b[?25hRequirement already satisfied: sphinx in /usr/local/lib/python3.7/dist-packages (from sphinx-rtd-theme->indic-nlp-library) (1.8.5)\n",
            "Requirement already satisfied: Pygments>=2.0 in /usr/local/lib/python3.7/dist-packages (from sphinx->sphinx-rtd-theme->indic-nlp-library) (2.6.1)\n",
            "Requirement already satisfied: requests>=2.0.0 in /usr/local/lib/python3.7/dist-packages (from sphinx->sphinx-rtd-theme->indic-nlp-library) (2.23.0)\n",
            "Requirement already satisfied: snowballstemmer>=1.1 in /usr/local/lib/python3.7/dist-packages (from sphinx->sphinx-rtd-theme->indic-nlp-library) (2.1.0)\n",
            "Requirement already satisfied: packaging in /usr/local/lib/python3.7/dist-packages (from sphinx->sphinx-rtd-theme->indic-nlp-library) (20.9)\n",
            "Requirement already satisfied: imagesize in /usr/local/lib/python3.7/dist-packages (from sphinx->sphinx-rtd-theme->indic-nlp-library) (1.2.0)\n",
            "Requirement already satisfied: alabaster<0.8,>=0.7 in /usr/local/lib/python3.7/dist-packages (from sphinx->sphinx-rtd-theme->indic-nlp-library) (0.7.12)\n",
            "Requirement already satisfied: sphinxcontrib-websupport in /usr/local/lib/python3.7/dist-packages (from sphinx->sphinx-rtd-theme->indic-nlp-library) (1.2.4)\n",
            "Requirement already satisfied: babel!=2.0,>=1.3 in /usr/local/lib/python3.7/dist-packages (from sphinx->sphinx-rtd-theme->indic-nlp-library) (2.9.1)\n",
            "Requirement already satisfied: Jinja2>=2.3 in /usr/local/lib/python3.7/dist-packages (from sphinx->sphinx-rtd-theme->indic-nlp-library) (2.11.3)\n",
            "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests>=2.0.0->sphinx->sphinx-rtd-theme->indic-nlp-library) (2020.12.5)\n",
            "Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests>=2.0.0->sphinx->sphinx-rtd-theme->indic-nlp-library) (3.0.4)\n",
            "Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests>=2.0.0->sphinx->sphinx-rtd-theme->indic-nlp-library) (1.24.3)\n",
            "Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests>=2.0.0->sphinx->sphinx-rtd-theme->indic-nlp-library) (2.10)\n",
            "Requirement already satisfied: pyparsing>=2.0.2 in /usr/local/lib/python3.7/dist-packages (from packaging->sphinx->sphinx-rtd-theme->indic-nlp-library) (2.4.7)\n",
            "Requirement already satisfied: sphinxcontrib-serializinghtml in /usr/local/lib/python3.7/dist-packages (from sphinxcontrib-websupport->sphinx->sphinx-rtd-theme->indic-nlp-library) (1.1.4)\n",
            "Requirement already satisfied: MarkupSafe>=0.23 in /usr/local/lib/python3.7/dist-packages (from Jinja2>=2.3->sphinx->sphinx-rtd-theme->indic-nlp-library) (2.0.1)\n",
            "Building wheels for collected packages: sphinx-argparse\n",
            "  Building wheel for sphinx-argparse (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "  Created wheel for sphinx-argparse: filename=sphinx_argparse-0.2.5-cp37-none-any.whl size=11552 sha256=d8804d903bcf829240052e806acb7c6051e0c240bddf22ef8bd4e4bd2abdfbac\n",
            "  Stored in directory: /root/.cache/pip/wheels/2a/18/1b/4990a1859da4edc77ab312bc2986c08d2733fb5713d06e44f5\n",
            "Successfully built sphinx-argparse\n",
            "\u001b[31mERROR: datascience 0.10.6 has requirement folium==0.2.1, but you'll have folium 0.8.3 which is incompatible.\u001b[0m\n",
            "Installing collected packages: sacremoses, mock, portalocker, sacrebleu, tensorboardX, morfessor, docutils, sphinx-rtd-theme, sphinx-argparse, indic-nlp-library\n",
            "  Found existing installation: docutils 0.17.1\n",
            "    Uninstalling docutils-0.17.1:\n",
            "      Successfully uninstalled docutils-0.17.1\n",
            "Successfully installed docutils-0.16 indic-nlp-library-0.81 mock-4.0.3 morfessor-2.0.6 portalocker-2.0.0 sacrebleu-1.5.1 sacremoses-0.0.45 sphinx-argparse-0.2.5 sphinx-rtd-theme-0.5.2 tensorboardX-2.2\n",
            "Cloning into 'fairseq'...\n",
            "remote: Enumerating objects: 28243, done.\u001b[K\n",
            "remote: Counting objects: 100% (62/62), done.\u001b[K\n",
            "remote: Compressing objects: 100% (39/39), done.\u001b[K\n",
            "remote: Total 28243 (delta 29), reused 44 (delta 22), pack-reused 28181\u001b[K\n",
            "Receiving objects: 100% (28243/28243), 11.83 MiB | 8.53 MiB/s, done.\n",
            "Resolving deltas: 100% (21233/21233), done.\n",
            "/content/testing/fairseq\n",
            "Obtaining file:///content/testing/fairseq\n",
            "  Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n",
            "  Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n",
            "  Installing backend dependencies ... \u001b[?25l\u001b[?25hdone\n",
            "    Preparing wheel metadata ... \u001b[?25l\u001b[?25hdone\n",
            "Requirement already satisfied: sacrebleu>=1.4.12 in /usr/local/lib/python3.7/dist-packages (from fairseq==1.0.0a0+2fd9d8a) (1.5.1)\n",
            "Collecting hydra-core<1.1\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/52/e3/fbd70dd0d3ce4d1d75c22d56c0c9f895cfa7ed6587a9ffb821d6812d6a60/hydra_core-1.0.6-py3-none-any.whl (123kB)\n",
            "\u001b[K     |████████████████████████████████| 133kB 4.1MB/s \n",
            "\u001b[?25hRequirement already satisfied: regex in /usr/local/lib/python3.7/dist-packages (from fairseq==1.0.0a0+2fd9d8a) (2019.12.20)\n",
            "Requirement already satisfied: cython in /usr/local/lib/python3.7/dist-packages (from fairseq==1.0.0a0+2fd9d8a) (0.29.23)\n",
            "Requirement already satisfied: cffi in /usr/local/lib/python3.7/dist-packages (from fairseq==1.0.0a0+2fd9d8a) (1.14.5)\n",
            "Collecting omegaconf<2.1\n",
            "  Downloading https://files.pythonhosted.org/packages/d0/eb/9d63ce09dd8aa85767c65668d5414958ea29648a0eec80a4a7d311ec2684/omegaconf-2.0.6-py3-none-any.whl\n",
            "Requirement already satisfied: torch in /usr/local/lib/python3.7/dist-packages (from fairseq==1.0.0a0+2fd9d8a) (1.8.1+cu101)\n",
            "Requirement already satisfied: tqdm in /usr/local/lib/python3.7/dist-packages (from fairseq==1.0.0a0+2fd9d8a) (4.41.1)\n",
            "Requirement already satisfied: numpy; python_version >= \"3.7\" in /usr/local/lib/python3.7/dist-packages (from fairseq==1.0.0a0+2fd9d8a) (1.19.5)\n",
            "Requirement already satisfied: portalocker==2.0.0 in /usr/local/lib/python3.7/dist-packages (from sacrebleu>=1.4.12->fairseq==1.0.0a0+2fd9d8a) (2.0.0)\n",
            "Requirement already satisfied: importlib-resources; python_version < \"3.9\" in /usr/local/lib/python3.7/dist-packages (from hydra-core<1.1->fairseq==1.0.0a0+2fd9d8a) (5.1.3)\n",
            "Collecting antlr4-python3-runtime==4.8\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/56/02/789a0bddf9c9b31b14c3e79ec22b9656185a803dc31c15f006f9855ece0d/antlr4-python3-runtime-4.8.tar.gz (112kB)\n",
            "\u001b[K     |████████████████████████████████| 112kB 17.0MB/s \n",
            "\u001b[?25hRequirement already satisfied: pycparser in /usr/local/lib/python3.7/dist-packages (from cffi->fairseq==1.0.0a0+2fd9d8a) (2.20)\n",
            "Collecting PyYAML>=5.1.*\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/7a/a5/393c087efdc78091afa2af9f1378762f9821c9c1d7a22c5753fb5ac5f97a/PyYAML-5.4.1-cp37-cp37m-manylinux1_x86_64.whl (636kB)\n",
            "\u001b[K     |████████████████████████████████| 645kB 14.1MB/s \n",
            "\u001b[?25hRequirement already satisfied: typing-extensions in /usr/local/lib/python3.7/dist-packages (from omegaconf<2.1->fairseq==1.0.0a0+2fd9d8a) (3.7.4.3)\n",
            "Requirement already satisfied: zipp>=0.4; python_version < \"3.8\" in /usr/local/lib/python3.7/dist-packages (from importlib-resources; python_version < \"3.9\"->hydra-core<1.1->fairseq==1.0.0a0+2fd9d8a) (3.4.1)\n",
            "Building wheels for collected packages: antlr4-python3-runtime\n",
            "  Building wheel for antlr4-python3-runtime (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "  Created wheel for antlr4-python3-runtime: filename=antlr4_python3_runtime-4.8-cp37-none-any.whl size=141231 sha256=f9207fa94682c5ba5daa722d4103f4c9eb131c8dd86870ae9cf43f7df7a90154\n",
            "  Stored in directory: /root/.cache/pip/wheels/e3/e2/fa/b78480b448b8579ddf393bebd3f47ee23aa84c89b6a78285c8\n",
            "Successfully built antlr4-python3-runtime\n",
            "Installing collected packages: PyYAML, omegaconf, antlr4-python3-runtime, hydra-core, fairseq\n",
            "  Found existing installation: PyYAML 3.13\n",
            "    Uninstalling PyYAML-3.13:\n",
            "      Successfully uninstalled PyYAML-3.13\n",
            "  Running setup.py develop for fairseq\n",
            "Successfully installed PyYAML-5.4.1 antlr4-python3-runtime-4.8 fairseq hydra-core-1.0.6 omegaconf-2.0.6\n",
            "/content/testing\n"
          ]
        }
      ],
      "source": [
        "# Install the necessary libraries\n",
        "!pip install sacremoses pandas mock sacrebleu tensorboardX pyarrow indic-nlp-library\n",
        "# Install fairseq from source\n",
        "!git clone https://github.com/pytorch/fairseq.git\n",
        "%cd fairseq\n",
        "# !git checkout da9eaba12d82b9bfc1442f0e2c6fc1b895f4d35d\n",
        "!pip install --editable ./\n",
        "%cd .."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "kKA8afhBawO5",
        "outputId": "d346f462-d5d4-43a0-c29b-90aaab2fb4d2"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "--2021-06-09 15:06:00--  https://storage.googleapis.com/samanantar-public/V0.2/models/indic-en.zip\n",
            "Resolving storage.googleapis.com (storage.googleapis.com)... 64.233.188.128, 64.233.189.128, 108.177.97.128, ...\n",
            "Connecting to storage.googleapis.com (storage.googleapis.com)|64.233.188.128|:443... connected.\n",
            "HTTP request sent, awaiting response... 200 OK\n",
            "Length: 4551079075 (4.2G) [application/zip]\n",
            "Saving to: ‘indic-en.zip’\n",
            "\n",
            "indic-en.zip        100%[===================>]   4.24G  49.9MB/s    in 1m 47s  \n",
            "\n",
            "2021-06-09 15:07:48 (40.5 MB/s) - ‘indic-en.zip’ saved [4551079075/4551079075]\n",
            "\n",
            "Archive:  indic-en.zip\n",
            "   creating: indic-en/\n",
            "   creating: indic-en/vocab/\n",
            "  inflating: indic-en/vocab/bpe_codes.32k.SRC  \n",
            "  inflating: indic-en/vocab/vocab.SRC  \n",
            "  inflating: indic-en/vocab/vocab.TGT  \n",
            "  inflating: indic-en/vocab/bpe_codes.32k.TGT  \n",
            "   creating: indic-en/final_bin/\n",
            "  inflating: indic-en/final_bin/dict.TGT.txt  \n",
            "  inflating: indic-en/final_bin/dict.SRC.txt  \n",
            "   creating: indic-en/model/\n",
            "  inflating: indic-en/model/checkpoint_best.pt  \n",
            "--2021-06-09 15:09:51--  https://storage.googleapis.com/samanantar-public/V0.2/models/en-indic.zip\n",
            "Resolving storage.googleapis.com (storage.googleapis.com)... 74.125.204.128, 64.233.188.128, 64.233.189.128, ...\n",
            "Connecting to storage.googleapis.com (storage.googleapis.com)|74.125.204.128|:443... connected.\n",
            "HTTP request sent, awaiting response... 200 OK\n",
            "Length: 4609212103 (4.3G) [application/zip]\n",
            "Saving to: ‘en-indic.zip’\n",
            "\n",
            "en-indic.zip        100%[===================>]   4.29G  33.8MB/s    in 1m 51s  \n",
            "\n",
            "2021-06-09 15:11:44 (39.5 MB/s) - ‘en-indic.zip’ saved [4609212103/4609212103]\n",
            "\n",
            "Archive:  en-indic.zip\n",
            "   creating: en-indic/\n",
            "   creating: en-indic/vocab/\n",
            "  inflating: en-indic/vocab/bpe_codes.32k.SRC  \n",
            "  inflating: en-indic/vocab/vocab.SRC  \n",
            "  inflating: en-indic/vocab/vocab.TGT  \n",
            "  inflating: en-indic/vocab/bpe_codes.32k.TGT  \n",
            "   creating: en-indic/final_bin/\n",
            "  inflating: en-indic/final_bin/dict.TGT.txt  \n",
            "  inflating: en-indic/final_bin/dict.SRC.txt  \n",
            "   creating: en-indic/model/\n",
            "  inflating: en-indic/model/checkpoint_best.pt  \n",
            "--2021-06-09 15:14:11--  https://storage.googleapis.com/samanantar-public/models/m2m.zip\n",
            "Resolving storage.googleapis.com (storage.googleapis.com)... 74.125.23.128, 74.125.203.128, 74.125.204.128, ...\n",
            "Connecting to storage.googleapis.com (storage.googleapis.com)|74.125.23.128|:443... connected.\n",
            "HTTP request sent, awaiting response... 200 OK\n",
            "Length: 4081990185 (3.8G) [application/zip]\n",
            "Saving to: ‘m2m.zip’\n",
            "\n",
            "m2m.zip             100%[===================>]   3.80G  41.5MB/s    in 96s     \n",
            "\n",
            "2021-06-09 15:15:48 (40.4 MB/s) - ‘m2m.zip’ saved [4081990185/4081990185]\n",
            "\n",
            "Archive:  m2m.zip\n",
            "   creating: m2m/\n",
            "   creating: m2m/vocab/\n",
            "  inflating: m2m/vocab/vocab.SRC     \n",
            "  inflating: m2m/vocab/vocab.TGT     \n",
            "  inflating: m2m/vocab/bpe_codes.32k.SRC_TGT  \n",
            "   creating: m2m/final_bin/\n",
            "  inflating: m2m/final_bin/dict.TGT.txt  \n",
            "  inflating: m2m/final_bin/dict.SRC.txt  \n",
            "   creating: m2m/model/\n",
            "  inflating: m2m/model/checkpoint_best.pt  \n",
            "/content/testing/indicTrans\n"
          ]
        }
      ],
      "source": [
        "# download the indictrans model\n",
        "\n",
        "\n",
        "# downloading the indic-en model\n",
        "!wget https://storage.googleapis.com/samanantar-public/V0.3/models/indic-en.zip\n",
        "!unzip indic-en.zip\n",
        "\n",
        "# downloading the en-indic model\n",
        "!wget https://storage.googleapis.com/samanantar-public/V0.3/models/en-indic.zip\n",
        "!unzip en-indic.zip\n",
        "\n",
        "# downloading the indic-indic model\n",
        "!wget https://storage.googleapis.com/samanantar-public/V0.3/models/m2m.zip\n",
        "!unzip m2m.zip\n",
        "\n",
        "%cd indicTrans/"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "Lg1sQFfyWJli"
      },
      "outputs": [],
      "source": [
        "# creating a text file and adding en sentences we can use for testing the model\n",
        "!touch en_sentences.txt\n",
        "!echo 'This bicycle is too small for you !!' >> en_sentences.txt\n",
        "!echo \"I will directly meet you at the airport.\" >> en_sentences.txt\n",
        "!echo 'If COVID-19 is spreading in your community, stay safe by taking some simple precautions, such as physical distancing, wearing a mask, keeping rooms well ventilated, avoiding crowds, cleaning your hands, and coughing into a bent elbow or tissue' >> en_sentences.txt"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "fLg9BWAGWvLU",
        "outputId": "f3ca6f65-9a39-4d80-c25d-88806daf3e7b"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "Wed Jun 9 15:18:01 UTC 2021\n",
            "Applying normalization and script conversion\n",
            "100% 3/3 [00:00<00:00, 71.78it/s]\n",
            "Number of sentences in input: 3\n",
            "Applying BPE\n",
            "Decoding\n",
            "Extracting translations, script conversion and detokenization\n",
            "Translation completed\n"
          ]
        }
      ],
      "source": [
        "# joint_translate takes src_file, output_fname, src_lang, tgt_lang, model_folder as inputs\n",
        "# src_file -> input text file to be translated\n",
        "# output_fname -> name of the output file (will get created) containing the model predictions\n",
        "# src_lang -> source lang code of the input text ( in this case we are using en-indic model and hence src_lang would be 'en')\n",
        "# tgt_lang -> target lang code of the input text ( tgt lang for en-indic model would be any of the 11 indic langs we trained on:\n",
        "#              as, bn, hi, gu, kn, ml, mr, or, pa, ta, te)\n",
        "# supported languages are:\n",
        "#              as - assamese, bn - bengali, gu - gujarathi, hi - hindi, kn - kannada, \n",
        "#              ml - malayalam, mr - marathi, or - oriya, pa - punjabi, ta - tamil, te - telugu\n",
        "\n",
        "# model_dir -> the directory containing the model and the vocab files\n",
        "\n",
        "# Note: if the translation is taking a lot of time, please tune the buffer_size and batch_size parameter for fairseq-interactive defined inside this joint_translate script\n",
        "\n",
        "\n",
        "# here we are translating the english sentences to tamil\n",
        "!bash joint_translate.sh en_sentences.txt ta_outputs.txt 'en' 'ta' '../en-indic'"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "8QzkBCgeGZiH",
        "outputId": "c150360c-6d01-4689-8c2e-9bdd0eba1504"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "இந்த சைக்கிள் உங்களுக்கு மிகவும் சிறியது!\n",
            "விமான நிலையத்தில் உங்களை நேரில் சந்திக்கிறேன்.\n",
            "உங்கள் சமூகத்தில் கோவிட்-19 பரவுகிறது என்றால், சில எளிய முன்னெச்சரிக்கை நடவடிக்கைகளான, தனி நபர் இடைவெளி, முகக்கவசம் அணிதல், அறைகளை நன்கு காற்றோட்டமாக வைத்திருத்தல், கூட்டத்தைத் தவிர்த்தல், கைகளைக் கழுவுதல், முழங்கை அல்லது திசுக்களில் இருமல் போன்றவற்றை மேற்கொள்வதன் மூலம் பாதுகாப்பாக இருங்கள்.\n"
          ]
        }
      ],
      "source": [
        "!cat ta_outputs.txt"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "c4v9BmbZao5d",
        "outputId": "6efac2a3-5f79-4e72-821b-bc80702a7fa8"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "Wed Jun 9 15:21:31 UTC 2021\n",
            "Applying normalization and script conversion\n",
            "100% 3/3 [00:00<00:00, 88.59it/s]\n",
            "Number of sentences in input: 3\n",
            "Applying BPE\n",
            "Decoding\n",
            "Extracting translations, script conversion and detokenization\n",
            "Translation completed\n"
          ]
        }
      ],
      "source": [
        "# Similarly, we can translate the english sentences to hindi\n",
        "!bash joint_translate.sh en_sentences.txt hi_outputs.txt 'en' 'hi' '../en-indic'"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "pNNzyR_LfqIr",
        "outputId": "095b9532-e76a-4451-dec9-4862566a4288"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "यह साइकिल तुम्हारे लिए बहुत छोटी है!\n",
            "मैं आपसे एयरपोर्ट पर ही मिलने वाला हूं।\n",
            "यदि आपके समुदाय में कोविड-19 फैल रहा है, तो कुछ सरल सावधानियां बरतें, जैसे शारीरिक दूरी बनाए रखना, मास्क पहनना, कमरों को अच्छी तरह से हवादार रखना, भीड़ से बचना, अपने हाथों को साफ करना और कोहनी या ऊतक को मोड़कर खांसते हुए सुरक्षित रहें\n"
          ]
        }
      ],
      "source": [
        "!cat hi_outputs.txt"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "PzjbDLBtaol9"
      },
      "outputs": [],
      "source": [
        "# creating a text file and adding hi sentences we can use for testing the model\n",
        "!touch hi_sentences.txt\n",
        "!echo 'तुम आज सुबह यहाँ क्यों आए?' >> hi_sentences.txt\n",
        "!echo \"मेरे परिवार में हर कोई जल्दी उठता है।\" >> hi_sentences.txt\n",
        "!echo ' स्वास्थ्य और परिवार कल्याण मंत्रालय द्वारा प्रदान की गई जानकारी और सलाह को सावधानी व सही तरीके से पालन कर वायरस के स्थानीय प्रसार को रोका जा सकता है।' >> hi_sentences.txt\n",
        "\n",
        "!touch ta_sentences.txt\n",
        "!echo 'அவனுக்கு நம்மைப் தெரியும் என்று தோன்றுகிறது' >> ta_sentences.txt\n",
        "!echo \"இது எங்கே இருக்கு என்று என்னால் கண்டுபிடிக்க முடியவில்லை.\" >> ta_sentences.txt\n",
        "!echo 'உங்களுக்கு உங்கள் அருகில் இருக்கும் ஒருவருக்கோ இத்தகைய அறிகுறிகள் தென்பட்டால், வீட்டிலேயே இருப்பது, கொரோனா வைரஸ் தொற்று பிறருக்கு வராமல் தடுக்க உதவும்.' >> ta_sentences.txt"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "5uaOmKb8gmeN",
        "outputId": "951bbdf9-61d0-4703-a8df-0c3fcb4e5bb3"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "Wed Jun 9 15:24:43 UTC 2021\n",
            "Applying normalization and script conversion\n",
            "100% 3/3 [00:00<00:00, 74.90it/s]\n",
            "Number of sentences in input: 3\n",
            "Applying BPE\n",
            "Decoding\n",
            "Extracting translations, script conversion and detokenization\n",
            "Translation completed\n"
          ]
        }
      ],
      "source": [
        "# here we are translating the english sentences to hindi\n",
        "!bash joint_translate.sh hi_sentences.txt en_outputs.txt 'hi' 'en' '../indic-en'"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "iLD7WPqmlSnC",
        "outputId": "359050fa-6d35-4055-a9c5-13a15322c59e"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "Why did you come here this morning?\n",
            "Everyone in my family gets up early.\n",
            "The local spread of the virus can be curbed by following the information and advice provided by the Ministry of Health and Family Welfare in a careful and correct manner.\n"
          ]
        }
      ],
      "source": [
        "! cat en_outputs.txt"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "O3mJyj-QljWz",
        "outputId": "1c0420e5-4b80-41d9-f09e-2fdff79bc7bd"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "Wed Jun 9 15:28:05 UTC 2021\n",
            "Applying normalization and script conversion\n",
            "100% 3/3 [00:00<00:00, 72.92it/s]\n",
            "Number of sentences in input: 3\n",
            "Applying BPE\n",
            "Decoding\n",
            "Extracting translations, script conversion and detokenization\n",
            "Translation completed\n"
          ]
        }
      ],
      "source": [
        "# here we are translating the english sentences to tamil\n",
        "!bash joint_translate.sh ta_sentences.txt en_outputs.txt 'ta' 'en' '../indic-en'"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "GapEJESiloD8",
        "outputId": "dc8b2a8c-4f36-4bf9-d517-6826aa65da57"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "He seems to know us.\n",
            "I couldnt find it anywhere.\n",
            "If someone in your neighbourhood develops these symptoms, staying at home can help prevent the spread of the coronavirus infection.\n"
          ]
        }
      ],
      "source": [
        "! cat en_outputs.txt"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "ckfW2P6abcB3"
      },
      "outputs": [],
      "source": [
        "# we just rename the m2m_joint_vocab file here as joint_translate uses bpe_codes.32k.SRC\n",
        "mv ../m2m/vocab/bpe_codes.32k.SRC_TGT ../m2m/vocab/bpe_codes.32k.SRC"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "H-3vPdCqSWoK",
        "outputId": "d5a80c59-cc89-4910-a9ce-7317fac6bf8d"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "Wed Jun 9 15:39:26 UTC 2021\n",
            "Applying normalization and script conversion\n",
            "100% 3/3 [00:00<00:00, 63.53it/s]\n",
            "Number of sentences in input: 3\n",
            "Applying BPE\n",
            "Decoding\n",
            "Extracting translations, script conversion and detokenization\n",
            "Translation completed\n"
          ]
        }
      ],
      "source": [
        "# here we are using the indic2indic model for translating the hindi sentences to tamil\n",
        "!bash joint_translate.sh hi_sentences.txt ta_outputs.txt 'hi' 'ta' '../m2m'"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "22yPo78Zb_oR",
        "outputId": "4df17e93-9029-4020-8deb-0dbaf8bb0b27"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "तुम आज सुबह यहाँ क्यों आए?\n",
            "मेरे परिवार में हर कोई जल्दी उठता है।\n",
            " स्वास्थ्य और परिवार कल्याण मंत्रालय द्वारा प्रदान की गई जानकारी और सलाह को सावधानी व सही तरीके से पालन कर वायरस के स्थानीय प्रसार को रोका जा सकता है।\n"
          ]
        }
      ],
      "source": [
        " ! cat hi_sentences.txt # the hindi inputs"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "onnfzTDESg2I",
        "outputId": "1bc600d4-d3ff-40fa-d258-7d1c876bd49c"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "ஏன் இன்று காலையில் வந்தீர்கள்?\n",
            "எனது குடும்பத்தில் உள்ள ஒவ்வொருவரும் விரைவில் எழுவார்கள்.\n",
            "மத்திய சுகாதாரம் மற்றும் குடும்ப நல அமைச்சகத்தின் அறிவுறுத்தல்கள் மற்றும் தகவல்களைப் பின்பற்றுவதன் மூலம், உள்ளூர் அளவில் வைரஸ் பரவுவதைத் தடுக்க முடியும்.\n"
          ]
        }
      ],
      "source": [
        "! cat ta_outputs.txt # the tamil outputs"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "5klOcwi8SjGS",
        "outputId": "bc4e47fa-ee1d-4da2-85ea-f7900cae7b48"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "Wed Jun 9 15:45:53 UTC 2021\n",
            "Applying normalization and script conversion\n",
            "100% 3/3 [00:00<00:00, 82.25it/s]\n",
            "Number of sentences in input: 3\n",
            "Applying BPE\n",
            "Decoding\n",
            "Extracting translations, script conversion and detokenization\n",
            "Translation completed\n"
          ]
        }
      ],
      "source": [
        "# here we are using the indic2indic model for translating the hindi sentences to tamil (same as above with reversing the direction)\n",
        "!bash joint_translate.sh ta_sentences.txt hi_outputs.txt 'ta' 'hi' '../m2m'"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "4ifZhGkKc6oo",
        "outputId": "a0112e2b-a54b-48ad-e3ae-a3d84c6d097e"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "அவனுக்கு நம்மைப் தெரியும் என்று தோன்றுகிறது\n",
            "இது எங்கே இருக்கு என்று என்னால் கண்டுபிடிக்க முடியவில்லை.\n",
            "உங்களுக்கு உங்கள் அருகில் இருக்கும் ஒருவருக்கோ இத்தகைய அறிகுறிகள் தென்பட்டால், வீட்டிலேயே இருப்பது, கொரோனா வைரஸ் தொற்று பிறருக்கு வராமல் தடுக்க உதவும்.\n"
          ]
        }
      ],
      "source": [
        "! cat ta_sentences.txt # the tamil inputs"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "v0x0YrWYSwwK",
        "outputId": "4c37d699-5b8e-4ae7-9724-953d7e165035"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "ऐसा लगता है कि वह हमें जानता है।\n",
            "मुझे पता नहीं था कि यह कहां है।\n",
            "अगर आपके आस-पास के किसी व्यक्ति में ऐसे लक्षण दिखाई देते हैं, तो घर पर रहने से कोरोना वायरस को फैलने से रोकने में मदद मिलेगी।\n"
          ]
        }
      ],
      "source": [
        "! cat hi_outputs.txt   # the hi outputs"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "-xcnDOc4gNKC"
      },
      "outputs": [],
      "source": [
        "# to compute bleu scores for the predicitions with a reference file, use the following command\n",
        "\n",
        "# bash compute_bleu.sh pred_fname ref_fname src_lang tgt_lang\n",
        "# arguments:\n",
        "# pred_fname: file that contains model predictions\n",
        "# ref_fname: file that contains references\n",
        "# src_lang and tgt_lang : the source and target language"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "9YK2BdwvrUgI"
      },
      "outputs": [],
      "source": []
    }
  ],
  "metadata": {
    "accelerator": "GPU",
    "colab": {
      "collapsed_sections": [],
      "include_colab_link": true,
      "name": "indictrans_fairseq_inference.ipynb",
      "provenance": []
    },
    "interpreter": {
      "hash": "3c7d4130300118f0c7487d576c6841c0dbbdeec039e1e658ac9b107412a09af0"
    },
    "kernelspec": {
      "display_name": "Python 3.7.7 64-bit",
      "name": "python3"
    },
    "language_info": {
      "name": "python",
      "version": ""
    }
  },
  "nbformat": 4,
  "nbformat_minor": 0
}