File size: 120,405 Bytes
e50fe35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
{
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "colab_type": "text",
        "id": "view-in-github"
      },
      "source": [
        "<a href=\"https://colab.research.google.com/github/gowtham1997/indicTrans-1/blob/main/indicTrans_Finetuning.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 1,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "rE4MO-8bDtwD",
        "outputId": "e54447b4-2b04-44c4-96a2-a79e7ed014ae"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "/content/finetuning\n"
          ]
        }
      ],
      "source": [
        "# create a seperate folder to store everything\n",
        "!mkdir finetuning\n",
        "%cd finetuning"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 2,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "-2Rs6_WkD_gF",
        "outputId": "95d19041-0e73-406c-a3c2-c7bddbfda916"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "Cloning into 'indicTrans'...\n",
            "remote: Enumerating objects: 398, done.\u001b[K\n",
            "remote: Counting objects: 100% (398/398), done.\u001b[K\n",
            "remote: Compressing objects: 100% (267/267), done.\u001b[K\n",
            "remote: Total 398 (delta 231), reused 251 (delta 126), pack-reused 0\u001b[K\n",
            "Receiving objects: 100% (398/398), 1.41 MiB | 17.84 MiB/s, done.\n",
            "Resolving deltas: 100% (231/231), done.\n",
            "/content/finetuning/indicTrans\n",
            "Cloning into 'indic_nlp_library'...\n",
            "remote: Enumerating objects: 1325, done.\u001b[K\n",
            "remote: Counting objects: 100% (147/147), done.\u001b[K\n",
            "remote: Compressing objects: 100% (103/103), done.\u001b[K\n",
            "remote: Total 1325 (delta 84), reused 89 (delta 41), pack-reused 1178\u001b[K\n",
            "Receiving objects: 100% (1325/1325), 9.57 MiB | 14.30 MiB/s, done.\n",
            "Resolving deltas: 100% (688/688), done.\n",
            "Cloning into 'indic_nlp_resources'...\n",
            "remote: Enumerating objects: 133, done.\u001b[K\n",
            "remote: Counting objects: 100% (7/7), done.\u001b[K\n",
            "remote: Compressing objects: 100% (7/7), done.\u001b[K\n",
            "remote: Total 133 (delta 0), reused 2 (delta 0), pack-reused 126\u001b[K\n",
            "Receiving objects: 100% (133/133), 149.77 MiB | 35.48 MiB/s, done.\n",
            "Resolving deltas: 100% (51/51), done.\n",
            "Cloning into 'subword-nmt'...\n",
            "remote: Enumerating objects: 580, done.\u001b[K\n",
            "remote: Counting objects: 100% (4/4), done.\u001b[K\n",
            "remote: Compressing objects: 100% (4/4), done.\u001b[K\n",
            "remote: Total 580 (delta 0), reused 0 (delta 0), pack-reused 576\u001b[K\n",
            "Receiving objects: 100% (580/580), 237.41 KiB | 18.26 MiB/s, done.\n",
            "Resolving deltas: 100% (349/349), done.\n",
            "/content/finetuning\n"
          ]
        }
      ],
      "source": [
        "# clone the repo for running finetuning\n",
        "!git clone https://github.com/AI4Bharat/indicTrans.git\n",
        "%cd indicTrans\n",
        "# clone requirements repositories\n",
        "!git clone https://github.com/anoopkunchukuttan/indic_nlp_library.git\n",
        "!git clone https://github.com/anoopkunchukuttan/indic_nlp_resources.git\n",
        "!git clone https://github.com/rsennrich/subword-nmt.git\n",
        "%cd .."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 3,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "duwTvJ9xEBJ1",
        "outputId": "98445af3-041d-415d-97f3-a322939260e4"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "Reading package lists... Done\n",
            "Building dependency tree       \n",
            "Reading state information... Done\n",
            "The following NEW packages will be installed:\n",
            "  tree\n",
            "0 upgraded, 1 newly installed, 0 to remove and 39 not upgraded.\n",
            "Need to get 40.7 kB of archives.\n",
            "After this operation, 105 kB of additional disk space will be used.\n",
            "Get:1 http://archive.ubuntu.com/ubuntu bionic/universe amd64 tree amd64 1.7.0-5 [40.7 kB]\n",
            "Fetched 40.7 kB in 0s (121 kB/s)\n",
            "debconf: unable to initialize frontend: Dialog\n",
            "debconf: (No usable dialog-like program is installed, so the dialog based frontend cannot be used. at /usr/share/perl5/Debconf/FrontEnd/Dialog.pm line 76, <> line 1.)\n",
            "debconf: falling back to frontend: Readline\n",
            "debconf: unable to initialize frontend: Readline\n",
            "debconf: (This frontend requires a controlling tty.)\n",
            "debconf: falling back to frontend: Teletype\n",
            "dpkg-preconfigure: unable to re-open stdin: \n",
            "Selecting previously unselected package tree.\n",
            "(Reading database ... 160772 files and directories currently installed.)\n",
            "Preparing to unpack .../tree_1.7.0-5_amd64.deb ...\n",
            "Unpacking tree (1.7.0-5) ...\n",
            "Setting up tree (1.7.0-5) ...\n",
            "Processing triggers for man-db (2.8.3-2ubuntu0.1) ...\n",
            "Collecting sacremoses\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/75/ee/67241dc87f266093c533a2d4d3d69438e57d7a90abb216fa076e7d475d4a/sacremoses-0.0.45-py3-none-any.whl (895kB)\n",
            "\u001b[K     |████████████████████████████████| 901kB 30.0MB/s \n",
            "\u001b[?25hRequirement already satisfied: pandas in /usr/local/lib/python3.7/dist-packages (1.1.5)\n",
            "Collecting mock\n",
            "  Downloading https://files.pythonhosted.org/packages/5c/03/b7e605db4a57c0f6fba744b11ef3ddf4ddebcada35022927a2b5fc623fdf/mock-4.0.3-py3-none-any.whl\n",
            "Collecting sacrebleu\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/7e/57/0c7ca4e31a126189dab99c19951910bd081dea5bbd25f24b77107750eae7/sacrebleu-1.5.1-py3-none-any.whl (54kB)\n",
            "\u001b[K     |████████████████████████████████| 61kB 9.1MB/s \n",
            "\u001b[?25hCollecting tensorboardX\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/07/84/46421bd3e0e89a92682b1a38b40efc22dafb6d8e3d947e4ceefd4a5fabc7/tensorboardX-2.2-py2.py3-none-any.whl (120kB)\n",
            "\u001b[K     |████████████████████████████████| 122kB 58.2MB/s \n",
            "\u001b[?25hRequirement already satisfied: pyarrow in /usr/local/lib/python3.7/dist-packages (3.0.0)\n",
            "Collecting indic-nlp-library\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/84/d4/495bb43b88a2a6d04b09c29fc5115f24872af74cd8317fe84026abd4ddb1/indic_nlp_library-0.81-py3-none-any.whl (40kB)\n",
            "\u001b[K     |████████████████████████████████| 40kB 6.3MB/s \n",
            "\u001b[?25hRequirement already satisfied: joblib in /usr/local/lib/python3.7/dist-packages (from sacremoses) (1.0.1)\n",
            "Requirement already satisfied: click in /usr/local/lib/python3.7/dist-packages (from sacremoses) (7.1.2)\n",
            "Requirement already satisfied: six in /usr/local/lib/python3.7/dist-packages (from sacremoses) (1.15.0)\n",
            "Requirement already satisfied: tqdm in /usr/local/lib/python3.7/dist-packages (from sacremoses) (4.41.1)\n",
            "Requirement already satisfied: regex in /usr/local/lib/python3.7/dist-packages (from sacremoses) (2019.12.20)\n",
            "Requirement already satisfied: numpy>=1.15.4 in /usr/local/lib/python3.7/dist-packages (from pandas) (1.19.5)\n",
            "Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.7/dist-packages (from pandas) (2.8.1)\n",
            "Requirement already satisfied: pytz>=2017.2 in /usr/local/lib/python3.7/dist-packages (from pandas) (2018.9)\n",
            "Collecting portalocker==2.0.0\n",
            "  Downloading https://files.pythonhosted.org/packages/89/a6/3814b7107e0788040870e8825eebf214d72166adf656ba7d4bf14759a06a/portalocker-2.0.0-py2.py3-none-any.whl\n",
            "Requirement already satisfied: protobuf>=3.8.0 in /usr/local/lib/python3.7/dist-packages (from tensorboardX) (3.12.4)\n",
            "Collecting sphinx-rtd-theme\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/ac/24/2475e8f83519b54b2148d4a56eb1111f9cec630d088c3ffc214492c12107/sphinx_rtd_theme-0.5.2-py2.py3-none-any.whl (9.1MB)\n",
            "\u001b[K     |████████████████████████████████| 9.2MB 41.6MB/s \n",
            "\u001b[?25hCollecting sphinx-argparse\n",
            "  Downloading https://files.pythonhosted.org/packages/06/2b/dfad6a1831c3aeeae25d8d3d417224684befbf45e10c7f2141631616a6ed/sphinx-argparse-0.2.5.tar.gz\n",
            "Collecting morfessor\n",
            "  Downloading https://files.pythonhosted.org/packages/39/e6/7afea30be2ee4d29ce9de0fa53acbb033163615f849515c0b1956ad074ee/Morfessor-2.0.6-py3-none-any.whl\n",
            "Requirement already satisfied: setuptools in /usr/local/lib/python3.7/dist-packages (from protobuf>=3.8.0->tensorboardX) (57.0.0)\n",
            "Requirement already satisfied: sphinx in /usr/local/lib/python3.7/dist-packages (from sphinx-rtd-theme->indic-nlp-library) (1.8.5)\n",
            "Collecting docutils<0.17\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/81/44/8a15e45ffa96e6cf82956dd8d7af9e666357e16b0d93b253903475ee947f/docutils-0.16-py2.py3-none-any.whl (548kB)\n",
            "\u001b[K     |████████████████████████████████| 552kB 33.3MB/s \n",
            "\u001b[?25hRequirement already satisfied: Pygments>=2.0 in /usr/local/lib/python3.7/dist-packages (from sphinx->sphinx-rtd-theme->indic-nlp-library) (2.6.1)\n",
            "Requirement already satisfied: requests>=2.0.0 in /usr/local/lib/python3.7/dist-packages (from sphinx->sphinx-rtd-theme->indic-nlp-library) (2.23.0)\n",
            "Requirement already satisfied: babel!=2.0,>=1.3 in /usr/local/lib/python3.7/dist-packages (from sphinx->sphinx-rtd-theme->indic-nlp-library) (2.9.1)\n",
            "Requirement already satisfied: Jinja2>=2.3 in /usr/local/lib/python3.7/dist-packages (from sphinx->sphinx-rtd-theme->indic-nlp-library) (2.11.3)\n",
            "Requirement already satisfied: packaging in /usr/local/lib/python3.7/dist-packages (from sphinx->sphinx-rtd-theme->indic-nlp-library) (20.9)\n",
            "Requirement already satisfied: sphinxcontrib-websupport in /usr/local/lib/python3.7/dist-packages (from sphinx->sphinx-rtd-theme->indic-nlp-library) (1.2.4)\n",
            "Requirement already satisfied: imagesize in /usr/local/lib/python3.7/dist-packages (from sphinx->sphinx-rtd-theme->indic-nlp-library) (1.2.0)\n",
            "Requirement already satisfied: snowballstemmer>=1.1 in /usr/local/lib/python3.7/dist-packages (from sphinx->sphinx-rtd-theme->indic-nlp-library) (2.1.0)\n",
            "Requirement already satisfied: alabaster<0.8,>=0.7 in /usr/local/lib/python3.7/dist-packages (from sphinx->sphinx-rtd-theme->indic-nlp-library) (0.7.12)\n",
            "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests>=2.0.0->sphinx->sphinx-rtd-theme->indic-nlp-library) (2020.12.5)\n",
            "Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests>=2.0.0->sphinx->sphinx-rtd-theme->indic-nlp-library) (3.0.4)\n",
            "Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests>=2.0.0->sphinx->sphinx-rtd-theme->indic-nlp-library) (2.10)\n",
            "Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests>=2.0.0->sphinx->sphinx-rtd-theme->indic-nlp-library) (1.24.3)\n",
            "Requirement already satisfied: MarkupSafe>=0.23 in /usr/local/lib/python3.7/dist-packages (from Jinja2>=2.3->sphinx->sphinx-rtd-theme->indic-nlp-library) (2.0.1)\n",
            "Requirement already satisfied: pyparsing>=2.0.2 in /usr/local/lib/python3.7/dist-packages (from packaging->sphinx->sphinx-rtd-theme->indic-nlp-library) (2.4.7)\n",
            "Requirement already satisfied: sphinxcontrib-serializinghtml in /usr/local/lib/python3.7/dist-packages (from sphinxcontrib-websupport->sphinx->sphinx-rtd-theme->indic-nlp-library) (1.1.4)\n",
            "Building wheels for collected packages: sphinx-argparse\n",
            "  Building wheel for sphinx-argparse (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "  Created wheel for sphinx-argparse: filename=sphinx_argparse-0.2.5-cp37-none-any.whl size=11552 sha256=16adb2732e7fea31509536176157766068ca67667ad9ad00a5ee3b15bdec2d18\n",
            "  Stored in directory: /root/.cache/pip/wheels/2a/18/1b/4990a1859da4edc77ab312bc2986c08d2733fb5713d06e44f5\n",
            "Successfully built sphinx-argparse\n",
            "\u001b[31mERROR: datascience 0.10.6 has requirement folium==0.2.1, but you'll have folium 0.8.3 which is incompatible.\u001b[0m\n",
            "Installing collected packages: sacremoses, mock, portalocker, sacrebleu, tensorboardX, docutils, sphinx-rtd-theme, sphinx-argparse, morfessor, indic-nlp-library\n",
            "  Found existing installation: docutils 0.17.1\n",
            "    Uninstalling docutils-0.17.1:\n",
            "      Successfully uninstalled docutils-0.17.1\n",
            "Successfully installed docutils-0.16 indic-nlp-library-0.81 mock-4.0.3 morfessor-2.0.6 portalocker-2.0.0 sacrebleu-1.5.1 sacremoses-0.0.45 sphinx-argparse-0.2.5 sphinx-rtd-theme-0.5.2 tensorboardX-2.2\n",
            "Cloning into 'fairseq'...\n",
            "remote: Enumerating objects: 28243, done.\u001b[K\n",
            "remote: Counting objects: 100% (62/62), done.\u001b[K\n",
            "remote: Compressing objects: 100% (39/39), done.\u001b[K\n",
            "remote: Total 28243 (delta 29), reused 44 (delta 22), pack-reused 28181\u001b[K\n",
            "Receiving objects: 100% (28243/28243), 11.81 MiB | 24.38 MiB/s, done.\n",
            "Resolving deltas: 100% (21225/21225), done.\n",
            "/content/finetuning/fairseq\n",
            "Obtaining file:///content/finetuning/fairseq\n",
            "  Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n",
            "  Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n",
            "  Installing backend dependencies ... \u001b[?25l\u001b[?25hdone\n",
            "    Preparing wheel metadata ... \u001b[?25l\u001b[?25hdone\n",
            "Collecting omegaconf<2.1\n",
            "  Downloading https://files.pythonhosted.org/packages/d0/eb/9d63ce09dd8aa85767c65668d5414958ea29648a0eec80a4a7d311ec2684/omegaconf-2.0.6-py3-none-any.whl\n",
            "Requirement already satisfied: numpy; python_version >= \"3.7\" in /usr/local/lib/python3.7/dist-packages (from fairseq==1.0.0a0+2fd9d8a) (1.19.5)\n",
            "Requirement already satisfied: tqdm in /usr/local/lib/python3.7/dist-packages (from fairseq==1.0.0a0+2fd9d8a) (4.41.1)\n",
            "Collecting hydra-core<1.1\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/52/e3/fbd70dd0d3ce4d1d75c22d56c0c9f895cfa7ed6587a9ffb821d6812d6a60/hydra_core-1.0.6-py3-none-any.whl (123kB)\n",
            "\u001b[K     |████████████████████████████████| 133kB 32.0MB/s \n",
            "\u001b[?25hRequirement already satisfied: regex in /usr/local/lib/python3.7/dist-packages (from fairseq==1.0.0a0+2fd9d8a) (2019.12.20)\n",
            "Requirement already satisfied: cffi in /usr/local/lib/python3.7/dist-packages (from fairseq==1.0.0a0+2fd9d8a) (1.14.5)\n",
            "Requirement already satisfied: sacrebleu>=1.4.12 in /usr/local/lib/python3.7/dist-packages (from fairseq==1.0.0a0+2fd9d8a) (1.5.1)\n",
            "Requirement already satisfied: torch in /usr/local/lib/python3.7/dist-packages (from fairseq==1.0.0a0+2fd9d8a) (1.8.1+cu101)\n",
            "Requirement already satisfied: cython in /usr/local/lib/python3.7/dist-packages (from fairseq==1.0.0a0+2fd9d8a) (0.29.23)\n",
            "Requirement already satisfied: typing-extensions in /usr/local/lib/python3.7/dist-packages (from omegaconf<2.1->fairseq==1.0.0a0+2fd9d8a) (3.7.4.3)\n",
            "Collecting PyYAML>=5.1.*\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/7a/a5/393c087efdc78091afa2af9f1378762f9821c9c1d7a22c5753fb5ac5f97a/PyYAML-5.4.1-cp37-cp37m-manylinux1_x86_64.whl (636kB)\n",
            "\u001b[K     |████████████████████████████████| 645kB 31.7MB/s \n",
            "\u001b[?25hRequirement already satisfied: importlib-resources; python_version < \"3.9\" in /usr/local/lib/python3.7/dist-packages (from hydra-core<1.1->fairseq==1.0.0a0+2fd9d8a) (5.1.3)\n",
            "Collecting antlr4-python3-runtime==4.8\n",
            "\u001b[?25l  Downloading https://files.pythonhosted.org/packages/56/02/789a0bddf9c9b31b14c3e79ec22b9656185a803dc31c15f006f9855ece0d/antlr4-python3-runtime-4.8.tar.gz (112kB)\n",
            "\u001b[K     |████████████████████████████████| 112kB 53.4MB/s \n",
            "\u001b[?25hRequirement already satisfied: pycparser in /usr/local/lib/python3.7/dist-packages (from cffi->fairseq==1.0.0a0+2fd9d8a) (2.20)\n",
            "Requirement already satisfied: portalocker==2.0.0 in /usr/local/lib/python3.7/dist-packages (from sacrebleu>=1.4.12->fairseq==1.0.0a0+2fd9d8a) (2.0.0)\n",
            "Requirement already satisfied: zipp>=0.4; python_version < \"3.8\" in /usr/local/lib/python3.7/dist-packages (from importlib-resources; python_version < \"3.9\"->hydra-core<1.1->fairseq==1.0.0a0+2fd9d8a) (3.4.1)\n",
            "Building wheels for collected packages: antlr4-python3-runtime\n",
            "  Building wheel for antlr4-python3-runtime (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
            "  Created wheel for antlr4-python3-runtime: filename=antlr4_python3_runtime-4.8-cp37-none-any.whl size=141231 sha256=5e816253108c1c7a8687228b17c910230fee3243ba77f5567a8b08f7c1a5a101\n",
            "  Stored in directory: /root/.cache/pip/wheels/e3/e2/fa/b78480b448b8579ddf393bebd3f47ee23aa84c89b6a78285c8\n",
            "Successfully built antlr4-python3-runtime\n",
            "Installing collected packages: PyYAML, omegaconf, antlr4-python3-runtime, hydra-core, fairseq\n",
            "  Found existing installation: PyYAML 3.13\n",
            "    Uninstalling PyYAML-3.13:\n",
            "      Successfully uninstalled PyYAML-3.13\n",
            "  Running setup.py develop for fairseq\n",
            "Successfully installed PyYAML-5.4.1 antlr4-python3-runtime-4.8 fairseq hydra-core-1.0.6 omegaconf-2.0.6\n",
            "/content/finetuning\n"
          ]
        }
      ],
      "source": [
        "! sudo apt install tree\n",
        "\n",
        "# Install the necessary libraries\n",
        "!pip install sacremoses pandas mock sacrebleu tensorboardX pyarrow indic-nlp-library\n",
        "# Install fairseq from source\n",
        "!git clone https://github.com/pytorch/fairseq.git\n",
        "%cd fairseq\n",
        "# !git checkout da9eaba12d82b9bfc1442f0e2c6fc1b895f4d35d\n",
        "!pip install --editable ./\n",
        "%cd .."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 4,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "oD2EHQdqEH70",
        "outputId": "0b988dde-9da3-487c-a393-510fbcae92f3"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "--2021-06-09 18:47:20--  https://storage.googleapis.com/samanantar-public/V0.2/models/indic-en.zip\n",
            "Resolving storage.googleapis.com (storage.googleapis.com)... 172.253.62.128, 172.253.115.128, 172.253.122.128, ...\n",
            "Connecting to storage.googleapis.com (storage.googleapis.com)|172.253.62.128|:443... connected.\n",
            "HTTP request sent, awaiting response... 200 OK\n",
            "Length: 4551079075 (4.2G) [application/zip]\n",
            "Saving to: ‘indic-en.zip’\n",
            "\n",
            "indic-en.zip        100%[===================>]   4.24G  61.3MB/s    in 56s     \n",
            "\n",
            "2021-06-09 18:48:16 (77.9 MB/s) - ‘indic-en.zip’ saved [4551079075/4551079075]\n",
            "\n",
            "Archive:  indic-en.zip\n",
            "   creating: indic-en/\n",
            "   creating: indic-en/vocab/\n",
            "  inflating: indic-en/vocab/bpe_codes.32k.SRC  \n",
            "  inflating: indic-en/vocab/vocab.SRC  \n",
            "  inflating: indic-en/vocab/vocab.TGT  \n",
            "  inflating: indic-en/vocab/bpe_codes.32k.TGT  \n",
            "   creating: indic-en/final_bin/\n",
            "  inflating: indic-en/final_bin/dict.TGT.txt  \n",
            "  inflating: indic-en/final_bin/dict.SRC.txt  \n",
            "   creating: indic-en/model/\n",
            "  inflating: indic-en/model/checkpoint_best.pt  \n"
          ]
        }
      ],
      "source": [
        "# download the indictrans model\n",
        "\n",
        "\n",
        "# downloading the en-indic model\n",
        "# this will contain:\n",
        "# en-indic/\n",
        "# ├── final_bin                          # contains fairseq dictionaries (we will use this to binarize the new finetuning data)\n",
        "# │   ├── dict.SRC.txt\n",
        "# │   └── dict.TGT.txt\n",
        "# ├── model                              # contains model checkpoint(s)\n",
        "# │   └── checkpoint_best.pt\n",
        "# └── vocab                              # contains bpes for src and tgt (since we train seperate vocabularies) generated with subword_nmt (we will use this bpes to convert finetuning data to subwords)\n",
        "#     ├── bpe_codes.32k.SRC\n",
        "#     ├── bpe_codes.32k.TGT\n",
        "#     ├── vocab.SRC\n",
        "#     └── vocab.TGT\n",
        "\n",
        "\n",
        "\n",
        "!wget https://storage.googleapis.com/samanantar-public/V0.3/models/indic-en.zip\n",
        "!unzip indic-en.zip\n",
        "\n",
        "# if you want to finetune indic-en models, use the link below\n",
        "\n",
        "# !wget https://storage.googleapis.com/samanantar-public/V0.3/models/en-indic.zip\n",
        "# !unzip en-indic.zip\n",
        "\n",
        "# if you want to finetune indic-indic models, use the link below\n",
        "\n",
        "# !wget https://storage.googleapis.com/samanantar-public/V0.3/models/m2m.zip\n",
        "# !unzip m2m.zip\n",
        "\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 5,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "lj7XNBuwE0OV",
        "outputId": "98b3a156-c205-4f1b-de79-f1d640555349"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "--2021-06-09 18:50:23--  http://lotus.kuee.kyoto-u.ac.jp/WAT/indic-multilingual/indic_wat_2021.tar.gz\n",
            "Resolving lotus.kuee.kyoto-u.ac.jp (lotus.kuee.kyoto-u.ac.jp)... 130.54.208.131\n",
            "Connecting to lotus.kuee.kyoto-u.ac.jp (lotus.kuee.kyoto-u.ac.jp)|130.54.208.131|:80... connected.\n",
            "HTTP request sent, awaiting response... 200 OK\n",
            "Length: 777928004 (742M) [application/x-gzip]\n",
            "Saving to: ‘indic_wat_2021.tar.gz’\n",
            "\n",
            "indic_wat_2021.tar. 100%[===================>] 741.89M  13.6MB/s    in 57s     \n",
            "\n",
            "2021-06-09 18:51:20 (13.1 MB/s) - ‘indic_wat_2021.tar.gz’ saved [777928004/777928004]\n",
            "\n",
            "finalrepo/\n",
            "finalrepo/README\n",
            "finalrepo/dev/\n",
            "finalrepo/dev/dev.mr\n",
            "finalrepo/dev/dev.kn\n",
            "finalrepo/dev/dev.gu\n",
            "finalrepo/dev/dev.ta\n",
            "finalrepo/dev/dev.bn\n",
            "finalrepo/dev/dev.pa\n",
            "finalrepo/dev/dev.ml\n",
            "finalrepo/dev/dev.or\n",
            "finalrepo/dev/dev.en\n",
            "finalrepo/dev/dev.hi\n",
            "finalrepo/dev/dev.te\n",
            "finalrepo/train/\n",
            "finalrepo/train/zeroshotcorpstats\n",
            "finalrepo/train/opensubtitles/\n",
            "finalrepo/train/opensubtitles/en-ta/\n",
            "finalrepo/train/opensubtitles/en-ta/train.ta\n",
            "finalrepo/train/opensubtitles/en-ta/train.en\n",
            "finalrepo/train/opensubtitles/en-te/\n",
            "finalrepo/train/opensubtitles/en-te/train.te\n",
            "finalrepo/train/opensubtitles/en-te/train.en\n",
            "finalrepo/train/opensubtitles/en-ml/\n",
            "finalrepo/train/opensubtitles/en-ml/train.ml\n",
            "finalrepo/train/opensubtitles/en-ml/train.en\n",
            "finalrepo/train/opensubtitles/en-bn/\n",
            "finalrepo/train/opensubtitles/en-bn/train.bn\n",
            "finalrepo/train/opensubtitles/en-bn/train.en\n",
            "finalrepo/train/opensubtitles/en-hi/\n",
            "finalrepo/train/opensubtitles/en-hi/train.hi\n",
            "finalrepo/train/opensubtitles/en-hi/train.en\n",
            "finalrepo/train/cvit-pib/\n",
            "finalrepo/train/cvit-pib/en-ta/\n",
            "finalrepo/train/cvit-pib/en-ta/train.ta\n",
            "finalrepo/train/cvit-pib/en-ta/train.en\n",
            "finalrepo/train/cvit-pib/en-te/\n",
            "finalrepo/train/cvit-pib/en-te/train.te\n",
            "finalrepo/train/cvit-pib/en-te/train.en\n",
            "finalrepo/train/cvit-pib/en-or/\n",
            "finalrepo/train/cvit-pib/en-or/train.or\n",
            "finalrepo/train/cvit-pib/en-or/train.en\n",
            "finalrepo/train/cvit-pib/en-ml/\n",
            "finalrepo/train/cvit-pib/en-ml/train.ml\n",
            "finalrepo/train/cvit-pib/en-ml/train.en\n",
            "finalrepo/train/cvit-pib/en-bn/\n",
            "finalrepo/train/cvit-pib/en-bn/train.bn\n",
            "finalrepo/train/cvit-pib/en-bn/train.en\n",
            "finalrepo/train/cvit-pib/en-gu/\n",
            "finalrepo/train/cvit-pib/en-gu/train.en\n",
            "finalrepo/train/cvit-pib/en-gu/train.gu\n",
            "finalrepo/train/cvit-pib/en-mr/\n",
            "finalrepo/train/cvit-pib/en-mr/train.mr\n",
            "finalrepo/train/cvit-pib/en-mr/train.en\n",
            "finalrepo/train/cvit-pib/en-pa/\n",
            "finalrepo/train/cvit-pib/en-pa/train.pa\n",
            "finalrepo/train/cvit-pib/en-pa/train.en\n",
            "finalrepo/train/cvit-pib/en-hi/\n",
            "finalrepo/train/cvit-pib/en-hi/train.hi\n",
            "finalrepo/train/cvit-pib/en-hi/train.en\n",
            "finalrepo/train/bibleuedin/\n",
            "finalrepo/train/bibleuedin/en-te/\n",
            "finalrepo/train/bibleuedin/en-te/train.te\n",
            "finalrepo/train/bibleuedin/en-te/train.en\n",
            "finalrepo/train/bibleuedin/en-ml/\n",
            "finalrepo/train/bibleuedin/en-ml/train.ml\n",
            "finalrepo/train/bibleuedin/en-ml/train.en\n",
            "finalrepo/train/bibleuedin/en-gu/\n",
            "finalrepo/train/bibleuedin/en-gu/train.en\n",
            "finalrepo/train/bibleuedin/en-gu/train.gu\n",
            "finalrepo/train/bibleuedin/en-mr/\n",
            "finalrepo/train/bibleuedin/en-mr/train.mr\n",
            "finalrepo/train/bibleuedin/en-mr/train.en\n",
            "finalrepo/train/bibleuedin/en-hi/\n",
            "finalrepo/train/bibleuedin/en-hi/train.hi\n",
            "finalrepo/train/bibleuedin/en-hi/train.en\n",
            "finalrepo/train/bibleuedin/en-kn/\n",
            "finalrepo/train/bibleuedin/en-kn/train.kn\n",
            "finalrepo/train/bibleuedin/en-kn/train.en\n",
            "finalrepo/train/iitb/\n",
            "finalrepo/train/iitb/en-hi/\n",
            "finalrepo/train/iitb/en-hi/train.hi\n",
            "finalrepo/train/iitb/en-hi/train.en\n",
            "finalrepo/train/wikimatrix/\n",
            "finalrepo/train/wikimatrix/en-ta/\n",
            "finalrepo/train/wikimatrix/en-ta/train.ta\n",
            "finalrepo/train/wikimatrix/en-ta/train.en\n",
            "finalrepo/train/wikimatrix/en-te/\n",
            "finalrepo/train/wikimatrix/en-te/train.te\n",
            "finalrepo/train/wikimatrix/en-te/train.en\n",
            "finalrepo/train/wikimatrix/en-ml/\n",
            "finalrepo/train/wikimatrix/en-ml/train.ml\n",
            "finalrepo/train/wikimatrix/en-ml/train.en\n",
            "finalrepo/train/wikimatrix/en-bn/\n",
            "finalrepo/train/wikimatrix/en-bn/train.bn\n",
            "finalrepo/train/wikimatrix/en-bn/train.en\n",
            "finalrepo/train/wikimatrix/en-mr/\n",
            "finalrepo/train/wikimatrix/en-mr/train.mr\n",
            "finalrepo/train/wikimatrix/en-mr/train.en\n",
            "finalrepo/train/wikimatrix/en-hi/\n",
            "finalrepo/train/wikimatrix/en-hi/train.hi\n",
            "finalrepo/train/wikimatrix/en-hi/train.en\n",
            "finalrepo/train/alt/\n",
            "finalrepo/train/alt/en-bn/\n",
            "finalrepo/train/alt/en-bn/train.bn\n",
            "finalrepo/train/alt/en-bn/train.en\n",
            "finalrepo/train/alt/en-hi/\n",
            "finalrepo/train/alt/en-hi/train.hi\n",
            "finalrepo/train/alt/en-hi/train.en\n",
            "finalrepo/train/pmi/\n",
            "finalrepo/train/pmi/en-ta/\n",
            "finalrepo/train/pmi/en-ta/train.ta\n",
            "finalrepo/train/pmi/en-ta/train.en\n",
            "finalrepo/train/pmi/en-te/\n",
            "finalrepo/train/pmi/en-te/train.te\n",
            "finalrepo/train/pmi/en-te/train.en\n",
            "finalrepo/train/pmi/en-or/\n",
            "finalrepo/train/pmi/en-or/train.or\n",
            "finalrepo/train/pmi/en-or/train.en\n",
            "finalrepo/train/pmi/en-ml/\n",
            "finalrepo/train/pmi/en-ml/train.ml\n",
            "finalrepo/train/pmi/en-ml/train.en\n",
            "finalrepo/train/pmi/en-bn/\n",
            "finalrepo/train/pmi/en-bn/train.bn\n",
            "finalrepo/train/pmi/en-bn/train.en\n",
            "finalrepo/train/pmi/en-gu/\n",
            "finalrepo/train/pmi/en-gu/train.en\n",
            "finalrepo/train/pmi/en-gu/train.gu\n",
            "finalrepo/train/pmi/en-mr/\n",
            "finalrepo/train/pmi/en-mr/train.mr\n",
            "finalrepo/train/pmi/en-mr/train.en\n",
            "finalrepo/train/pmi/en-pa/\n",
            "finalrepo/train/pmi/en-pa/train.pa\n",
            "finalrepo/train/pmi/en-pa/train.en\n",
            "finalrepo/train/pmi/en-hi/\n",
            "finalrepo/train/pmi/en-hi/train.hi\n",
            "finalrepo/train/pmi/en-hi/train.en\n",
            "finalrepo/train/pmi/en-kn/\n",
            "finalrepo/train/pmi/en-kn/train.kn\n",
            "finalrepo/train/pmi/en-kn/train.en\n",
            "finalrepo/train/wikititles/\n",
            "finalrepo/train/wikititles/en-ta/\n",
            "finalrepo/train/wikititles/en-ta/train.ta\n",
            "finalrepo/train/wikititles/en-ta/train.en\n",
            "finalrepo/train/wikititles/en-gu/\n",
            "finalrepo/train/wikititles/en-gu/train.en\n",
            "finalrepo/train/wikititles/en-gu/train.gu\n",
            "finalrepo/train/mtenglish2odia/\n",
            "finalrepo/train/mtenglish2odia/en-or/\n",
            "finalrepo/train/mtenglish2odia/en-or/train.or\n",
            "finalrepo/train/mtenglish2odia/en-or/train.en\n",
            "finalrepo/train/urst/\n",
            "finalrepo/train/urst/en-gu/\n",
            "finalrepo/train/urst/en-gu/train.en\n",
            "finalrepo/train/urst/en-gu/train.gu\n",
            "finalrepo/train/jw/\n",
            "finalrepo/train/jw/en-ta/\n",
            "finalrepo/train/jw/en-ta/train.ta\n",
            "finalrepo/train/jw/en-ta/train.en\n",
            "finalrepo/train/jw/en-te/\n",
            "finalrepo/train/jw/en-te/train.te\n",
            "finalrepo/train/jw/en-te/train.en\n",
            "finalrepo/train/jw/en-ml/\n",
            "finalrepo/train/jw/en-ml/train.ml\n",
            "finalrepo/train/jw/en-ml/train.en\n",
            "finalrepo/train/jw/en-bn/\n",
            "finalrepo/train/jw/en-bn/train.bn\n",
            "finalrepo/train/jw/en-bn/train.en\n",
            "finalrepo/train/jw/en-gu/\n",
            "finalrepo/train/jw/en-gu/train.en\n",
            "finalrepo/train/jw/en-gu/train.gu\n",
            "finalrepo/train/jw/en-mr/\n",
            "finalrepo/train/jw/en-mr/train.mr\n",
            "finalrepo/train/jw/en-mr/train.en\n",
            "finalrepo/train/jw/en-pa/\n",
            "finalrepo/train/jw/en-pa/train.pa\n",
            "finalrepo/train/jw/en-pa/train.en\n",
            "finalrepo/train/jw/en-hi/\n",
            "finalrepo/train/jw/en-hi/train.hi\n",
            "finalrepo/train/jw/en-hi/train.en\n",
            "finalrepo/train/jw/en-kn/\n",
            "finalrepo/train/jw/en-kn/train.kn\n",
            "finalrepo/train/jw/en-kn/train.en\n",
            "finalrepo/train/nlpc/\n",
            "finalrepo/train/nlpc/en-ta/\n",
            "finalrepo/train/nlpc/en-ta/train.ta\n",
            "finalrepo/train/nlpc/en-ta/train.en\n",
            "finalrepo/train/get_zero_shot_pairs.py\n",
            "finalrepo/train/ufal/\n",
            "finalrepo/train/ufal/en-ta/\n",
            "finalrepo/train/ufal/en-ta/train.ta\n",
            "finalrepo/train/ufal/en-ta/train.en\n",
            "finalrepo/train/odiencorp/\n",
            "finalrepo/train/odiencorp/en-or/\n",
            "finalrepo/train/odiencorp/en-or/train.or\n",
            "finalrepo/train/odiencorp/en-or/train.en\n",
            "finalrepo/train/tanzil/\n",
            "finalrepo/train/tanzil/en-ta/\n",
            "finalrepo/train/tanzil/en-ta/train.ta\n",
            "finalrepo/train/tanzil/en-ta/train.en\n",
            "finalrepo/train/tanzil/en-ml/\n",
            "finalrepo/train/tanzil/en-ml/train.ml\n",
            "finalrepo/train/tanzil/en-ml/train.en\n",
            "finalrepo/train/tanzil/en-bn/\n",
            "finalrepo/train/tanzil/en-bn/train.bn\n",
            "finalrepo/train/tanzil/en-bn/train.en\n",
            "finalrepo/train/tanzil/en-hi/\n",
            "finalrepo/train/tanzil/en-hi/train.hi\n",
            "finalrepo/train/tanzil/en-hi/train.en\n",
            "finalrepo/train/ted2020/\n",
            "finalrepo/train/ted2020/en-ta/\n",
            "finalrepo/train/ted2020/en-ta/train.ta\n",
            "finalrepo/train/ted2020/en-ta/train.en\n",
            "finalrepo/train/ted2020/en-te/\n",
            "finalrepo/train/ted2020/en-te/train.te\n",
            "finalrepo/train/ted2020/en-te/train.en\n",
            "finalrepo/train/ted2020/en-ml/\n",
            "finalrepo/train/ted2020/en-ml/train.ml\n",
            "finalrepo/train/ted2020/en-ml/train.en\n",
            "finalrepo/train/ted2020/en-bn/\n",
            "finalrepo/train/ted2020/en-bn/train.bn\n",
            "finalrepo/train/ted2020/en-bn/train.en\n",
            "finalrepo/train/ted2020/en-gu/\n",
            "finalrepo/train/ted2020/en-gu/train.en\n",
            "finalrepo/train/ted2020/en-gu/train.gu\n",
            "finalrepo/train/ted2020/en-mr/\n",
            "finalrepo/train/ted2020/en-mr/train.mr\n",
            "finalrepo/train/ted2020/en-mr/train.en\n",
            "finalrepo/train/ted2020/en-pa/\n",
            "finalrepo/train/ted2020/en-pa/train.pa\n",
            "finalrepo/train/ted2020/en-pa/train.en\n",
            "finalrepo/train/ted2020/en-hi/\n",
            "finalrepo/train/ted2020/en-hi/train.hi\n",
            "finalrepo/train/ted2020/en-hi/train.en\n",
            "finalrepo/train/ted2020/en-kn/\n",
            "finalrepo/train/ted2020/en-kn/train.kn\n",
            "finalrepo/train/ted2020/en-kn/train.en\n",
            "finalrepo/test/\n",
            "finalrepo/test/test.gu\n",
            "finalrepo/test/test.fm.prob\n",
            "finalrepo/test/test.kn\n",
            "finalrepo/test/test.ta\n",
            "finalrepo/test/cached_lm_test.en\n",
            "finalrepo/test/test.pa\n",
            "finalrepo/test/test.bn\n",
            "finalrepo/test/test.hi\n",
            "finalrepo/test/test.ml\n",
            "finalrepo/test/test.or\n",
            "finalrepo/test/test.mr\n",
            "finalrepo/test/test.en\n",
            "finalrepo/test/test.te\n"
          ]
        }
      ],
      "source": [
        "# In this example, we will finetuning on cvit-pib corpus which is part of the WAT2021 training dataset.\n",
        "\n",
        "# Lets first download the full wat2021 training data (cvit-pib is a part of this big training set)\n",
        "# ***Note***: See the next section to mine for mining indic to indic data from english centric WAT data. This dataset can be used to finetune indic2indic model\n",
        "!wget http://lotus.kuee.kyoto-u.ac.jp/WAT/indic-multilingual/indic_wat_2021.tar.gz\n",
        "!tar -xzvf indic_wat_2021.tar.gz\n",
        "# all train sets will now be in wat2021/train\n",
        "!mv finalrepo wat2021"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 25,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "BSoZDR3fHpUk",
        "outputId": "11bd057b-d1b0-45b8-feac-85b3e900104e"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "mkdir: cannot create directory ‘wat2021-indic2indic’: File exists\n"
          ]
        },
        {
          "name": "stderr",
          "output_type": "stream",
          "text": [
            "\r  0%|          | 0/2 [00:00<?, ?it/s]"
          ]
        },
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "\n",
            "bn hi\n",
            "bn gu\n"
          ]
        },
        {
          "name": "stderr",
          "output_type": "stream",
          "text": [
            "\r 50%|█████     | 1/2 [03:46<03:46, 226.18s/it]"
          ]
        },
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "\n",
            "hi gu\n"
          ]
        },
        {
          "name": "stderr",
          "output_type": "stream",
          "text": [
            "100%|██████████| 2/2 [06:05<00:00, 182.80s/it]\n"
          ]
        }
      ],
      "source": [
        "# this cell is for mining indic to indic data from a english centric corpus. This data can then be used to our finetune indic2indic model\n",
        "\n",
        "# Mining Indic to Indic pairs from english centric corpus\n",
        "# The `extract_non_english_pairs` in `scripts/extract_non_english_pairs.py` can be used to mine indic to indic pairs from english centric corpus.\n",
        "\n",
        "# As described in the paper (section 2.5) , we use a very strict deduplication criterion to avoid the creation of very similar parallel sentences. \n",
        "# For example, if an en sentence is aligned to M hi sentences and N ta sentences, then we would get MN hi-ta pairs. However, these pairs would be very similar and not contribute much to the training process. \n",
        "# Hence, we retain only 1 randomly chosen pair out of these MN pairs.\n",
        "\n",
        "!mkdir wat2021-indic2indic\n",
        "\n",
        "from indicTrans.scripts.extract_non_english_pairs import extract_non_english_pairs\n",
        "\n",
        "\"\"\"\n",
        "extract_non_english_pairs(indir, outdir, LANGS)\n",
        "\n",
        "    Extracts non-english pair parallel corpora\n",
        "    indir: contains english centric data in the following form:\n",
        "            - directory named en-xx for language xx\n",
        "            - each directory contains a train.en and train.xx\n",
        "    outdir: output directory to store mined data for each pair.\n",
        "            One directory is created for each pair.\n",
        "    LANGS: list of languages in the corpus (other than English).\n",
        "            The language codes must correspond to the ones used in the\n",
        "            files and directories in indir. Prefarably, sort the languages\n",
        "            in this list in alphabetic order. outdir will contain data for xx-yy,\n",
        "            but not for yy-xx, so it will be convenient to have this list in sorted order.\n",
        "\"\"\"\n",
        "# here we are using three langs to mine bn-hi, hi-gu and gu-bn pairs from wat2021/cvit-pib en-X data\n",
        "# you should see the following files after running the code below\n",
        "#  wat2021-indic2indic\n",
        "#  ├── bn-gu\n",
        "#  │   ├── train.bn\n",
        "#  │   └── train.gu\n",
        "#  ├── bn-hi\n",
        "#  │   ├── train.bn\n",
        "#  │   └── train.hi\n",
        "#  └── hi-gu\n",
        "#      ├── train.gu\n",
        "#      └── train.hi\n",
        "\n",
        "# NOTE: Make sure to dedup the output text files and remove any overlaps with test sets before finetuning\n",
        "#       Both of the above are implemented in scripts/remove_train_devtest_overlaps.py -> remove_train_devtest_overlaps(train_dir, devtest_dir, many2many=True)\n",
        "\n",
        "extract_non_english_pairs('wat2021/train/cvit-pib', 'wat2021-indic2indic', ['bn', 'hi', 'gu'])"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 16,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "ys_QURP3Sx7G",
        "outputId": "d41f5baa-e700-4e07-93cd-b23b08122dc5"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "/content/finetuning/indicTrans\n"
          ]
        }
      ],
      "source": [
        "# wat2021\n",
        "# ├── dev                    # contains Wat2021 dev data\n",
        "# │   ├── dev.bn\n",
        "# │   ├── dev.en\n",
        "# │   ├── dev.gu\n",
        "# │   ├── dev.hi\n",
        "# │   ├── dev.kn\n",
        "# │   ├── dev.ml\n",
        "# │   ├── dev.mr\n",
        "# │   ├── dev.or\n",
        "# │   ├── dev.pa\n",
        "# │   ├── dev.ta\n",
        "# │   └── dev.te\n",
        "# ├── README\n",
        "# ├── test                  # contains Wat2021 test data\n",
        "# │   ├── test.bn\n",
        "# │   ├── test.en\n",
        "# │   ├── test.gu\n",
        "# │   ├── test.hi\n",
        "# │   ├── test.kn\n",
        "# │   ├── test.ml\n",
        "# │   ├── test.mr\n",
        "# │   ├── test.or\n",
        "# │   ├── test.pa\n",
        "# │   ├── test.ta\n",
        "# │   └── test.te\n",
        "# └── train                 # contains WAT2021 train data which has lot of corpuses (alt, bible, Jw300, etc)\n",
        "#     ├── alt/\n",
        "#     ├── bibleuedin/\n",
        "#     ├── iitb/\n",
        "#     ├── jw/\n",
        "#     ├── mtenglish2odia/\n",
        "#     ├── nlpc/\n",
        "#     ├── odiencorp/\n",
        "#     ├── opensubtitles/\n",
        "#     ├── pmi/\n",
        "#     ├── tanzil/\n",
        "#     ├── ted2020/\n",
        "#     ├── ufal/\n",
        "#     ├── urst/\n",
        "#     ├── wikimatrix/\n",
        "#     ├── wikititles/\n",
        "#     └──  cvit-pib         \n",
        "#         ├── en-bn         # within a train corpus folder the files are arranged in {src_lang}-{tgt_lang}/train.{src_lang}, train.{tgt_lang}\n",
        "#         │   ├── train.bn\n",
        "#         │   └── train.en\n",
        "#         ├── en-gu\n",
        "#         │   ├── train.en\n",
        "#         │   └── train.gu\n",
        "#         ├── en-hi\n",
        "#         │   ├── train.en\n",
        "#         │   └── train.hi\n",
        "#         ├── en-ml\n",
        "#         │   ├── train.en\n",
        "#         │   └── train.ml\n",
        "#         ├── en-mr\n",
        "#         │   ├── train.en\n",
        "#         │   └── train.mr\n",
        "#         ├── en-or\n",
        "#         │   ├── train.en\n",
        "#         │   └── train.or\n",
        "#         ├── en-pa\n",
        "#         │   ├── train.en\n",
        "#         │   └── train.pa\n",
        "#         ├── en-ta\n",
        "#         │   ├── train.en\n",
        "#         │   └── train.ta\n",
        "#         └── en-te\n",
        "#             ├── train.en\n",
        "#             └── train.te\n",
        "\n",
        "\n",
        "\n",
        "# instead of using all the data for this example, we will mainly use the cvit-pib corpus from wat2021 train set\n",
        "# for dev and test set, we will use the dev and test provided by wat2021\n",
        "\n",
        "# In case, you want to finetune on all these corpuses, you would need to merge all the training data into one folder and remove duplicate train sentence pairs.\n",
        "# To do this, refer to this gist: https://gist.github.com/gowtham1997/2524f8e9559cff586d1f935e621fc598\n",
        "\n",
        "\n",
        "# copy everything to a dataset folder\n",
        "!mkdir -p dataset/train\n",
        "! cp -r wat2021/train/cvit-pib/* dataset/train\n",
        "! cp -r wat2021/dev dataset\n",
        "! cp -r wat2021/test dataset\n",
        "\n",
        "\n",
        "# lets cd to indicTrans\n",
        "%cd indicTrans"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": 7,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "8yPTbM_clKfI",
        "outputId": "d4459da6-3e0b-45c8-f291-d6761e536284"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "../dataset\n"
          ]
        },
        {
          "data": {
            "text/plain": []
          },
          "execution_count": 7,
          "metadata": {
            "tags": []
          },
          "output_type": "execute_result"
        }
      ],
      "source": [
        "%%shell\n",
        "\n",
        "exp_dir=../dataset\n",
        "src_lang=en\n",
        "tgt_lang=indic\n",
        "\n",
        "# change this to indic-en, if you have downloaded the indic-en dir or m2m if you have downloaded the indic2indic model\n",
        "download_dir=../en-indic\n",
        "\n",
        "train_data_dir=$exp_dir/train\n",
        "dev_data_dir=$exp_dir/dev\n",
        "test_data_dir=$exp_dir/test\n",
        "echo $exp_dir\n",
        "\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "NhwUXyYVXrOY",
        "outputId": "9ddb06dd-3fcc-4d4c-a4ec-131a9f4ea220"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "Running experiment ../dataset on en to indic\n",
            "Applying normalization and script conversion for train bn\n",
            "100% 91985/91985 [00:25<00:00, 3582.55it/s]\n",
            "100% 91985/91985 [00:14<00:00, 6330.85it/s]\n",
            "Number of sentences in train bn: 91985\n",
            "Applying normalization and script conversion for dev bn\n",
            "100% 1000/1000 [00:00<00:00, 1593.70it/s]\n",
            "100% 1000/1000 [00:00<00:00, 7232.26it/s]\n",
            "Number of sentences in dev bn: 1000\n",
            "Applying normalization and script conversion for test bn\n",
            "100% 2390/2390 [00:00<00:00, 2874.03it/s]\n",
            "100% 2390/2390 [00:00<00:00, 6727.65it/s]\n",
            "Number of sentences in test bn: 2390\n",
            "Applying normalization and script conversion for train hi\n",
            "100% 266545/266545 [01:15<00:00, 3546.17it/s]\n",
            "100% 266545/266545 [00:45<00:00, 5913.09it/s]\n",
            "Number of sentences in train hi: 266545\n",
            "Applying normalization and script conversion for dev hi\n",
            "100% 1000/1000 [00:00<00:00, 1666.49it/s]\n",
            "100% 1000/1000 [00:00<00:00, 5857.08it/s]\n",
            "Number of sentences in dev hi: 1000\n",
            "Applying normalization and script conversion for test hi\n",
            "100% 2390/2390 [00:00<00:00, 2928.00it/s]\n",
            "100% 2390/2390 [00:00<00:00, 6789.39it/s]\n",
            "Number of sentences in test hi: 2390\n",
            "Applying normalization and script conversion for train gu\n",
            "100% 58264/58264 [00:15<00:00, 3688.72it/s]\n",
            "100% 58264/58264 [00:09<00:00, 6391.97it/s]\n",
            "Number of sentences in train gu: 58264\n",
            "Applying normalization and script conversion for dev gu\n",
            "100% 1000/1000 [00:00<00:00, 1670.01it/s]\n",
            "100% 1000/1000 [00:00<00:00, 6530.46it/s]\n",
            "Number of sentences in dev gu: 1000\n",
            "Applying normalization and script conversion for test gu\n",
            "100% 2390/2390 [00:00<00:00, 2884.69it/s]\n",
            "100% 2390/2390 [00:00<00:00, 6099.24it/s]\n",
            "Number of sentences in test gu: 2390\n",
            "Applying normalization and script conversion for train ml\n",
            "100% 43087/43087 [00:12<00:00, 3589.89it/s]\n",
            "100% 43087/43087 [00:07<00:00, 5968.67it/s]\n",
            "Number of sentences in train ml: 43087\n",
            "Applying normalization and script conversion for dev ml\n",
            "100% 1000/1000 [00:00<00:00, 1691.23it/s]\n",
            "100% 1000/1000 [00:00<00:00, 6090.55it/s]\n",
            "Number of sentences in dev ml: 1000\n",
            "Applying normalization and script conversion for test ml\n",
            "100% 2390/2390 [00:00<00:00, 2961.81it/s]\n",
            "100% 2390/2390 [00:00<00:00, 6878.08it/s]\n",
            "Number of sentences in test ml: 2390\n",
            "Applying normalization and script conversion for train mr\n",
            "100% 114220/114220 [00:30<00:00, 3773.79it/s]\n",
            "100% 114220/114220 [00:17<00:00, 6513.13it/s]\n",
            "Number of sentences in train mr: 114220\n",
            "Applying normalization and script conversion for dev mr\n",
            "100% 1000/1000 [00:00<00:00, 1671.69it/s]\n",
            "100% 1000/1000 [00:00<00:00, 5737.54it/s]\n",
            "Number of sentences in dev mr: 1000\n",
            "Applying normalization and script conversion for test mr\n",
            "100% 2390/2390 [00:00<00:00, 2959.82it/s]\n",
            "100% 2390/2390 [00:00<00:00, 6393.52it/s]\n",
            "Number of sentences in test mr: 2390\n",
            "Applying normalization and script conversion for train or\n",
            "100% 94494/94494 [00:24<00:00, 3912.66it/s]\n",
            "100% 94494/94494 [00:13<00:00, 6919.45it/s]\n",
            "Number of sentences in train or: 94494\n",
            "Applying normalization and script conversion for dev or\n",
            "100% 1000/1000 [00:00<00:00, 1680.80it/s]\n",
            "100% 1000/1000 [00:00<00:00, 5797.35it/s]\n",
            "Number of sentences in dev or: 1000\n",
            "Applying normalization and script conversion for test or\n",
            "100% 2390/2390 [00:00<00:00, 2978.67it/s]\n",
            "100% 2390/2390 [00:00<00:00, 6787.01it/s]\n",
            "Number of sentences in test or: 2390\n",
            "Applying normalization and script conversion for train pa\n",
            "100% 101092/101092 [00:26<00:00, 3826.32it/s]\n",
            "100% 101092/101092 [00:15<00:00, 6425.22it/s]\n",
            "Number of sentences in train pa: 101092\n",
            "Applying normalization and script conversion for dev pa\n",
            "100% 1000/1000 [00:00<00:00, 1667.88it/s]\n",
            "100% 1000/1000 [00:00<00:00, 6182.50it/s]\n",
            "Number of sentences in dev pa: 1000\n",
            "Applying normalization and script conversion for test pa\n",
            "100% 2390/2390 [00:00<00:00, 2993.56it/s]\n",
            "100% 2390/2390 [00:00<00:00, 8002.74it/s]\n",
            "Number of sentences in test pa: 2390\n",
            "Applying normalization and script conversion for train ta\n",
            "100% 115968/115968 [00:30<00:00, 3838.68it/s]\n",
            "100% 115968/115968 [00:19<00:00, 5805.14it/s]\n",
            "Number of sentences in train ta: 115968\n",
            "Applying normalization and script conversion for dev ta\n",
            "100% 1000/1000 [00:00<00:00, 1659.50it/s]\n",
            "100% 1000/1000 [00:00<00:00, 6223.34it/s]\n",
            "Number of sentences in dev ta: 1000\n",
            "Applying normalization and script conversion for test ta\n",
            "100% 2390/2390 [00:00<00:00, 3046.92it/s]\n",
            "100% 2390/2390 [00:00<00:00, 6047.32it/s]\n",
            "Number of sentences in test ta: 2390\n",
            "Applying normalization and script conversion for train te\n",
            "100% 44720/44720 [00:12<00:00, 3524.75it/s]\n",
            "100% 44720/44720 [00:07<00:00, 6016.25it/s]\n",
            "Number of sentences in train te: 44720\n",
            "Applying normalization and script conversion for dev te\n",
            "100% 1000/1000 [00:00<00:00, 1673.03it/s]\n",
            "100% 1000/1000 [00:00<00:00, 6102.16it/s]\n",
            "Number of sentences in dev te: 1000\n",
            "Applying normalization and script conversion for test te\n",
            "100% 2390/2390 [00:00<00:00, 2960.42it/s]\n",
            "100% 2390/2390 [00:00<00:00, 7440.37it/s]\n",
            "Number of sentences in test te: 2390\n",
            "\n",
            "../dataset/data/train.SRC\n",
            "../dataset/data/train.TGT\n",
            "  0% 0/11 [00:00<?, ?it/s]src: en, tgt:as\n",
            "src: en, tgt:bn\n",
            "../dataset/norm/en-bn/train.en\n",
            "../dataset/norm/en-bn/train.bn\n",
            "src: en, tgt:gu\n",
            "../dataset/norm/en-gu/train.en\n",
            "../dataset/norm/en-gu/train.gu\n",
            " 27% 3/11 [00:00<00:00, 28.98it/s]src: en, tgt:hi\n",
            "../dataset/norm/en-hi/train.en\n",
            "../dataset/norm/en-hi/train.hi\n",
            " 36% 4/11 [00:00<00:01,  6.87it/s]src: en, tgt:kn\n",
            "src: en, tgt:ml\n",
            "../dataset/norm/en-ml/train.en\n",
            "../dataset/norm/en-ml/train.ml\n",
            "src: en, tgt:mr\n",
            "../dataset/norm/en-mr/train.en\n",
            "../dataset/norm/en-mr/train.mr\n",
            " 64% 7/11 [00:00<00:00,  8.15it/s]src: en, tgt:or\n",
            "../dataset/norm/en-or/train.en\n",
            "../dataset/norm/en-or/train.or\n",
            " 73% 8/11 [00:00<00:00,  8.13it/s]src: en, tgt:pa\n",
            "../dataset/norm/en-pa/train.en\n",
            "../dataset/norm/en-pa/train.pa\n",
            " 82% 9/11 [00:01<00:00,  6.74it/s]src: en, tgt:ta\n",
            "../dataset/norm/en-ta/train.en\n",
            "../dataset/norm/en-ta/train.ta\n",
            " 91% 10/11 [00:01<00:00,  5.53it/s]src: en, tgt:te\n",
            "../dataset/norm/en-te/train.en\n",
            "../dataset/norm/en-te/train.te\n",
            "100% 11/11 [00:01<00:00,  7.52it/s]\n",
            "  0% 0/11 [00:00<?, ?it/s]src: en, tgt:as\n",
            "src: en, tgt:bn\n",
            "../dataset/norm/en-bn/train.en\n",
            "src: en, tgt:gu\n",
            "../dataset/norm/en-gu/train.en\n",
            "src: en, tgt:hi\n",
            "../dataset/norm/en-hi/train.en\n",
            " 36% 4/11 [00:00<00:00, 31.79it/s]src: en, tgt:kn\n",
            "src: en, tgt:ml\n",
            "../dataset/norm/en-ml/train.en\n",
            "src: en, tgt:mr\n",
            "../dataset/norm/en-mr/train.en\n",
            "src: en, tgt:or\n",
            "../dataset/norm/en-or/train.en\n",
            "src: en, tgt:pa\n",
            "../dataset/norm/en-pa/train.en\n",
            " 82% 9/11 [00:00<00:00, 35.57it/s]src: en, tgt:ta\n",
            "../dataset/norm/en-ta/train.en\n",
            "src: en, tgt:te\n",
            "../dataset/norm/en-te/train.en\n",
            "100% 11/11 [00:00<00:00, 39.26it/s]\n",
            "\n",
            "../dataset/data/dev.SRC\n",
            "../dataset/data/dev.TGT\n",
            "  0% 0/11 [00:00<?, ?it/s]src: en, tgt:as\n",
            "src: en, tgt:bn\n",
            "../dataset/norm/en-bn/dev.en\n",
            "../dataset/norm/en-bn/dev.bn\n",
            "src: en, tgt:gu\n",
            "../dataset/norm/en-gu/dev.en\n",
            "../dataset/norm/en-gu/dev.gu\n",
            "src: en, tgt:hi\n",
            "../dataset/norm/en-hi/dev.en\n",
            "../dataset/norm/en-hi/dev.hi\n",
            "src: en, tgt:kn\n",
            "src: en, tgt:ml\n",
            "../dataset/norm/en-ml/dev.en\n",
            "../dataset/norm/en-ml/dev.ml\n",
            "src: en, tgt:mr\n",
            "../dataset/norm/en-mr/dev.en\n",
            "../dataset/norm/en-mr/dev.mr\n",
            "src: en, tgt:or\n",
            "../dataset/norm/en-or/dev.en\n",
            "../dataset/norm/en-or/dev.or\n",
            "src: en, tgt:pa\n",
            "../dataset/norm/en-pa/dev.en\n",
            "../dataset/norm/en-pa/dev.pa\n",
            "src: en, tgt:ta\n",
            "../dataset/norm/en-ta/dev.en\n",
            "../dataset/norm/en-ta/dev.ta\n",
            "src: en, tgt:te\n",
            "../dataset/norm/en-te/dev.en\n",
            "../dataset/norm/en-te/dev.te\n",
            "100% 11/11 [00:00<00:00, 108.87it/s]\n",
            "  0% 0/11 [00:00<?, ?it/s]src: en, tgt:as\n",
            "src: en, tgt:bn\n",
            "../dataset/norm/en-bn/dev.en\n",
            "src: en, tgt:gu\n",
            "../dataset/norm/en-gu/dev.en\n",
            "src: en, tgt:hi\n",
            "../dataset/norm/en-hi/dev.en\n",
            "src: en, tgt:kn\n",
            "src: en, tgt:ml\n",
            "../dataset/norm/en-ml/dev.en\n",
            "src: en, tgt:mr\n",
            "../dataset/norm/en-mr/dev.en\n",
            "src: en, tgt:or\n",
            "../dataset/norm/en-or/dev.en\n",
            "src: en, tgt:pa\n",
            "../dataset/norm/en-pa/dev.en\n",
            "src: en, tgt:ta\n",
            "../dataset/norm/en-ta/dev.en\n",
            "src: en, tgt:te\n",
            "../dataset/norm/en-te/dev.en\n",
            "100% 11/11 [00:00<00:00, 3176.85it/s]\n",
            "\n",
            "../dataset/data/test.SRC\n",
            "../dataset/data/test.TGT\n",
            "  0% 0/11 [00:00<?, ?it/s]src: en, tgt:as\n",
            "src: en, tgt:bn\n",
            "../dataset/norm/en-bn/test.en\n",
            "../dataset/norm/en-bn/test.bn\n",
            "src: en, tgt:gu\n",
            "../dataset/norm/en-gu/test.en\n",
            "../dataset/norm/en-gu/test.gu\n",
            "src: en, tgt:hi\n",
            "../dataset/norm/en-hi/test.en\n",
            "../dataset/norm/en-hi/test.hi\n",
            "src: en, tgt:kn\n",
            "src: en, tgt:ml\n",
            "../dataset/norm/en-ml/test.en\n",
            "../dataset/norm/en-ml/test.ml\n",
            "src: en, tgt:mr\n",
            "../dataset/norm/en-mr/test.en\n",
            "../dataset/norm/en-mr/test.mr\n",
            "src: en, tgt:or\n",
            "../dataset/norm/en-or/test.en\n",
            "../dataset/norm/en-or/test.or\n",
            "src: en, tgt:pa\n",
            "../dataset/norm/en-pa/test.en\n",
            "../dataset/norm/en-pa/test.pa\n",
            "src: en, tgt:ta\n",
            "../dataset/norm/en-ta/test.en\n",
            "../dataset/norm/en-ta/test.ta\n",
            "src: en, tgt:te\n",
            "../dataset/norm/en-te/test.en\n",
            "../dataset/norm/en-te/test.te\n",
            "100% 11/11 [00:00<00:00, 105.59it/s]\n",
            "  0% 0/11 [00:00<?, ?it/s]src: en, tgt:as\n",
            "src: en, tgt:bn\n",
            "../dataset/norm/en-bn/test.en\n",
            "src: en, tgt:gu\n",
            "../dataset/norm/en-gu/test.en\n",
            "src: en, tgt:hi\n",
            "../dataset/norm/en-hi/test.en\n",
            "src: en, tgt:kn\n",
            "src: en, tgt:ml\n",
            "../dataset/norm/en-ml/test.en\n",
            "src: en, tgt:mr\n",
            "../dataset/norm/en-mr/test.en\n",
            "src: en, tgt:or\n",
            "../dataset/norm/en-or/test.en\n",
            "src: en, tgt:pa\n",
            "../dataset/norm/en-pa/test.en\n",
            "src: en, tgt:ta\n",
            "../dataset/norm/en-ta/test.en\n",
            "src: en, tgt:te\n",
            "../dataset/norm/en-te/test.en\n",
            "100% 11/11 [00:00<00:00, 1584.11it/s]\n",
            "Applying bpe to the new finetuning data\n",
            "train\n",
            "Apply to SRC corpus\n",
            "subword-nmt/subword_nmt/apply_bpe.py:444: UserWarning: In parallel mode, the input cannot be STDIN. Using 1 processor instead.\n",
            "  warnings.warn(\"In parallel mode, the input cannot be STDIN. Using 1 processor instead.\")\n",
            "Apply to TGT corpus\n",
            "subword-nmt/subword_nmt/apply_bpe.py:444: UserWarning: In parallel mode, the input cannot be STDIN. Using 1 processor instead.\n",
            "  warnings.warn(\"In parallel mode, the input cannot be STDIN. Using 1 processor instead.\")\n",
            "dev\n",
            "Apply to SRC corpus\n",
            "subword-nmt/subword_nmt/apply_bpe.py:444: UserWarning: In parallel mode, the input cannot be STDIN. Using 1 processor instead.\n",
            "  warnings.warn(\"In parallel mode, the input cannot be STDIN. Using 1 processor instead.\")\n",
            "Apply to TGT corpus\n",
            "subword-nmt/subword_nmt/apply_bpe.py:444: UserWarning: In parallel mode, the input cannot be STDIN. Using 1 processor instead.\n",
            "  warnings.warn(\"In parallel mode, the input cannot be STDIN. Using 1 processor instead.\")\n",
            "test\n",
            "Apply to SRC corpus\n",
            "subword-nmt/subword_nmt/apply_bpe.py:444: UserWarning: In parallel mode, the input cannot be STDIN. Using 1 processor instead.\n",
            "  warnings.warn(\"In parallel mode, the input cannot be STDIN. Using 1 processor instead.\")\n",
            "Apply to TGT corpus\n",
            "subword-nmt/subword_nmt/apply_bpe.py:444: UserWarning: In parallel mode, the input cannot be STDIN. Using 1 processor instead.\n",
            "  warnings.warn(\"In parallel mode, the input cannot be STDIN. Using 1 processor instead.\")\n",
            "Adding language tags\n",
            "930375it [00:06, 134771.06it/s]\n",
            "9000it [00:00, 170578.75it/s]\n",
            "21510it [00:00, 171968.15it/s]\n",
            "Binarizing data. This will take some time depending on the size of finetuning data\n",
            "2021-05-09 14:01:33 | INFO | fairseq_cli.preprocess | Namespace(align_suffix=None, alignfile=None, all_gather_list_size=16384, azureml_logging=False, bf16=False, bpe=None, cpu=False, criterion='cross_entropy', dataset_impl='mmap', destdir='../dataset/final_bin', empty_cache_freq=0, fp16=False, fp16_init_scale=128, fp16_no_flatten_grads=False, fp16_scale_tolerance=0.0, fp16_scale_window=None, joined_dictionary=False, log_file=None, log_format=None, log_interval=100, lr_scheduler='fixed', memory_efficient_bf16=False, memory_efficient_fp16=False, min_loss_scale=0.0001, model_parallel_size=1, no_progress_bar=False, nwordssrc=-1, nwordstgt=-1, only_source=False, optimizer=None, padding_factor=8, plasma_path='/tmp/plasma', profile=False, quantization_config_path=None, reset_logging=False, scoring='bleu', seed=1, source_lang='SRC', srcdict='../en-indic/final_bin/dict.SRC.txt', suppress_crashes=False, target_lang='TGT', task='translation', tensorboard_logdir=None, testpref='../dataset/final/test', tgtdict='../en-indic/final_bin/dict.TGT.txt', threshold_loss_scale=None, thresholdsrc=5, thresholdtgt=5, tokenizer=None, tpu=False, trainpref='../dataset/final/train', use_plasma_view=False, user_dir=None, validpref='../dataset/final/dev', wandb_project=None, workers=2)\n",
            "2021-05-09 14:01:33 | INFO | fairseq_cli.preprocess | [SRC] Dictionary: 32104 types\n",
            "2021-05-09 14:03:48 | INFO | fairseq_cli.preprocess | [SRC] ../dataset/final/train.SRC: 930375 sents, 31481494 tokens, 0.0% replaced by <unk>\n",
            "2021-05-09 14:03:48 | INFO | fairseq_cli.preprocess | [SRC] Dictionary: 32104 types\n",
            "2021-05-09 14:03:49 | INFO | fairseq_cli.preprocess | [SRC] ../dataset/final/dev.SRC: 9000 sents, 200619 tokens, 0.117% replaced by <unk>\n",
            "2021-05-09 14:03:49 | INFO | fairseq_cli.preprocess | [SRC] Dictionary: 32104 types\n",
            "2021-05-09 14:03:51 | INFO | fairseq_cli.preprocess | [SRC] ../dataset/final/test.SRC: 21510 sents, 471564 tokens, 0.155% replaced by <unk>\n",
            "2021-05-09 14:03:51 | INFO | fairseq_cli.preprocess | [TGT] Dictionary: 35848 types\n",
            "2021-05-09 14:07:06 | INFO | fairseq_cli.preprocess | [TGT] ../dataset/final/train.TGT: 930375 sents, 35902065 tokens, 0.318% replaced by <unk>\n",
            "2021-05-09 14:07:06 | INFO | fairseq_cli.preprocess | [TGT] Dictionary: 35848 types\n",
            "2021-05-09 14:07:07 | INFO | fairseq_cli.preprocess | [TGT] ../dataset/final/dev.TGT: 9000 sents, 224623 tokens, 0.631% replaced by <unk>\n",
            "2021-05-09 14:07:07 | INFO | fairseq_cli.preprocess | [TGT] Dictionary: 35848 types\n",
            "2021-05-09 14:07:11 | INFO | fairseq_cli.preprocess | [TGT] ../dataset/final/test.TGT: 21510 sents, 526380 tokens, 0.57% replaced by <unk>\n",
            "2021-05-09 14:07:11 | INFO | fairseq_cli.preprocess | Wrote preprocessed data to ../dataset/final_bin\n"
          ]
        },
        {
          "data": {
            "text/plain": []
          },
          "execution_count": 9,
          "metadata": {
            "tags": []
          },
          "output_type": "execute_result"
        }
      ],
      "source": [
        "# all the data preparation happens in this cell\n",
        "%%shell\n",
        "\n",
        "exp_dir=../dataset\n",
        "src_lang=en\n",
        "tgt_lang=indic\n",
        "\n",
        "# change this to indic-en, if you have downloaded the indic-en dir or m2m if you have downloaded the indic2indic model\n",
        "download_dir=../en-indic\n",
        "\n",
        "train_data_dir=$exp_dir/train\n",
        "dev_data_dir=$exp_dir/dev\n",
        "test_data_dir=$exp_dir/test\n",
        "\n",
        "\n",
        "echo \"Running experiment ${exp_dir} on ${src_lang} to ${tgt_lang}\"\n",
        "\n",
        "\n",
        "train_processed_dir=$exp_dir/data\n",
        "devtest_processed_dir=$exp_dir/data\n",
        "\n",
        "out_data_dir=$exp_dir/final_bin\n",
        "\n",
        "mkdir -p $train_processed_dir\n",
        "mkdir -p $devtest_processed_dir\n",
        "mkdir -p $out_data_dir\n",
        "\n",
        "# indic languages.\n",
        "# cvit-pib corpus does not have as (assamese) and kn (kannada), hence its not part of this list\n",
        "langs=(bn hi gu ml mr or pa ta te)\n",
        "\n",
        "for lang in ${langs[@]};do\n",
        "\tif [ $src_lang == en ]; then\n",
        "\t\ttgt_lang=$lang\n",
        "\telse\n",
        "\t\tsrc_lang=$lang\n",
        "\tfi\n",
        "\n",
        "\ttrain_norm_dir=$exp_dir/norm/$src_lang-$tgt_lang\n",
        "\tdevtest_norm_dir=$exp_dir/norm/$src_lang-$tgt_lang\n",
        "\tmkdir -p $train_norm_dir\n",
        "\tmkdir -p $devtest_norm_dir\n",
        "\n",
        "\n",
        "    # preprocessing pretokenizes the input (we use moses tokenizer for en and indicnlp lib for indic languages)\n",
        "    # after pretokenization, we use indicnlp to transliterate all the indic data to devnagiri script\n",
        "\n",
        "\t# train preprocessing\n",
        "\ttrain_infname_src=$train_data_dir/en-${lang}/train.$src_lang\n",
        "\ttrain_infname_tgt=$train_data_dir/en-${lang}/train.$tgt_lang\n",
        "\ttrain_outfname_src=$train_norm_dir/train.$src_lang\n",
        "\ttrain_outfname_tgt=$train_norm_dir/train.$tgt_lang\n",
        "\techo \"Applying normalization and script conversion for train $lang\"\n",
        "\tinput_size=`python scripts/preprocess_translate.py $train_infname_src $train_outfname_src $src_lang true`\n",
        "\tinput_size=`python scripts/preprocess_translate.py $train_infname_tgt $train_outfname_tgt $tgt_lang true`\n",
        "\techo \"Number of sentences in train $lang: $input_size\"\n",
        "\n",
        "\t# dev preprocessing\n",
        "\tdev_infname_src=$dev_data_dir/dev.$src_lang\n",
        "\tdev_infname_tgt=$dev_data_dir/dev.$tgt_lang\n",
        "\tdev_outfname_src=$devtest_norm_dir/dev.$src_lang\n",
        "\tdev_outfname_tgt=$devtest_norm_dir/dev.$tgt_lang\n",
        "\techo \"Applying normalization and script conversion for dev $lang\"\n",
        "\tinput_size=`python scripts/preprocess_translate.py $dev_infname_src $dev_outfname_src $src_lang true`\n",
        "\tinput_size=`python scripts/preprocess_translate.py $dev_infname_tgt $dev_outfname_tgt $tgt_lang true`\n",
        "\techo \"Number of sentences in dev $lang: $input_size\"\n",
        "\n",
        "\t# test preprocessing\n",
        "\ttest_infname_src=$test_data_dir/test.$src_lang\n",
        "\ttest_infname_tgt=$test_data_dir/test.$tgt_lang\n",
        "\ttest_outfname_src=$devtest_norm_dir/test.$src_lang\n",
        "\ttest_outfname_tgt=$devtest_norm_dir/test.$tgt_lang\n",
        "\techo \"Applying normalization and script conversion for test $lang\"\n",
        "\tinput_size=`python scripts/preprocess_translate.py $test_infname_src $test_outfname_src $src_lang true`\n",
        "\tinput_size=`python scripts/preprocess_translate.py $test_infname_tgt $test_outfname_tgt $tgt_lang true`\n",
        "\techo \"Number of sentences in test $lang: $input_size\"\n",
        "done\n",
        "\n",
        "\n",
        "\n",
        "\n",
        "# Now that we have preprocessed all the data, we can now merge these different text files into one\n",
        "# ie. for en-as, we have train.en and corresponding train.as, similarly for en-bn, we have train.en and corresponding train.bn\n",
        "# now we will concatenate all this into en-X where train.SRC will have all the en (src) training data and train.TGT will have all the concatenated indic lang data\n",
        "\n",
        "python scripts/concat_joint_data.py $exp_dir/norm $exp_dir/data $src_lang $tgt_lang 'train'\n",
        "python scripts/concat_joint_data.py $exp_dir/norm $exp_dir/data $src_lang $tgt_lang 'dev'\n",
        "python scripts/concat_joint_data.py $exp_dir/norm $exp_dir/data $src_lang $tgt_lang 'test'\n",
        "\n",
        "# use the vocab from downloaded dir\n",
        "cp -r $download_dir/vocab $exp_dir\n",
        "\n",
        "\n",
        "echo \"Applying bpe to the new finetuning data\"\n",
        "bash apply_single_bpe_traindevtest_notag.sh $exp_dir\n",
        "\n",
        "mkdir -p $exp_dir/final\n",
        "\n",
        "# We also add special tags to indicate the source and target language in the inputs\n",
        "#  Eg: to translate a sentence from english to hindi , the input would be   __src__en__   __tgt__hi__ <en bpe tokens>\n",
        "\n",
        "echo \"Adding language tags\"\n",
        "python scripts/add_joint_tags_translate.py $exp_dir 'train'\n",
        "python scripts/add_joint_tags_translate.py $exp_dir 'dev'\n",
        "python scripts/add_joint_tags_translate.py $exp_dir 'test'\n",
        "\n",
        "\n",
        "\n",
        "data_dir=$exp_dir/final\n",
        "out_data_dir=$exp_dir/final_bin\n",
        "\n",
        "rm -rf $out_data_dir\n",
        "\n",
        "# binarizing the new data (train, dev and test) using dictionary from the download dir\n",
        "\n",
        " num_workers=`python -c \"import multiprocessing; print(multiprocessing.cpu_count())\"`\n",
        "\n",
        "data_dir=$exp_dir/final\n",
        "out_data_dir=$exp_dir/final_bin\n",
        "\n",
        "# rm -rf $out_data_dir\n",
        "\n",
        "echo \"Binarizing data. This will take some time depending on the size of finetuning data\"\n",
        "fairseq-preprocess --source-lang SRC --target-lang TGT \\\n",
        " --trainpref $data_dir/train --validpref $data_dir/dev --testpref $data_dir/test \\\n",
        " --destdir $out_data_dir --workers $num_workers \\\n",
        " --srcdict $download_dir/final_bin/dict.SRC.txt --tgtdict $download_dir/final_bin/dict.TGT.txt --thresholdtgt 5 --thresholdsrc 5  "
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "iz6tzbe2tcs7",
        "outputId": "6705e2d6-b5cb-4810-c833-6a1370d3fce4"
      },
      "outputs": [
        {
          "name": "stdout",
          "output_type": "stream",
          "text": [
            "2021-05-09 14:29:11 | INFO | fairseq_cli.train | {'_name': None, 'common': {'_name': None, 'no_progress_bar': False, 'log_interval': 100, 'log_format': None, 'log_file': None, 'tensorboard_logdir': '../dataset/tensorboard-wandb', 'wandb_project': None, 'azureml_logging': False, 'seed': 1, 'cpu': False, 'tpu': False, 'bf16': False, 'memory_efficient_bf16': False, 'fp16': True, 'memory_efficient_fp16': False, 'fp16_no_flatten_grads': False, 'fp16_init_scale': 128, 'fp16_scale_window': None, 'fp16_scale_tolerance': 0.0, 'min_loss_scale': 0.0001, 'threshold_loss_scale': None, 'user_dir': 'model_configs', 'empty_cache_freq': 0, 'all_gather_list_size': 16384, 'model_parallel_size': 1, 'quantization_config_path': None, 'profile': False, 'reset_logging': False, 'suppress_crashes': False, 'use_plasma_view': False, 'plasma_path': '/tmp/plasma'}, 'common_eval': {'_name': None, 'path': None, 'post_process': None, 'quiet': False, 'model_overrides': '{}', 'results_path': None}, 'distributed_training': {'_name': None, 'distributed_world_size': 1, 'distributed_rank': 0, 'distributed_backend': 'nccl', 'distributed_init_method': None, 'distributed_port': -1, 'device_id': 0, 'distributed_no_spawn': False, 'ddp_backend': 'pytorch_ddp', 'ddp_comm_hook': 'none', 'bucket_cap_mb': 25, 'fix_batches_to_gpus': False, 'find_unused_parameters': False, 'fast_stat_sync': False, 'heartbeat_timeout': -1, 'broadcast_buffers': False, 'slowmo_momentum': None, 'slowmo_algorithm': 'LocalSGD', 'localsgd_frequency': 3, 'nprocs_per_node': 1, 'pipeline_model_parallel': False, 'pipeline_balance': None, 'pipeline_devices': None, 'pipeline_chunks': 0, 'pipeline_encoder_balance': None, 'pipeline_encoder_devices': None, 'pipeline_decoder_balance': None, 'pipeline_decoder_devices': None, 'pipeline_checkpoint': 'never', 'zero_sharding': 'none', 'fp16': True, 'memory_efficient_fp16': False, 'tpu': False, 'no_reshard_after_forward': False, 'fp32_reduce_scatter': False, 'cpu_offload': False, 'distributed_num_procs': 1}, 'dataset': {'_name': None, 'num_workers': 1, 'skip_invalid_size_inputs_valid_test': True, 'max_tokens': 256, 'batch_size': None, 'required_batch_size_multiple': 8, 'required_seq_len_multiple': 1, 'dataset_impl': None, 'data_buffer_size': 10, 'train_subset': 'train', 'valid_subset': 'valid', 'validate_interval': 1, 'validate_interval_updates': 0, 'validate_after_updates': 0, 'fixed_validation_seed': None, 'disable_validation': False, 'max_tokens_valid': 256, 'batch_size_valid': None, 'max_valid_steps': None, 'curriculum': 0, 'gen_subset': 'test', 'num_shards': 1, 'shard_id': 0}, 'optimization': {'_name': None, 'max_epoch': 0, 'max_update': 1000, 'stop_time_hours': 0.0, 'clip_norm': 1.0, 'sentence_avg': False, 'update_freq': [2], 'lr': [3e-05], 'stop_min_lr': -1.0, 'use_bmuf': False}, 'checkpoint': {'_name': None, 'save_dir': '../dataset/model', 'restore_file': '../en-indic/model/checkpoint_best.pt', 'finetune_from_model': None, 'reset_dataloader': True, 'reset_lr_scheduler': True, 'reset_meters': True, 'reset_optimizer': True, 'optimizer_overrides': '{}', 'save_interval': 1, 'save_interval_updates': 0, 'keep_interval_updates': -1, 'keep_interval_updates_pattern': -1, 'keep_last_epochs': 5, 'keep_best_checkpoints': -1, 'no_save': False, 'no_epoch_checkpoints': False, 'no_last_checkpoints': False, 'no_save_optimizer_state': False, 'best_checkpoint_metric': 'loss', 'maximize_best_checkpoint_metric': False, 'patience': 5, 'checkpoint_suffix': '', 'checkpoint_shard_count': 1, 'load_checkpoint_on_all_dp_ranks': False, 'write_checkpoints_asynchronously': False, 'model_parallel_size': 1}, 'bmuf': {'_name': None, 'block_lr': 1.0, 'block_momentum': 0.875, 'global_sync_iter': 50, 'warmup_iterations': 500, 'use_nbm': False, 'average_sync': False, 'distributed_world_size': 1}, 'generation': {'_name': None, 'beam': 5, 'nbest': 1, 'max_len_a': 0.0, 'max_len_b': 200, 'min_len': 1, 'match_source_len': False, 'unnormalized': False, 'no_early_stop': False, 'no_beamable_mm': False, 'lenpen': 1.0, 'unkpen': 0.0, 'replace_unk': None, 'sacrebleu': False, 'score_reference': False, 'prefix_size': 0, 'no_repeat_ngram_size': 0, 'sampling': False, 'sampling_topk': -1, 'sampling_topp': -1.0, 'constraints': None, 'temperature': 1.0, 'diverse_beam_groups': -1, 'diverse_beam_strength': 0.5, 'diversity_rate': -1.0, 'print_alignment': None, 'print_step': False, 'lm_path': None, 'lm_weight': 0.0, 'iter_decode_eos_penalty': 0.0, 'iter_decode_max_iter': 10, 'iter_decode_force_max_iter': False, 'iter_decode_with_beam': 1, 'iter_decode_with_external_reranker': False, 'retain_iter_history': False, 'retain_dropout': False, 'retain_dropout_modules': None, 'decoding_format': None, 'no_seed_provided': False}, 'eval_lm': {'_name': None, 'output_word_probs': False, 'output_word_stats': False, 'context_window': 0, 'softmax_batch': 9223372036854775807}, 'interactive': {'_name': None, 'buffer_size': 0, 'input': '-'}, 'model': Namespace(_name='transformer_4x', activation_dropout=0.0, activation_fn='relu', adam_betas='(0.9, 0.98)', adam_eps=1e-08, adaptive_input=False, adaptive_softmax_cutoff=None, adaptive_softmax_dropout=0, all_gather_list_size=16384, arch='transformer_4x', attention_dropout=0.0, azureml_logging=False, batch_size=None, batch_size_valid=None, best_checkpoint_metric='loss', bf16=False, bpe=None, broadcast_buffers=False, bucket_cap_mb=25, checkpoint_activations=False, checkpoint_shard_count=1, checkpoint_suffix='', clip_norm=1.0, cpu=False, cpu_offload=False, criterion='label_smoothed_cross_entropy', cross_self_attention=False, curriculum=0, data='../dataset/final_bin', data_buffer_size=10, dataset_impl=None, ddp_backend='pytorch_ddp', ddp_comm_hook='none', decoder_attention_heads=16, decoder_embed_dim=1536, decoder_embed_path=None, decoder_ffn_embed_dim=4096, decoder_input_dim=1536, decoder_layerdrop=0, decoder_layers=6, decoder_layers_to_keep=None, decoder_learned_pos=False, decoder_normalize_before=False, decoder_output_dim=1536, device_id=0, disable_validation=False, distributed_backend='nccl', distributed_init_method=None, distributed_no_spawn=False, distributed_port=-1, distributed_rank=0, distributed_world_size=1, dropout=0.2, empty_cache_freq=0, encoder_attention_heads=16, encoder_embed_dim=1536, encoder_embed_path=None, encoder_ffn_embed_dim=4096, encoder_layerdrop=0, encoder_layers=6, encoder_layers_to_keep=None, encoder_learned_pos=False, encoder_normalize_before=False, eos=2, eval_bleu=False, eval_bleu_args='{}', eval_bleu_detok='space', eval_bleu_detok_args='{}', eval_bleu_print_samples=False, eval_bleu_remove_bpe=None, eval_tokenized_bleu=False, fast_stat_sync=False, find_unused_parameters=False, finetune_from_model=None, fix_batches_to_gpus=False, fixed_validation_seed=None, fp16=True, fp16_init_scale=128, fp16_no_flatten_grads=False, fp16_scale_tolerance=0.0, fp16_scale_window=None, fp32_reduce_scatter=False, gen_subset='test', heartbeat_timeout=-1, ignore_prefix_size=0, keep_best_checkpoints=-1, keep_interval_updates=-1, keep_interval_updates_pattern=-1, keep_last_epochs=5, label_smoothing=0.1, layernorm_embedding=False, left_pad_source=True, left_pad_target=False, load_alignments=False, load_checkpoint_on_all_dp_ranks=False, localsgd_frequency=3, log_file=None, log_format=None, log_interval=100, lr=[3e-05], lr_scheduler='inverse_sqrt', max_epoch=0, max_source_positions=210, max_target_positions=210, max_tokens=256, max_tokens_valid=256, max_update=1000, max_valid_steps=None, maximize_best_checkpoint_metric=False, memory_efficient_bf16=False, memory_efficient_fp16=False, min_loss_scale=0.0001, min_params_to_wrap=100000000, model_parallel_size=1, no_cross_attention=False, no_epoch_checkpoints=False, no_last_checkpoints=False, no_progress_bar=False, no_reshard_after_forward=False, no_save=False, no_save_optimizer_state=False, no_scale_embedding=False, no_seed_provided=False, no_token_positional_embeddings=False, nprocs_per_node=1, num_batch_buckets=0, num_shards=1, num_workers=1, offload_activations=False, optimizer='adam', optimizer_overrides='{}', pad=1, patience=5, pipeline_balance=None, pipeline_checkpoint='never', pipeline_chunks=0, pipeline_decoder_balance=None, pipeline_decoder_devices=None, pipeline_devices=None, pipeline_encoder_balance=None, pipeline_encoder_devices=None, pipeline_model_parallel=False, plasma_path='/tmp/plasma', profile=False, quant_noise_pq=0, quant_noise_pq_block_size=8, quant_noise_scalar=0, quantization_config_path=None, report_accuracy=False, required_batch_size_multiple=8, required_seq_len_multiple=1, reset_dataloader=True, reset_logging=False, reset_lr_scheduler=True, reset_meters=True, reset_optimizer=True, restore_file='../en-indic/model/checkpoint_best.pt', save_dir='../dataset/model', save_interval=1, save_interval_updates=0, scoring='bleu', seed=1, sentence_avg=False, shard_id=0, share_all_embeddings=False, share_decoder_input_output_embed=False, skip_invalid_size_inputs_valid_test=True, slowmo_algorithm='LocalSGD', slowmo_momentum=None, source_lang='SRC', stop_min_lr=-1.0, stop_time_hours=0, suppress_crashes=False, target_lang='TGT', task='translation', tensorboard_logdir='../dataset/tensorboard-wandb', threshold_loss_scale=None, tie_adaptive_weights=False, tokenizer=None, tpu=False, train_subset='train', truncate_source=False, unk=3, update_freq=[2], upsample_primary=-1, use_bmuf=False, use_old_adam=False, use_plasma_view=False, user_dir='model_configs', valid_subset='valid', validate_after_updates=0, validate_interval=1, validate_interval_updates=0, wandb_project=None, warmup_init_lr=1e-07, warmup_updates=4000, weight_decay=0.0, write_checkpoints_asynchronously=False, zero_sharding='none'), 'task': {'_name': 'translation', 'data': '../dataset/final_bin', 'source_lang': 'SRC', 'target_lang': 'TGT', 'load_alignments': False, 'left_pad_source': True, 'left_pad_target': False, 'max_source_positions': 210, 'max_target_positions': 210, 'upsample_primary': -1, 'truncate_source': False, 'num_batch_buckets': 0, 'train_subset': 'train', 'dataset_impl': None, 'required_seq_len_multiple': 1, 'eval_bleu': False, 'eval_bleu_args': '{}', 'eval_bleu_detok': 'space', 'eval_bleu_detok_args': '{}', 'eval_tokenized_bleu': False, 'eval_bleu_remove_bpe': None, 'eval_bleu_print_samples': False}, 'criterion': {'_name': 'label_smoothed_cross_entropy', 'label_smoothing': 0.1, 'report_accuracy': False, 'ignore_prefix_size': 0, 'sentence_avg': False}, 'optimizer': {'_name': 'adam', 'adam_betas': '(0.9, 0.98)', 'adam_eps': 1e-08, 'weight_decay': 0.0, 'use_old_adam': False, 'tpu': False, 'lr': [3e-05]}, 'lr_scheduler': {'_name': 'inverse_sqrt', 'warmup_updates': 4000, 'warmup_init_lr': 1e-07, 'lr': [3e-05]}, 'scoring': {'_name': 'bleu', 'pad': 1, 'eos': 2, 'unk': 3}, 'bpe': None, 'tokenizer': None}\n",
            "2021-05-09 14:29:11 | INFO | fairseq.tasks.translation | [SRC] dictionary: 32104 types\n",
            "2021-05-09 14:29:11 | INFO | fairseq.tasks.translation | [TGT] dictionary: 35848 types\n",
            "2021-05-09 14:29:19 | INFO | fairseq_cli.train | TransformerModel(\n",
            "  (encoder): TransformerEncoder(\n",
            "    (dropout_module): FairseqDropout()\n",
            "    (embed_tokens): Embedding(32104, 1536, padding_idx=1)\n",
            "    (embed_positions): SinusoidalPositionalEmbedding()\n",
            "    (layers): ModuleList(\n",
            "      (0): TransformerEncoderLayer(\n",
            "        (self_attn): MultiheadAttention(\n",
            "          (dropout_module): FairseqDropout()\n",
            "          (k_proj): Linear(in_features=1536, out_features=1536, bias=True)\n",
            "          (v_proj): Linear(in_features=1536, out_features=1536, bias=True)\n",
            "          (q_proj): Linear(in_features=1536, out_features=1536, bias=True)\n",
            "          (out_proj): Linear(in_features=1536, out_features=1536, bias=True)\n",
            "        )\n",
            "        (self_attn_layer_norm): LayerNorm((1536,), eps=1e-05, elementwise_affine=True)\n",
            "        (dropout_module): FairseqDropout()\n",
            "        (activation_dropout_module): FairseqDropout()\n",
            "        (fc1): Linear(in_features=1536, out_features=4096, bias=True)\n",
            "        (fc2): Linear(in_features=4096, out_features=1536, bias=True)\n",
            "        (final_layer_norm): LayerNorm((1536,), eps=1e-05, elementwise_affine=True)\n",
            "      )\n",
            "      (1): TransformerEncoderLayer(\n",
            "        (self_attn): MultiheadAttention(\n",
            "          (dropout_module): FairseqDropout()\n",
            "          (k_proj): Linear(in_features=1536, out_features=1536, bias=True)\n",
            "          (v_proj): Linear(in_features=1536, out_features=1536, bias=True)\n",
            "          (q_proj): Linear(in_features=1536, out_features=1536, bias=True)\n",
            "          (out_proj): Linear(in_features=1536, out_features=1536, bias=True)\n",
            "        )\n",
            "        (self_attn_layer_norm): LayerNorm((1536,), eps=1e-05, elementwise_affine=True)\n",
            "        (dropout_module): FairseqDropout()\n",
            "        (activation_dropout_module): FairseqDropout()\n",
            "        (fc1): Linear(in_features=1536, out_features=4096, bias=True)\n",
            "        (fc2): Linear(in_features=4096, out_features=1536, bias=True)\n",
            "        (final_layer_norm): LayerNorm((1536,), eps=1e-05, elementwise_affine=True)\n",
            "      )\n",
            "      (2): TransformerEncoderLayer(\n",
            "        (self_attn): MultiheadAttention(\n",
            "          (dropout_module): FairseqDropout()\n",
            "          (k_proj): Linear(in_features=1536, out_features=1536, bias=True)\n",
            "          (v_proj): Linear(in_features=1536, out_features=1536, bias=True)\n",
            "          (q_proj): Linear(in_features=1536, out_features=1536, bias=True)\n",
            "          (out_proj): Linear(in_features=1536, out_features=1536, bias=True)\n",
            "        )\n",
            "        (self_attn_layer_norm): LayerNorm((1536,), eps=1e-05, elementwise_affine=True)\n",
            "        (dropout_module): FairseqDropout()\n",
            "        (activation_dropout_module): FairseqDropout()\n",
            "        (fc1): Linear(in_features=1536, out_features=4096, bias=True)\n",
            "        (fc2): Linear(in_features=4096, out_features=1536, bias=True)\n",
            "        (final_layer_norm): LayerNorm((1536,), eps=1e-05, elementwise_affine=True)\n",
            "      )\n",
            "      (3): TransformerEncoderLayer(\n",
            "        (self_attn): MultiheadAttention(\n",
            "          (dropout_module): FairseqDropout()\n",
            "          (k_proj): Linear(in_features=1536, out_features=1536, bias=True)\n",
            "          (v_proj): Linear(in_features=1536, out_features=1536, bias=True)\n",
            "          (q_proj): Linear(in_features=1536, out_features=1536, bias=True)\n",
            "          (out_proj): Linear(in_features=1536, out_features=1536, bias=True)\n",
            "        )\n",
            "        (self_attn_layer_norm): LayerNorm((1536,), eps=1e-05, elementwise_affine=True)\n",
            "        (dropout_module): FairseqDropout()\n",
            "        (activation_dropout_module): FairseqDropout()\n",
            "        (fc1): Linear(in_features=1536, out_features=4096, bias=True)\n",
            "        (fc2): Linear(in_features=4096, out_features=1536, bias=True)\n",
            "        (final_layer_norm): LayerNorm((1536,), eps=1e-05, elementwise_affine=True)\n",
            "      )\n",
            "      (4): TransformerEncoderLayer(\n",
            "        (self_attn): MultiheadAttention(\n",
            "          (dropout_module): FairseqDropout()\n",
            "          (k_proj): Linear(in_features=1536, out_features=1536, bias=True)\n",
            "          (v_proj): Linear(in_features=1536, out_features=1536, bias=True)\n",
            "          (q_proj): Linear(in_features=1536, out_features=1536, bias=True)\n",
            "          (out_proj): Linear(in_features=1536, out_features=1536, bias=True)\n",
            "        )\n",
            "        (self_attn_layer_norm): LayerNorm((1536,), eps=1e-05, elementwise_affine=True)\n",
            "        (dropout_module): FairseqDropout()\n",
            "        (activation_dropout_module): FairseqDropout()\n",
            "        (fc1): Linear(in_features=1536, out_features=4096, bias=True)\n",
            "        (fc2): Linear(in_features=4096, out_features=1536, bias=True)\n",
            "        (final_layer_norm): LayerNorm((1536,), eps=1e-05, elementwise_affine=True)\n",
            "      )\n",
            "      (5): TransformerEncoderLayer(\n",
            "        (self_attn): MultiheadAttention(\n",
            "          (dropout_module): FairseqDropout()\n",
            "          (k_proj): Linear(in_features=1536, out_features=1536, bias=True)\n",
            "          (v_proj): Linear(in_features=1536, out_features=1536, bias=True)\n",
            "          (q_proj): Linear(in_features=1536, out_features=1536, bias=True)\n",
            "          (out_proj): Linear(in_features=1536, out_features=1536, bias=True)\n",
            "        )\n",
            "        (self_attn_layer_norm): LayerNorm((1536,), eps=1e-05, elementwise_affine=True)\n",
            "        (dropout_module): FairseqDropout()\n",
            "        (activation_dropout_module): FairseqDropout()\n",
            "        (fc1): Linear(in_features=1536, out_features=4096, bias=True)\n",
            "        (fc2): Linear(in_features=4096, out_features=1536, bias=True)\n",
            "        (final_layer_norm): LayerNorm((1536,), eps=1e-05, elementwise_affine=True)\n",
            "      )\n",
            "    )\n",
            "  )\n",
            "  (decoder): TransformerDecoder(\n",
            "    (dropout_module): FairseqDropout()\n",
            "    (embed_tokens): Embedding(35848, 1536, padding_idx=1)\n",
            "    (embed_positions): SinusoidalPositionalEmbedding()\n",
            "    (layers): ModuleList(\n",
            "      (0): TransformerDecoderLayer(\n",
            "        (dropout_module): FairseqDropout()\n",
            "        (self_attn): MultiheadAttention(\n",
            "          (dropout_module): FairseqDropout()\n",
            "          (k_proj): Linear(in_features=1536, out_features=1536, bias=True)\n",
            "          (v_proj): Linear(in_features=1536, out_features=1536, bias=True)\n",
            "          (q_proj): Linear(in_features=1536, out_features=1536, bias=True)\n",
            "          (out_proj): Linear(in_features=1536, out_features=1536, bias=True)\n",
            "        )\n",
            "        (activation_dropout_module): FairseqDropout()\n",
            "        (self_attn_layer_norm): LayerNorm((1536,), eps=1e-05, elementwise_affine=True)\n",
            "        (encoder_attn): MultiheadAttention(\n",
            "          (dropout_module): FairseqDropout()\n",
            "          (k_proj): Linear(in_features=1536, out_features=1536, bias=True)\n",
            "          (v_proj): Linear(in_features=1536, out_features=1536, bias=True)\n",
            "          (q_proj): Linear(in_features=1536, out_features=1536, bias=True)\n",
            "          (out_proj): Linear(in_features=1536, out_features=1536, bias=True)\n",
            "        )\n",
            "        (encoder_attn_layer_norm): LayerNorm((1536,), eps=1e-05, elementwise_affine=True)\n",
            "        (fc1): Linear(in_features=1536, out_features=4096, bias=True)\n",
            "        (fc2): Linear(in_features=4096, out_features=1536, bias=True)\n",
            "        (final_layer_norm): LayerNorm((1536,), eps=1e-05, elementwise_affine=True)\n",
            "      )\n",
            "      (1): TransformerDecoderLayer(\n",
            "        (dropout_module): FairseqDropout()\n",
            "        (self_attn): MultiheadAttention(\n",
            "          (dropout_module): FairseqDropout()\n",
            "          (k_proj): Linear(in_features=1536, out_features=1536, bias=True)\n",
            "          (v_proj): Linear(in_features=1536, out_features=1536, bias=True)\n",
            "          (q_proj): Linear(in_features=1536, out_features=1536, bias=True)\n",
            "          (out_proj): Linear(in_features=1536, out_features=1536, bias=True)\n",
            "        )\n",
            "        (activation_dropout_module): FairseqDropout()\n",
            "        (self_attn_layer_norm): LayerNorm((1536,), eps=1e-05, elementwise_affine=True)\n",
            "        (encoder_attn): MultiheadAttention(\n",
            "          (dropout_module): FairseqDropout()\n",
            "          (k_proj): Linear(in_features=1536, out_features=1536, bias=True)\n",
            "          (v_proj): Linear(in_features=1536, out_features=1536, bias=True)\n",
            "          (q_proj): Linear(in_features=1536, out_features=1536, bias=True)\n",
            "          (out_proj): Linear(in_features=1536, out_features=1536, bias=True)\n",
            "        )\n",
            "        (encoder_attn_layer_norm): LayerNorm((1536,), eps=1e-05, elementwise_affine=True)\n",
            "        (fc1): Linear(in_features=1536, out_features=4096, bias=True)\n",
            "        (fc2): Linear(in_features=4096, out_features=1536, bias=True)\n",
            "        (final_layer_norm): LayerNorm((1536,), eps=1e-05, elementwise_affine=True)\n",
            "      )\n",
            "      (2): TransformerDecoderLayer(\n",
            "        (dropout_module): FairseqDropout()\n",
            "        (self_attn): MultiheadAttention(\n",
            "          (dropout_module): FairseqDropout()\n",
            "          (k_proj): Linear(in_features=1536, out_features=1536, bias=True)\n",
            "          (v_proj): Linear(in_features=1536, out_features=1536, bias=True)\n",
            "          (q_proj): Linear(in_features=1536, out_features=1536, bias=True)\n",
            "          (out_proj): Linear(in_features=1536, out_features=1536, bias=True)\n",
            "        )\n",
            "        (activation_dropout_module): FairseqDropout()\n",
            "        (self_attn_layer_norm): LayerNorm((1536,), eps=1e-05, elementwise_affine=True)\n",
            "        (encoder_attn): MultiheadAttention(\n",
            "          (dropout_module): FairseqDropout()\n",
            "          (k_proj): Linear(in_features=1536, out_features=1536, bias=True)\n",
            "          (v_proj): Linear(in_features=1536, out_features=1536, bias=True)\n",
            "          (q_proj): Linear(in_features=1536, out_features=1536, bias=True)\n",
            "          (out_proj): Linear(in_features=1536, out_features=1536, bias=True)\n",
            "        )\n",
            "        (encoder_attn_layer_norm): LayerNorm((1536,), eps=1e-05, elementwise_affine=True)\n",
            "        (fc1): Linear(in_features=1536, out_features=4096, bias=True)\n",
            "        (fc2): Linear(in_features=4096, out_features=1536, bias=True)\n",
            "        (final_layer_norm): LayerNorm((1536,), eps=1e-05, elementwise_affine=True)\n",
            "      )\n",
            "      (3): TransformerDecoderLayer(\n",
            "        (dropout_module): FairseqDropout()\n",
            "        (self_attn): MultiheadAttention(\n",
            "          (dropout_module): FairseqDropout()\n",
            "          (k_proj): Linear(in_features=1536, out_features=1536, bias=True)\n",
            "          (v_proj): Linear(in_features=1536, out_features=1536, bias=True)\n",
            "          (q_proj): Linear(in_features=1536, out_features=1536, bias=True)\n",
            "          (out_proj): Linear(in_features=1536, out_features=1536, bias=True)\n",
            "        )\n",
            "        (activation_dropout_module): FairseqDropout()\n",
            "        (self_attn_layer_norm): LayerNorm((1536,), eps=1e-05, elementwise_affine=True)\n",
            "        (encoder_attn): MultiheadAttention(\n",
            "          (dropout_module): FairseqDropout()\n",
            "          (k_proj): Linear(in_features=1536, out_features=1536, bias=True)\n",
            "          (v_proj): Linear(in_features=1536, out_features=1536, bias=True)\n",
            "          (q_proj): Linear(in_features=1536, out_features=1536, bias=True)\n",
            "          (out_proj): Linear(in_features=1536, out_features=1536, bias=True)\n",
            "        )\n",
            "        (encoder_attn_layer_norm): LayerNorm((1536,), eps=1e-05, elementwise_affine=True)\n",
            "        (fc1): Linear(in_features=1536, out_features=4096, bias=True)\n",
            "        (fc2): Linear(in_features=4096, out_features=1536, bias=True)\n",
            "        (final_layer_norm): LayerNorm((1536,), eps=1e-05, elementwise_affine=True)\n",
            "      )\n",
            "      (4): TransformerDecoderLayer(\n",
            "        (dropout_module): FairseqDropout()\n",
            "        (self_attn): MultiheadAttention(\n",
            "          (dropout_module): FairseqDropout()\n",
            "          (k_proj): Linear(in_features=1536, out_features=1536, bias=True)\n",
            "          (v_proj): Linear(in_features=1536, out_features=1536, bias=True)\n",
            "          (q_proj): Linear(in_features=1536, out_features=1536, bias=True)\n",
            "          (out_proj): Linear(in_features=1536, out_features=1536, bias=True)\n",
            "        )\n",
            "        (activation_dropout_module): FairseqDropout()\n",
            "        (self_attn_layer_norm): LayerNorm((1536,), eps=1e-05, elementwise_affine=True)\n",
            "        (encoder_attn): MultiheadAttention(\n",
            "          (dropout_module): FairseqDropout()\n",
            "          (k_proj): Linear(in_features=1536, out_features=1536, bias=True)\n",
            "          (v_proj): Linear(in_features=1536, out_features=1536, bias=True)\n",
            "          (q_proj): Linear(in_features=1536, out_features=1536, bias=True)\n",
            "          (out_proj): Linear(in_features=1536, out_features=1536, bias=True)\n",
            "        )\n",
            "        (encoder_attn_layer_norm): LayerNorm((1536,), eps=1e-05, elementwise_affine=True)\n",
            "        (fc1): Linear(in_features=1536, out_features=4096, bias=True)\n",
            "        (fc2): Linear(in_features=4096, out_features=1536, bias=True)\n",
            "        (final_layer_norm): LayerNorm((1536,), eps=1e-05, elementwise_affine=True)\n",
            "      )\n",
            "      (5): TransformerDecoderLayer(\n",
            "        (dropout_module): FairseqDropout()\n",
            "        (self_attn): MultiheadAttention(\n",
            "          (dropout_module): FairseqDropout()\n",
            "          (k_proj): Linear(in_features=1536, out_features=1536, bias=True)\n",
            "          (v_proj): Linear(in_features=1536, out_features=1536, bias=True)\n",
            "          (q_proj): Linear(in_features=1536, out_features=1536, bias=True)\n",
            "          (out_proj): Linear(in_features=1536, out_features=1536, bias=True)\n",
            "        )\n",
            "        (activation_dropout_module): FairseqDropout()\n",
            "        (self_attn_layer_norm): LayerNorm((1536,), eps=1e-05, elementwise_affine=True)\n",
            "        (encoder_attn): MultiheadAttention(\n",
            "          (dropout_module): FairseqDropout()\n",
            "          (k_proj): Linear(in_features=1536, out_features=1536, bias=True)\n",
            "          (v_proj): Linear(in_features=1536, out_features=1536, bias=True)\n",
            "          (q_proj): Linear(in_features=1536, out_features=1536, bias=True)\n",
            "          (out_proj): Linear(in_features=1536, out_features=1536, bias=True)\n",
            "        )\n",
            "        (encoder_attn_layer_norm): LayerNorm((1536,), eps=1e-05, elementwise_affine=True)\n",
            "        (fc1): Linear(in_features=1536, out_features=4096, bias=True)\n",
            "        (fc2): Linear(in_features=4096, out_features=1536, bias=True)\n",
            "        (final_layer_norm): LayerNorm((1536,), eps=1e-05, elementwise_affine=True)\n",
            "      )\n",
            "    )\n",
            "    (output_projection): Linear(in_features=1536, out_features=35848, bias=False)\n",
            "  )\n",
            ")\n",
            "2021-05-09 14:29:19 | INFO | fairseq_cli.train | task: TranslationTask\n",
            "2021-05-09 14:29:19 | INFO | fairseq_cli.train | model: TransformerModel\n",
            "2021-05-09 14:29:19 | INFO | fairseq_cli.train | criterion: LabelSmoothedCrossEntropyCriterion\n",
            "2021-05-09 14:29:19 | INFO | fairseq_cli.train | num. shared model params: 480,571,392 (num. trained: 480,571,392)\n",
            "2021-05-09 14:29:19 | INFO | fairseq_cli.train | num. expert model params: 0 (num. trained: 0)\n",
            "2021-05-09 14:29:19 | INFO | fairseq.data.data_utils | loaded 9,000 examples from: ../dataset/final_bin/valid.SRC-TGT.SRC\n",
            "2021-05-09 14:29:19 | INFO | fairseq.data.data_utils | loaded 9,000 examples from: ../dataset/final_bin/valid.SRC-TGT.TGT\n",
            "2021-05-09 14:29:19 | INFO | fairseq.tasks.translation | ../dataset/final_bin valid SRC-TGT 9000 examples\n",
            "2021-05-09 14:29:21 | INFO | fairseq.utils | ***********************CUDA enviroments for all 1 workers***********************\n",
            "2021-05-09 14:29:21 | INFO | fairseq.utils | rank   0: capabilities =  3.7  ; total memory = 11.173 GB ; name = Tesla K80                               \n",
            "2021-05-09 14:29:21 | INFO | fairseq.utils | ***********************CUDA enviroments for all 1 workers***********************\n",
            "2021-05-09 14:29:21 | INFO | fairseq_cli.train | training on 1 devices (GPUs/TPUs)\n",
            "2021-05-09 14:29:21 | INFO | fairseq_cli.train | max tokens per device = 256 and max sentences per device = None\n",
            "2021-05-09 14:29:21 | INFO | fairseq.trainer | Preparing to load checkpoint ../en-indic/model/checkpoint_best.pt\n",
            "tcmalloc: large alloc 1922285568 bytes == 0x55e01c93a000 @  0x7f8579074b6b 0x7f8579094379 0x7f851797e25e 0x7f851797f9d2 0x7f85559a8e7d 0x7f85665a3120 0x7f85661e1bd9 0x55df57c868a8 0x55df57cf9fd5 0x55df57cf47ad 0x55df57c873ea 0x55df57cf53b5 0x55df57cf47ad 0x55df57c87003 0x55df57c86b09 0x55df57dce28d 0x55df57d3d1db 0x55df57c85bb1 0x55df57d76fed 0x55df57cf9988 0x55df57cf47ad 0x55df57bc6e2c 0x55df57cf6bb5 0x55df57cf44ae 0x55df57c873ea 0x55df57cf632a 0x55df57cf44ae 0x55df57c873ea 0x55df57cf632a 0x55df57cf44ae 0x55df57c873ea\n",
            "tcmalloc: large alloc 1922285568 bytes == 0x55e08f276000 @  0x7f8579074b6b 0x7f8579094379 0x7f851797e25e 0x7f851797f9d2 0x7f85559a8e7d 0x7f85665a3120 0x7f85661e1bd9 0x55df57c868a8 0x55df57cf9fd5 0x55df57cf47ad 0x55df57c873ea 0x55df57cf53b5 0x55df57cf47ad 0x55df57c87003 0x55df57c86b09 0x55df57dce28d 0x55df57d3d1db 0x55df57c85bb1 0x55df57d76fed 0x55df57cf9988 0x55df57cf47ad 0x55df57bc6e2c 0x55df57cf6bb5 0x55df57cf44ae 0x55df57c873ea 0x55df57cf632a 0x55df57cf44ae 0x55df57c873ea 0x55df57cf632a 0x55df57cf44ae 0x55df57c873ea\n",
            "2021-05-09 14:32:01 | INFO | fairseq.trainer | NOTE: your device does NOT support faster training with --fp16, please switch to FP32 which is likely to be faster\n",
            "2021-05-09 14:32:01 | INFO | fairseq.trainer | Loaded checkpoint ../en-indic/model/checkpoint_best.pt (epoch 20 @ 0 updates)\n",
            "2021-05-09 14:32:01 | INFO | fairseq.trainer | loading train data for epoch 1\n",
            "2021-05-09 14:32:01 | INFO | fairseq.data.data_utils | loaded 930,375 examples from: ../dataset/final_bin/train.SRC-TGT.SRC\n",
            "2021-05-09 14:32:01 | INFO | fairseq.data.data_utils | loaded 930,375 examples from: ../dataset/final_bin/train.SRC-TGT.TGT\n",
            "2021-05-09 14:32:01 | INFO | fairseq.tasks.translation | ../dataset/final_bin train SRC-TGT 930375 examples\n",
            "2021-05-09 14:32:01 | WARNING | fairseq.tasks.fairseq_task | 1,647 samples have invalid sizes and will be skipped, max_positions=(210, 210), first few sample ids=[865604, 927195, 465934, 204968, 865293, 859052, 1713, 672173, 858328, 286278]\n",
            "epoch 001:   0% 0/86283 [00:00<?, ?it/s]2021-05-09 14:32:02 | INFO | fairseq.trainer | begin training epoch 1\n",
            "2021-05-09 14:32:02 | INFO | fairseq_cli.train | Start iterating over samples\n",
            "2021-05-09 14:32:04 | WARNING | fairseq.trainer | OOM: Ran out of memory with exception: CUDA out of memory. Tried to allocate 1.79 GiB (GPU 0; 11.17 GiB total capacity; 8.96 GiB already allocated; 1.66 GiB free; 9.08 GiB reserved in total by PyTorch)\n",
            "2021-05-09 14:32:04 | WARNING | fairseq.trainer | |===========================================================================|\n",
            "|                  PyTorch CUDA memory summary, device ID 0                 |\n",
            "|---------------------------------------------------------------------------|\n",
            "|            CUDA OOMs: 1            |        cudaMalloc retries: 1         |\n",
            "|===========================================================================|\n",
            "|        Metric         | Cur Usage  | Peak Usage | Tot Alloc  | Tot Freed  |\n",
            "|---------------------------------------------------------------------------|\n",
            "| Allocated memory      |    9176 MB |    9176 MB |   11221 MB |    2044 MB |\n",
            "|       from large pool |    9174 MB |    9174 MB |   10487 MB |    1312 MB |\n",
            "|       from small pool |       2 MB |     122 MB |     734 MB |     732 MB |\n",
            "|---------------------------------------------------------------------------|\n",
            "| Active memory         |    9176 MB |    9176 MB |   11221 MB |    2044 MB |\n",
            "|       from large pool |    9174 MB |    9174 MB |   10487 MB |    1312 MB |\n",
            "|       from small pool |       2 MB |     122 MB |     734 MB |     732 MB |\n",
            "|---------------------------------------------------------------------------|\n",
            "| GPU reserved memory   |    9298 MB |    9298 MB |    9666 MB |  376832 KB |\n",
            "|       from large pool |    9258 MB |    9258 MB |    9484 MB |  231424 KB |\n",
            "|       from small pool |      40 MB |     136 MB |     182 MB |  145408 KB |\n",
            "|---------------------------------------------------------------------------|\n",
            "| Non-releasable memory |  124264 KB |  136495 KB |    2155 MB |    2034 MB |\n",
            "|       from large pool |   85648 KB |   97880 KB |    1308 MB |    1225 MB |\n",
            "|       from small pool |   38616 KB |   38616 KB |     846 MB |     809 MB |\n",
            "|---------------------------------------------------------------------------|\n",
            "| Allocations           |     507    |     811    |    2952    |    2445    |\n",
            "|       from large pool |     202    |     228    |     407    |     205    |\n",
            "|       from small pool |     305    |     587    |    2545    |    2240    |\n",
            "|---------------------------------------------------------------------------|\n",
            "| Active allocs         |     507    |     811    |    2952    |    2445    |\n",
            "|       from large pool |     202    |     228    |     407    |     205    |\n",
            "|       from small pool |     305    |     587    |    2545    |    2240    |\n",
            "|---------------------------------------------------------------------------|\n",
            "| GPU reserved segments |     113    |     164    |     189    |      76    |\n",
            "|       from large pool |      93    |      96    |      98    |       5    |\n",
            "|       from small pool |      20    |      68    |      91    |      71    |\n",
            "|---------------------------------------------------------------------------|\n",
            "| Non-releasable allocs |      77    |      96    |    1365    |    1288    |\n",
            "|       from large pool |      39    |      40    |     167    |     128    |\n",
            "|       from small pool |      38    |      78    |    1198    |    1160    |\n",
            "|===========================================================================|\n",
            "\n",
            "2021-05-09 14:32:04 | ERROR | fairseq.trainer | OOM during optimization, irrecoverable\n",
            "Traceback (most recent call last):\n",
            "  File \"/usr/local/bin/fairseq-train\", line 33, in <module>\n",
            "    sys.exit(load_entry_point('fairseq', 'console_scripts', 'fairseq-train')())\n",
            "  File \"/content/finetuning/fairseq/fairseq_cli/train.py\", line 496, in cli_main\n",
            "    distributed_utils.call_main(cfg, main)\n",
            "  File \"/content/finetuning/fairseq/fairseq/distributed/utils.py\", line 369, in call_main\n",
            "    main(cfg, **kwargs)\n",
            "  File \"/content/finetuning/fairseq/fairseq_cli/train.py\", line 173, in main\n",
            "    valid_losses, should_stop = train(cfg, trainer, task, epoch_itr)\n",
            "  File \"/usr/lib/python3.7/contextlib.py\", line 74, in inner\n",
            "    return func(*args, **kwds)\n",
            "  File \"/content/finetuning/fairseq/fairseq_cli/train.py\", line 284, in train\n",
            "    log_output = trainer.train_step(samples)\n",
            "  File \"/usr/lib/python3.7/contextlib.py\", line 74, in inner\n",
            "    return func(*args, **kwds)\n",
            "  File \"/content/finetuning/fairseq/fairseq/trainer.py\", line 810, in train_step\n",
            "    raise e\n",
            "  File \"/content/finetuning/fairseq/fairseq/trainer.py\", line 782, in train_step\n",
            "    self.optimizer, model=self.model, update_num=self.get_num_updates()\n",
            "  File \"/content/finetuning/fairseq/fairseq/tasks/fairseq_task.py\", line 489, in optimizer_step\n",
            "    optimizer.step()\n",
            "  File \"/content/finetuning/fairseq/fairseq/optim/fp16_optimizer.py\", line 213, in step\n",
            "    self.fp32_optimizer.step(closure, groups=groups)\n",
            "  File \"/content/finetuning/fairseq/fairseq/optim/fairseq_optimizer.py\", line 127, in step\n",
            "    self.optimizer.step(closure)\n",
            "  File \"/usr/local/lib/python3.7/dist-packages/torch/optim/optimizer.py\", line 89, in wrapper\n",
            "    return func(*args, **kwargs)\n",
            "  File \"/content/finetuning/fairseq/fairseq/optim/adam.py\", line 210, in step\n",
            "    denom = exp_avg_sq.sqrt().add_(group[\"eps\"])\n",
            "RuntimeError: CUDA out of memory. Tried to allocate 1.79 GiB (GPU 0; 11.17 GiB total capacity; 8.96 GiB already allocated; 1.66 GiB free; 9.08 GiB reserved in total by PyTorch)\n"
          ]
        }
      ],
      "source": [
        "# Finetuning the model\n",
        "\n",
        "# pls refer to fairseq documentaion to know more about each of these options (https://fairseq.readthedocs.io/en/latest/command_line_tools.html)\n",
        "\n",
        "\n",
        "# some notable args:\n",
        "# --max-update=1000     -> for this example, to demonstrate how to finetune we are only training for 1000 steps. You should increase this when finetuning\n",
        "# --arch=transformer_4x -> we use a custom transformer model and name it transformer_4x (4 times the parameter size of transformer  base)\n",
        "# --user_dir            -> we define the custom transformer arch in model_configs folder and pass it as an argument to user_dir for fairseq to register this architechture\n",
        "# --lr                  -> learning rate. From our limited experiments, we find that lower learning rates like 3e-5 works best for finetuning.\n",
        "# --restore-file        -> reload the pretrained checkpoint and start training from here (change this path for indic-en. Currently its is set to en-indic)\n",
        "# --reset-*             -> reset and not use lr scheduler, dataloader, optimizer etc of the older checkpoint\n",
        "# --max_tokns           -> this is max tokens per batch\n",
        "\n",
        "\n",
        "!( fairseq-train ../dataset/final_bin \\\n",
        "--max-source-positions=210 \\\n",
        "--max-target-positions=210 \\\n",
        "--max-update=1000 \\\n",
        "--save-interval=1 \\\n",
        "--arch=transformer_4x \\\n",
        "--criterion=label_smoothed_cross_entropy \\\n",
        "--source-lang=SRC \\\n",
        "--lr-scheduler=inverse_sqrt \\\n",
        "--target-lang=TGT \\\n",
        "--label-smoothing=0.1 \\\n",
        "--optimizer adam \\\n",
        "--adam-betas \"(0.9, 0.98)\" \\\n",
        "--clip-norm 1.0 \\\n",
        "--warmup-init-lr 1e-07 \\\n",
        "--warmup-updates 4000 \\\n",
        "--dropout 0.2 \\\n",
        "--tensorboard-logdir ../dataset/tensorboard-wandb \\\n",
        "--save-dir ../dataset/model \\\n",
        "--keep-last-epochs 5 \\\n",
        "--patience 5 \\\n",
        "--skip-invalid-size-inputs-valid-test \\\n",
        "--fp16 \\\n",
        "--user-dir model_configs \\\n",
        "--update-freq=2 \\\n",
        "--distributed-world-size 1 \\\n",
        "--max-tokens 256 \\\n",
        "--lr 3e-5 \\\n",
        "--restore-file ../en-indic/model/checkpoint_best.pt \\\n",
        "--reset-lr-scheduler \\\n",
        "--reset-meters \\\n",
        "--reset-dataloader \\\n",
        "--reset-optimizer)"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "tpPsT1e7vuO9"
      },
      "outputs": [],
      "source": [
        "# To test the models after training, you can use joint_translate.sh\n",
        "\n",
        "\n",
        "\n",
        "# joint_translate takes src_file, output_fname, src_lang, tgt_lang, model_folder as inputs\n",
        "# src_file -> input text file to be translated\n",
        "# output_fname -> name of the output file (will get created) containing the model predictions\n",
        "# src_lang -> source lang code of the input text ( in this case we are using en-indic model and hence src_lang would be 'en')\n",
        "# tgt_lang -> target lang code of the input text ( tgt lang for en-indic model would be any of the 11 indic langs we trained on:\n",
        "#              as, bn, hi, gu, kn, ml, mr, or, pa, ta, te)\n",
        "# supported languages are:\n",
        "#              as - assamese, bn - bengali, gu - gujarathi, hi - hindi, kn - kannada, \n",
        "#              ml - malayalam, mr - marathi, or - oriya, pa - punjabi, ta - tamil, te - telugu\n",
        "\n",
        "# model_dir -> the directory containing the model and the vocab files\n",
        "\n",
        "# Note: if the translation is taking a lot of time, please tune the buffer_size and batch_size parameter for fairseq-interactive defined inside this joint_translate script\n",
        "\n",
        "\n",
        "# here we are translating the english sentences to hindi\n",
        "!bash joint_translate.sh $exp_dir/test/test.en en_hi_outputs.txt 'en' 'hi' $exp_dir"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "bPqneByPxilN"
      },
      "outputs": [],
      "source": [
        "# to compute bleu scores for the predicitions with a reference file, use the following command\n",
        "# arguments:\n",
        "# pred_fname: file that contains model predictions\n",
        "# ref_fname: file that contains references\n",
        "# src_lang and tgt_lang : the source and target language\n",
        "\n",
        "bash compute_bleu.sh en_hi_outputs.txt $exp_dir/test/test.hi 'en' 'hi'\n"
      ]
    }
  ],
  "metadata": {
    "accelerator": "GPU",
    "colab": {
      "collapsed_sections": [],
      "include_colab_link": true,
      "name": "indicTrans_Finetuning.ipynb",
      "provenance": []
    },
    "interpreter": {
      "hash": "3c7d4130300118f0c7487d576c6841c0dbbdeec039e1e658ac9b107412a09af0"
    },
    "kernelspec": {
      "display_name": "Python 3.7.7 64-bit",
      "name": "python3"
    },
    "language_info": {
      "name": "python",
      "version": ""
    }
  },
  "nbformat": 4,
  "nbformat_minor": 0
}