Spaces:
Runtime error
Runtime error
File size: 49,616 Bytes
e50fe35 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "view-in-github"
},
"source": [
"<a href=\"https://colab.research.google.com/github/gowtham1997/indicTrans-1/blob/main/IndicTrans_training.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "FdyHSnoj7Iun",
"outputId": "d0624c60-68c4-470f-9ade-c517e3296044"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"/content/training\n"
]
}
],
"source": [
"# create a seperate folder to store everything\n",
"!mkdir training\n",
"%cd training"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "y55OfxBz8QeP",
"outputId": "6d0ab016-0f96-4671-ddee-f06b50506dcd"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Cloning into 'indicTrans'...\n",
"remote: Enumerating objects: 432, done.\u001b[K\n",
"remote: Counting objects: 100% (139/139), done.\u001b[K\n",
"remote: Compressing objects: 100% (34/34), done.\u001b[K\n",
"remote: Total 432 (delta 122), reused 105 (delta 105), pack-reused 293\u001b[K\n",
"Receiving objects: 100% (432/432), 1.43 MiB | 14.11 MiB/s, done.\n",
"Resolving deltas: 100% (248/248), done.\n",
"/content/training/indicTrans\n",
"Cloning into 'indic_nlp_library'...\n",
"remote: Enumerating objects: 1325, done.\u001b[K\n",
"remote: Counting objects: 100% (147/147), done.\u001b[K\n",
"remote: Compressing objects: 100% (103/103), done.\u001b[K\n",
"remote: Total 1325 (delta 84), reused 89 (delta 41), pack-reused 1178\u001b[K\n",
"Receiving objects: 100% (1325/1325), 9.57 MiB | 10.51 MiB/s, done.\n",
"Resolving deltas: 100% (688/688), done.\n",
"Cloning into 'indic_nlp_resources'...\n",
"remote: Enumerating objects: 133, done.\u001b[K\n",
"remote: Counting objects: 100% (7/7), done.\u001b[K\n",
"remote: Compressing objects: 100% (7/7), done.\u001b[K\n",
"remote: Total 133 (delta 0), reused 2 (delta 0), pack-reused 126\u001b[K\n",
"Receiving objects: 100% (133/133), 149.77 MiB | 34.05 MiB/s, done.\n",
"Resolving deltas: 100% (51/51), done.\n",
"Checking out files: 100% (28/28), done.\n",
"Cloning into 'subword-nmt'...\n",
"remote: Enumerating objects: 580, done.\u001b[K\n",
"remote: Counting objects: 100% (4/4), done.\u001b[K\n",
"remote: Compressing objects: 100% (4/4), done.\u001b[K\n",
"remote: Total 580 (delta 0), reused 1 (delta 0), pack-reused 576\u001b[K\n",
"Receiving objects: 100% (580/580), 237.41 KiB | 5.28 MiB/s, done.\n",
"Resolving deltas: 100% (349/349), done.\n",
"/content/training\n"
]
}
],
"source": [
"# clone the repo for running finetuning\n",
"!git clone https://github.com/AI4Bharat/indicTrans.git\n",
"%cd indicTrans\n",
"# clone requirements repositories\n",
"!git clone https://github.com/anoopkunchukuttan/indic_nlp_library.git\n",
"!git clone https://github.com/anoopkunchukuttan/indic_nlp_resources.git\n",
"!git clone https://github.com/rsennrich/subword-nmt.git\n",
"%cd .."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "ziWWl-1a8SMw",
"outputId": "d7908a62-9573-4693-e7cb-44aeeebaaa15"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Reading package lists... Done\n",
"Building dependency tree \n",
"Reading state information... Done\n",
"The following NEW packages will be installed:\n",
" tree\n",
"0 upgraded, 1 newly installed, 0 to remove and 39 not upgraded.\n",
"Need to get 40.7 kB of archives.\n",
"After this operation, 105 kB of additional disk space will be used.\n",
"Get:1 http://archive.ubuntu.com/ubuntu bionic/universe amd64 tree amd64 1.7.0-5 [40.7 kB]\n",
"Fetched 40.7 kB in 0s (133 kB/s)\n",
"debconf: unable to initialize frontend: Dialog\n",
"debconf: (No usable dialog-like program is installed, so the dialog based frontend cannot be used. at /usr/share/perl5/Debconf/FrontEnd/Dialog.pm line 76, <> line 1.)\n",
"debconf: falling back to frontend: Readline\n",
"debconf: unable to initialize frontend: Readline\n",
"debconf: (This frontend requires a controlling tty.)\n",
"debconf: falling back to frontend: Teletype\n",
"dpkg-preconfigure: unable to re-open stdin: \n",
"Selecting previously unselected package tree.\n",
"(Reading database ... 160772 files and directories currently installed.)\n",
"Preparing to unpack .../tree_1.7.0-5_amd64.deb ...\n",
"Unpacking tree (1.7.0-5) ...\n",
"Setting up tree (1.7.0-5) ...\n",
"Processing triggers for man-db (2.8.3-2ubuntu0.1) ...\n",
"Collecting sacremoses\n",
"\u001b[?25l Downloading https://files.pythonhosted.org/packages/75/ee/67241dc87f266093c533a2d4d3d69438e57d7a90abb216fa076e7d475d4a/sacremoses-0.0.45-py3-none-any.whl (895kB)\n",
"\u001b[K |ββββββββββββββββββββββββββββββββ| 901kB 4.0MB/s \n",
"\u001b[?25hRequirement already satisfied: pandas in /usr/local/lib/python3.7/dist-packages (1.1.5)\n",
"Collecting mock\n",
" Downloading https://files.pythonhosted.org/packages/5c/03/b7e605db4a57c0f6fba744b11ef3ddf4ddebcada35022927a2b5fc623fdf/mock-4.0.3-py3-none-any.whl\n",
"Collecting sacrebleu\n",
"\u001b[?25l Downloading https://files.pythonhosted.org/packages/7e/57/0c7ca4e31a126189dab99c19951910bd081dea5bbd25f24b77107750eae7/sacrebleu-1.5.1-py3-none-any.whl (54kB)\n",
"\u001b[K |ββββββββββββββββββββββββββββββββ| 61kB 7.4MB/s \n",
"\u001b[?25hCollecting tensorboardX\n",
"\u001b[?25l Downloading https://files.pythonhosted.org/packages/42/36/2b147652c40c3a858efa0afbf7b8236fae968e88ff530511a4cfa299a506/tensorboardX-2.3-py2.py3-none-any.whl (124kB)\n",
"\u001b[K |ββββββββββββββββββββββββββββββββ| 133kB 24.0MB/s \n",
"\u001b[?25hRequirement already satisfied: pyarrow in /usr/local/lib/python3.7/dist-packages (3.0.0)\n",
"Collecting indic-nlp-library\n",
"\u001b[?25l Downloading https://files.pythonhosted.org/packages/84/d4/495bb43b88a2a6d04b09c29fc5115f24872af74cd8317fe84026abd4ddb1/indic_nlp_library-0.81-py3-none-any.whl (40kB)\n",
"\u001b[K |ββββββββββββββββββββββββββββββββ| 40kB 5.4MB/s \n",
"\u001b[?25hRequirement already satisfied: six in /usr/local/lib/python3.7/dist-packages (from sacremoses) (1.15.0)\n",
"Requirement already satisfied: regex in /usr/local/lib/python3.7/dist-packages (from sacremoses) (2019.12.20)\n",
"Requirement already satisfied: click in /usr/local/lib/python3.7/dist-packages (from sacremoses) (7.1.2)\n",
"Requirement already satisfied: tqdm in /usr/local/lib/python3.7/dist-packages (from sacremoses) (4.41.1)\n",
"Requirement already satisfied: joblib in /usr/local/lib/python3.7/dist-packages (from sacremoses) (1.0.1)\n",
"Requirement already satisfied: pytz>=2017.2 in /usr/local/lib/python3.7/dist-packages (from pandas) (2018.9)\n",
"Requirement already satisfied: numpy>=1.15.4 in /usr/local/lib/python3.7/dist-packages (from pandas) (1.19.5)\n",
"Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.7/dist-packages (from pandas) (2.8.1)\n",
"Collecting portalocker==2.0.0\n",
" Downloading https://files.pythonhosted.org/packages/89/a6/3814b7107e0788040870e8825eebf214d72166adf656ba7d4bf14759a06a/portalocker-2.0.0-py2.py3-none-any.whl\n",
"Requirement already satisfied: protobuf>=3.8.0 in /usr/local/lib/python3.7/dist-packages (from tensorboardX) (3.12.4)\n",
"Collecting morfessor\n",
" Downloading https://files.pythonhosted.org/packages/39/e6/7afea30be2ee4d29ce9de0fa53acbb033163615f849515c0b1956ad074ee/Morfessor-2.0.6-py3-none-any.whl\n",
"Collecting sphinx-argparse\n",
" Downloading https://files.pythonhosted.org/packages/06/2b/dfad6a1831c3aeeae25d8d3d417224684befbf45e10c7f2141631616a6ed/sphinx-argparse-0.2.5.tar.gz\n",
"Collecting sphinx-rtd-theme\n",
"\u001b[?25l Downloading https://files.pythonhosted.org/packages/ac/24/2475e8f83519b54b2148d4a56eb1111f9cec630d088c3ffc214492c12107/sphinx_rtd_theme-0.5.2-py2.py3-none-any.whl (9.1MB)\n",
"\u001b[K |ββββββββββββββββββββββββββββββββ| 9.2MB 21.7MB/s \n",
"\u001b[?25hRequirement already satisfied: setuptools in /usr/local/lib/python3.7/dist-packages (from protobuf>=3.8.0->tensorboardX) (57.0.0)\n",
"Requirement already satisfied: sphinx>=1.2.0 in /usr/local/lib/python3.7/dist-packages (from sphinx-argparse->indic-nlp-library) (1.8.5)\n",
"Collecting docutils<0.17\n",
"\u001b[?25l Downloading https://files.pythonhosted.org/packages/81/44/8a15e45ffa96e6cf82956dd8d7af9e666357e16b0d93b253903475ee947f/docutils-0.16-py2.py3-none-any.whl (548kB)\n",
"\u001b[K |ββββββββββββββββββββββββββββββββ| 552kB 38.5MB/s \n",
"\u001b[?25hRequirement already satisfied: packaging in /usr/local/lib/python3.7/dist-packages (from sphinx>=1.2.0->sphinx-argparse->indic-nlp-library) (20.9)\n",
"Requirement already satisfied: imagesize in /usr/local/lib/python3.7/dist-packages (from sphinx>=1.2.0->sphinx-argparse->indic-nlp-library) (1.2.0)\n",
"Requirement already satisfied: requests>=2.0.0 in /usr/local/lib/python3.7/dist-packages (from sphinx>=1.2.0->sphinx-argparse->indic-nlp-library) (2.23.0)\n",
"Requirement already satisfied: sphinxcontrib-websupport in /usr/local/lib/python3.7/dist-packages (from sphinx>=1.2.0->sphinx-argparse->indic-nlp-library) (1.2.4)\n",
"Requirement already satisfied: Pygments>=2.0 in /usr/local/lib/python3.7/dist-packages (from sphinx>=1.2.0->sphinx-argparse->indic-nlp-library) (2.6.1)\n",
"Requirement already satisfied: snowballstemmer>=1.1 in /usr/local/lib/python3.7/dist-packages (from sphinx>=1.2.0->sphinx-argparse->indic-nlp-library) (2.1.0)\n",
"Requirement already satisfied: babel!=2.0,>=1.3 in /usr/local/lib/python3.7/dist-packages (from sphinx>=1.2.0->sphinx-argparse->indic-nlp-library) (2.9.1)\n",
"Requirement already satisfied: alabaster<0.8,>=0.7 in /usr/local/lib/python3.7/dist-packages (from sphinx>=1.2.0->sphinx-argparse->indic-nlp-library) (0.7.12)\n",
"Requirement already satisfied: Jinja2>=2.3 in /usr/local/lib/python3.7/dist-packages (from sphinx>=1.2.0->sphinx-argparse->indic-nlp-library) (2.11.3)\n",
"Requirement already satisfied: pyparsing>=2.0.2 in /usr/local/lib/python3.7/dist-packages (from packaging->sphinx>=1.2.0->sphinx-argparse->indic-nlp-library) (2.4.7)\n",
"Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.7/dist-packages (from requests>=2.0.0->sphinx>=1.2.0->sphinx-argparse->indic-nlp-library) (1.24.3)\n",
"Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from requests>=2.0.0->sphinx>=1.2.0->sphinx-argparse->indic-nlp-library) (2.10)\n",
"Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from requests>=2.0.0->sphinx>=1.2.0->sphinx-argparse->indic-nlp-library) (3.0.4)\n",
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/dist-packages (from requests>=2.0.0->sphinx>=1.2.0->sphinx-argparse->indic-nlp-library) (2021.5.30)\n",
"Requirement already satisfied: sphinxcontrib-serializinghtml in /usr/local/lib/python3.7/dist-packages (from sphinxcontrib-websupport->sphinx>=1.2.0->sphinx-argparse->indic-nlp-library) (1.1.5)\n",
"Requirement already satisfied: MarkupSafe>=0.23 in /usr/local/lib/python3.7/dist-packages (from Jinja2>=2.3->sphinx>=1.2.0->sphinx-argparse->indic-nlp-library) (2.0.1)\n",
"Building wheels for collected packages: sphinx-argparse\n",
" Building wheel for sphinx-argparse (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
" Created wheel for sphinx-argparse: filename=sphinx_argparse-0.2.5-cp37-none-any.whl size=11552 sha256=0f3830a0bf7a6cfa99000091da945e9dd814b2f1e1f9ca5d773f99aaa0d3a4a5\n",
" Stored in directory: /root/.cache/pip/wheels/2a/18/1b/4990a1859da4edc77ab312bc2986c08d2733fb5713d06e44f5\n",
"Successfully built sphinx-argparse\n",
"\u001b[31mERROR: datascience 0.10.6 has requirement folium==0.2.1, but you'll have folium 0.8.3 which is incompatible.\u001b[0m\n",
"Installing collected packages: sacremoses, mock, portalocker, sacrebleu, tensorboardX, morfessor, sphinx-argparse, docutils, sphinx-rtd-theme, indic-nlp-library\n",
" Found existing installation: docutils 0.17.1\n",
" Uninstalling docutils-0.17.1:\n",
" Successfully uninstalled docutils-0.17.1\n",
"Successfully installed docutils-0.16 indic-nlp-library-0.81 mock-4.0.3 morfessor-2.0.6 portalocker-2.0.0 sacrebleu-1.5.1 sacremoses-0.0.45 sphinx-argparse-0.2.5 sphinx-rtd-theme-0.5.2 tensorboardX-2.3\n",
"Cloning into 'fairseq'...\n",
"remote: Enumerating objects: 28410, done.\u001b[K\n",
"remote: Counting objects: 100% (229/229), done.\u001b[K\n",
"remote: Compressing objects: 100% (127/127), done.\u001b[K\n",
"remote: Total 28410 (delta 114), reused 187 (delta 99), pack-reused 28181\u001b[K\n",
"Receiving objects: 100% (28410/28410), 11.96 MiB | 24.45 MiB/s, done.\n",
"Resolving deltas: 100% (21310/21310), done.\n",
"/content/training/fairseq\n",
"Obtaining file:///content/training/fairseq\n",
" Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n",
" Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n",
" Installing backend dependencies ... \u001b[?25l\u001b[?25hdone\n",
" Preparing wheel metadata ... \u001b[?25l\u001b[?25hdone\n",
"Requirement already satisfied: regex in /usr/local/lib/python3.7/dist-packages (from fairseq==1.0.0a0+f887152) (2019.12.20)\n",
"Requirement already satisfied: tqdm in /usr/local/lib/python3.7/dist-packages (from fairseq==1.0.0a0+f887152) (4.41.1)\n",
"Collecting omegaconf<2.1\n",
" Downloading https://files.pythonhosted.org/packages/d0/eb/9d63ce09dd8aa85767c65668d5414958ea29648a0eec80a4a7d311ec2684/omegaconf-2.0.6-py3-none-any.whl\n",
"Requirement already satisfied: numpy; python_version >= \"3.7\" in /usr/local/lib/python3.7/dist-packages (from fairseq==1.0.0a0+f887152) (1.19.5)\n",
"Requirement already satisfied: sacrebleu>=1.4.12 in /usr/local/lib/python3.7/dist-packages (from fairseq==1.0.0a0+f887152) (1.5.1)\n",
"Requirement already satisfied: cython in /usr/local/lib/python3.7/dist-packages (from fairseq==1.0.0a0+f887152) (0.29.23)\n",
"Collecting hydra-core<1.1\n",
"\u001b[?25l Downloading https://files.pythonhosted.org/packages/52/e3/fbd70dd0d3ce4d1d75c22d56c0c9f895cfa7ed6587a9ffb821d6812d6a60/hydra_core-1.0.6-py3-none-any.whl (123kB)\n",
"\u001b[K |ββββββββββββββββββββββββββββββββ| 133kB 4.7MB/s \n",
"\u001b[?25hRequirement already satisfied: torch in /usr/local/lib/python3.7/dist-packages (from fairseq==1.0.0a0+f887152) (1.9.0+cu102)\n",
"Requirement already satisfied: cffi in /usr/local/lib/python3.7/dist-packages (from fairseq==1.0.0a0+f887152) (1.14.5)\n",
"Requirement already satisfied: typing-extensions in /usr/local/lib/python3.7/dist-packages (from omegaconf<2.1->fairseq==1.0.0a0+f887152) (3.7.4.3)\n",
"Collecting PyYAML>=5.1.*\n",
"\u001b[?25l Downloading https://files.pythonhosted.org/packages/7a/a5/393c087efdc78091afa2af9f1378762f9821c9c1d7a22c5753fb5ac5f97a/PyYAML-5.4.1-cp37-cp37m-manylinux1_x86_64.whl (636kB)\n",
"\u001b[K |ββββββββββββββββββββββββββββββββ| 645kB 32.4MB/s \n",
"\u001b[?25hRequirement already satisfied: portalocker==2.0.0 in /usr/local/lib/python3.7/dist-packages (from sacrebleu>=1.4.12->fairseq==1.0.0a0+f887152) (2.0.0)\n",
"Requirement already satisfied: importlib-resources; python_version < \"3.9\" in /usr/local/lib/python3.7/dist-packages (from hydra-core<1.1->fairseq==1.0.0a0+f887152) (5.1.4)\n",
"Collecting antlr4-python3-runtime==4.8\n",
"\u001b[?25l Downloading https://files.pythonhosted.org/packages/56/02/789a0bddf9c9b31b14c3e79ec22b9656185a803dc31c15f006f9855ece0d/antlr4-python3-runtime-4.8.tar.gz (112kB)\n",
"\u001b[K |ββββββββββββββββββββββββββββββββ| 112kB 53.0MB/s \n",
"\u001b[?25hRequirement already satisfied: pycparser in /usr/local/lib/python3.7/dist-packages (from cffi->fairseq==1.0.0a0+f887152) (2.20)\n",
"Requirement already satisfied: zipp>=3.1.0; python_version < \"3.10\" in /usr/local/lib/python3.7/dist-packages (from importlib-resources; python_version < \"3.9\"->hydra-core<1.1->fairseq==1.0.0a0+f887152) (3.4.1)\n",
"Building wheels for collected packages: antlr4-python3-runtime\n",
" Building wheel for antlr4-python3-runtime (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
" Created wheel for antlr4-python3-runtime: filename=antlr4_python3_runtime-4.8-cp37-none-any.whl size=141231 sha256=52f59bfe6322a04598da6960d2d5675a581273a45e4391e04cf1240c97346019\n",
" Stored in directory: /root/.cache/pip/wheels/e3/e2/fa/b78480b448b8579ddf393bebd3f47ee23aa84c89b6a78285c8\n",
"Successfully built antlr4-python3-runtime\n",
"Installing collected packages: PyYAML, omegaconf, antlr4-python3-runtime, hydra-core, fairseq\n",
" Found existing installation: PyYAML 3.13\n",
" Uninstalling PyYAML-3.13:\n",
" Successfully uninstalled PyYAML-3.13\n",
" Running setup.py develop for fairseq\n",
"Successfully installed PyYAML-5.4.1 antlr4-python3-runtime-4.8 fairseq hydra-core-1.0.6 omegaconf-2.0.6\n",
"/content/training\n"
]
}
],
"source": [
"! sudo apt install tree\n",
"\n",
"# Install the necessary libraries\n",
"!pip install sacremoses pandas mock sacrebleu tensorboardX pyarrow indic-nlp-library\n",
"# Install fairseq from source\n",
"!git clone https://github.com/pytorch/fairseq.git\n",
"%cd fairseq\n",
"# !git checkout da9eaba12d82b9bfc1442f0e2c6fc1b895f4d35d\n",
"!pip install --editable ./\n",
"%cd .."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "tmfGYkd58UiO",
"outputId": "3b83bcf6-bbbf-4e49-c2bb-7d0fb999297d"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"^C\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"--2021-12-18 21:31:57-- https://storage.googleapis.com/samanantar-public/benchmarks.zip\n",
"Resolving storage.googleapis.com (storage.googleapis.com)... 172.217.160.144, 216.58.196.176, 142.250.71.16, ...\n",
"Connecting to storage.googleapis.com (storage.googleapis.com)|172.217.160.144|:443... connected.\n",
"HTTP request sent, awaiting response... 200 OK\n",
"Length: 7301872 (7.0M) [application/zip]\n",
"Saving to: 'benchmarks.zip'\n",
"\n",
" 0K .......... .......... .......... .......... .......... 0% 774K 9s\n",
" 50K .......... .......... .......... .......... .......... 1% 2.10M 6s\n",
" 100K .......... .......... .......... .......... .......... 2% 2.46M 5s\n",
" 150K .......... .......... .......... .......... .......... 2% 2.68M 4s\n",
" 200K .......... .......... .......... .......... .......... 3% 1.44M 4s\n",
" 250K .......... .......... .......... .......... .......... 4% 2.48M 4s\n",
" 300K .......... .......... .......... .......... .......... 4% 3.41M 4s\n",
" 350K .......... .......... .......... .......... .......... 5% 2.22M 4s\n",
" 400K .......... .......... .......... .......... .......... 6% 1.20M 4s\n",
" 450K .......... .......... .......... .......... .......... 7% 2.65M 4s\n",
" 500K .......... .......... .......... .......... .......... 7% 2.97M 3s\n",
" 550K .......... .......... .......... .......... .......... 8% 887K 4s\n",
" 600K .......... .......... .......... .......... .......... 9% 2.90M 4s\n",
" 650K .......... .......... .......... .......... .......... 9% 2.76M 4s\n",
" 700K .......... .......... .......... .......... .......... 10% 980K 4s\n",
" 750K .......... .......... .......... .......... .......... 11% 2.55M 4s\n",
" 800K .......... .......... .......... .......... .......... 11% 2.86M 3s\n",
" 850K .......... .......... .......... .......... .......... 12% 3.04M 3s\n",
" 900K .......... .......... .......... .......... .......... 13% 1.01M 3s\n",
" 950K .......... .......... .......... .......... .......... 14% 3.35M 3s\n",
" 1000K .......... .......... .......... .......... .......... 14% 5.04M 3s\n",
" 1050K .......... .......... .......... .......... .......... 15% 14.5M 3s\n",
" 1100K .......... .......... .......... .......... .......... 16% 1.01M 3s\n",
" 1150K .......... .......... .......... .......... .......... 16% 4.48M 3s\n",
" 1200K .......... .......... .......... .......... .......... 17% 4.34M 3s\n",
" 1250K .......... .......... .......... .......... .......... 18% 2.90M 3s\n",
" 1300K .......... .......... .......... .......... .......... 18% 1.14M 3s\n",
" 1350K .......... .......... .......... .......... .......... 19% 3.00M 3s\n",
" 1400K .......... .......... .......... .......... .......... 20% 5.09M 3s\n",
" 1450K .......... .......... .......... .......... .......... 21% 1.91M 3s\n",
" 1500K .......... .......... .......... .......... .......... 21% 7.70M 3s\n",
" 1550K .......... .......... .......... .......... .......... 22% 1.27M 3s\n",
" 1600K .......... .......... .......... .......... .......... 23% 3.06M 3s\n",
" 1650K .......... .......... .......... .......... .......... 23% 4.11M 3s\n",
" 1700K .......... .......... .......... .......... .......... 24% 3.34M 3s\n",
" 1750K .......... .......... .......... .......... .......... 25% 4.13M 2s\n",
" 1800K .......... .......... .......... .......... .......... 25% 7.95M 2s\n",
" 1850K .......... .......... .......... .......... .......... 26% 3.69M 2s\n",
" 1900K .......... .......... .......... .......... .......... 27% 4.00M 2s\n",
" 1950K .......... .......... .......... .......... .......... 28% 3.50M 2s\n",
" 2000K .......... .......... .......... .......... .......... 28% 4.04M 2s\n",
" 2050K .......... .......... .......... .......... .......... 29% 3.31M 2s\n",
" 2100K .......... .......... .......... .......... .......... 30% 2.49M 2s\n",
" 2150K .......... .......... .......... .......... .......... 30% 4.19M 2s\n",
" 2200K .......... .......... .......... .......... .......... 31% 5.18M 2s\n",
" 2250K .......... .......... .......... .......... .......... 32% 9.49M 2s\n",
" 2300K .......... .......... .......... .......... .......... 32% 8.67M 2s\n",
" 2350K .......... .......... .......... .......... .......... 33% 4.88M 2s\n",
" 2400K .......... .......... .......... .......... .......... 34% 4.56M 2s\n",
" 2450K .......... .......... .......... .......... .......... 35% 4.94M 2s\n",
" 2500K .......... .......... .......... .......... .......... 35% 4.38M 2s\n",
" 2550K .......... .......... .......... .......... .......... 36% 3.78M 2s\n",
" 2600K .......... .......... .......... .......... .......... 37% 4.95M 2s\n",
" 2650K .......... .......... .......... .......... .......... 37% 5.50M 2s\n",
" 2700K .......... .......... .......... .......... .......... 38% 5.23M 2s\n",
" 2750K .......... .......... .......... .......... .......... 39% 3.77M 2s\n",
" 2800K .......... .......... .......... .......... .......... 39% 10.7M 2s\n",
" 2850K .......... .......... .......... .......... .......... 40% 7.16M 2s\n",
" 2900K .......... .......... .......... .......... .......... 41% 5.36M 2s\n",
" 2950K .......... .......... .......... .......... .......... 42% 6.80M 1s\n",
" 3000K .......... .......... .......... .......... .......... 42% 6.57M 1s\n",
" 3050K .......... .......... .......... .......... .......... 43% 7.21M 1s\n",
" 3100K .......... .......... .......... .......... .......... 44% 6.66M 1s\n",
" 3150K .......... .......... .......... .......... .......... 44% 6.42M 1s\n",
" 3200K .......... .......... .......... .......... .......... 45% 8.02M 1s\n",
" 3250K .......... .......... .......... .......... .......... 46% 5.96M 1s\n",
" 3300K .......... .......... .......... .......... .......... 46% 5.13M 1s\n",
" 3350K .......... .......... .......... .......... .......... 47% 5.19M 1s\n",
" 3400K .......... .......... .......... .......... .......... 48% 7.64M 1s\n",
" 3450K .......... .......... .......... .......... .......... 49% 6.11M 1s\n",
" 3500K .......... .......... .......... .......... .......... 49% 4.01M 1s\n",
" 3550K .......... .......... .......... .......... .......... 50% 4.52M 1s\n",
" 3600K .......... .......... .......... .......... .......... 51% 6.72M 1s\n",
" 3650K .......... .......... .......... .......... .......... 51% 5.45M 1s\n",
" 3700K .......... .......... .......... .......... .......... 52% 4.37M 1s\n",
" 3750K .......... .......... .......... .......... .......... 53% 5.39M 1s\n",
" 3800K .......... .......... .......... .......... .......... 53% 7.40M 1s\n",
" 3850K .......... .......... .......... .......... .......... 54% 6.70M 1s\n",
" 3900K .......... .......... .......... .......... .......... 55% 5.14M 1s\n",
" 3950K .......... .......... .......... .......... .......... 56% 5.02M 1s\n",
" 4000K .......... .......... .......... .......... .......... 56% 6.70M 1s\n",
" 4050K .......... .......... .......... .......... .......... 57% 6.76M 1s\n",
" 4100K .......... .......... .......... .......... .......... 58% 2.52M 1s\n",
" 4150K .......... .......... .......... .......... .......... 58% 887K 1s\n",
" 4200K .......... .......... .......... .......... .......... 59% 9.25M 1s\n",
" 4250K .......... .......... .......... .......... .......... 60% 1.27M 1s\n",
" 4300K .......... .......... .......... .......... .......... 61% 5.72M 1s\n",
" 4350K .......... .......... .......... .......... .......... 61% 4.48M 1s\n",
" 4400K .......... .......... .......... .......... .......... 62% 5.20M 1s\n",
" 4450K .......... .......... .......... .......... .......... 63% 6.21M 1s\n",
" 4500K .......... .......... .......... .......... .......... 63% 7.94M 1s\n",
" 4550K .......... .......... .......... .......... .......... 64% 4.76M 1s\n",
" 4600K .......... .......... .......... .......... .......... 65% 4.74M 1s\n",
" 4650K .......... .......... .......... .......... .......... 65% 6.94M 1s\n",
" 4700K .......... .......... .......... .......... .......... 66% 5.62M 1s\n",
" 4750K .......... .......... .......... .......... .......... 67% 4.44M 1s\n",
" 4800K .......... .......... .......... .......... .......... 68% 6.02M 1s\n",
" 4850K .......... .......... .......... .......... .......... 68% 6.61M 1s\n",
" 4900K .......... .......... .......... .......... .......... 69% 3.04M 1s\n",
" 4950K .......... .......... .......... .......... .......... 70% 5.34M 1s\n",
" 5000K .......... .......... .......... .......... .......... 70% 3.03M 1s\n",
" 5050K .......... .......... .......... .......... .......... 71% 19.8M 1s\n",
" 5100K .......... .......... .......... .......... .......... 72% 6.17M 1s\n",
" 5150K .......... .......... .......... .......... .......... 72% 5.58M 1s\n",
" 5200K .......... .......... .......... .......... .......... 73% 7.38M 1s\n",
" 5250K .......... .......... .......... .......... .......... 74% 7.11M 1s\n",
" 5300K .......... .......... .......... .......... .......... 75% 6.24M 1s\n",
" 5350K .......... .......... .......... .......... .......... 75% 4.62M 1s\n",
" 5400K .......... .......... .......... .......... .......... 76% 7.64M 0s\n",
" 5450K .......... .......... .......... .......... .......... 77% 6.06M 0s\n",
" 5500K .......... .......... .......... .......... .......... 77% 5.56M 0s\n",
" 5550K .......... .......... .......... .......... .......... 78% 2.96M 0s\n",
" 5600K .......... .......... .......... .......... .......... 79% 6.17M 0s\n",
" 5650K .......... .......... .......... .......... .......... 79% 9.58M 0s\n",
" 5700K .......... .......... .......... .......... .......... 80% 2.58M 0s\n",
" 5750K .......... .......... .......... .......... .......... 81% 4.23M 0s\n",
" 5800K .......... .......... .......... .......... .......... 82% 5.70M 0s\n",
" 5850K .......... .......... .......... .......... .......... 82% 4.72M 0s\n",
" 5900K .......... .......... .......... .......... .......... 83% 6.52M 0s\n",
" 5950K .......... .......... .......... .......... .......... 84% 5.86M 0s\n",
" 6000K .......... .......... .......... .......... .......... 84% 5.22M 0s\n",
" 6050K .......... .......... .......... .......... .......... 85% 5.50M 0s\n",
" 6100K .......... .......... .......... .......... .......... 86% 6.29M 0s\n",
" 6150K .......... .......... .......... .......... .......... 86% 6.93M 0s\n",
" 6200K .......... .......... .......... .......... .......... 87% 5.50M 0s\n",
" 6250K .......... .......... .......... .......... .......... 88% 5.82M 0s\n",
" 6300K .......... .......... .......... .......... .......... 89% 6.76M 0s\n",
" 6350K .......... .......... .......... .......... .......... 89% 3.73M 0s\n",
" 6400K .......... .......... .......... .......... .......... 90% 5.98M 0s\n",
" 6450K .......... .......... .......... .......... .......... 91% 5.78M 0s\n",
" 6500K .......... .......... .......... .......... .......... 91% 5.60M 0s\n",
" 6550K .......... .......... .......... .......... .......... 92% 4.84M 0s\n",
" 6600K .......... .......... .......... .......... .......... 93% 7.25M 0s\n",
" 6650K .......... .......... .......... .......... .......... 93% 2.60M 0s\n",
" 6700K .......... .......... .......... .......... .......... 94% 6.02M 0s\n",
" 6750K .......... .......... .......... .......... .......... 95% 6.57M 0s\n",
" 6800K .......... .......... .......... .......... .......... 96% 8.30M 0s\n",
" 6850K .......... .......... .......... .......... .......... 96% 14.4M 0s\n",
" 6900K .......... .......... .......... .......... .......... 97% 4.58M 0s\n",
" 6950K .......... .......... .......... .......... .......... 98% 3.31M 0s\n",
" 7000K .......... .......... .......... .......... .......... 98% 6.88M 0s\n",
" 7050K .......... .......... .......... .......... .......... 99% 4.40M 0s\n",
" 7100K .......... .......... .......... 100% 15.1M=1.9s\n",
"\n",
"2021-12-18 21:32:01 (3.64 MB/s) - 'benchmarks.zip' saved [7301872/7301872]\n",
"\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Archive: samanatar-en-indic-v0.2.zip\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
" End-of-central-directory signature not found. Either this file is not\n",
" a zipfile, or it constitutes one disk of a multi-part archive. In the\n",
" latter case the central directory and zipfile comment will be found on\n",
" the last disk(s) of this archive.\n",
"unzip: cannot find zipfile directory in one of samanatar-en-indic-v0.2.zip or\n",
" samanatar-en-indic-v0.2.zip.zip, and cannot find samanatar-en-indic-v0.2.zip.ZIP, period.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Archive: benchmarks.zip\n",
" creating: benchmarks/\n",
" creating: benchmarks/pmi/\n",
" creating: benchmarks/pmi/en-as/\n",
" inflating: benchmarks/pmi/en-as/dev.as \n",
" inflating: benchmarks/pmi/en-as/dev.en \n",
" inflating: benchmarks/pmi/en-as/test.as \n",
" inflating: benchmarks/pmi/en-as/test.en \n",
" creating: benchmarks/wat2021-devtest/\n",
" inflating: benchmarks/wat2021-devtest/dev.gu \n",
" inflating: benchmarks/wat2021-devtest/dev.en \n",
" inflating: benchmarks/wat2021-devtest/test.bn \n",
" inflating: benchmarks/wat2021-devtest/dev.bn \n",
" inflating: benchmarks/wat2021-devtest/test.hi \n",
" inflating: benchmarks/wat2021-devtest/dev.kn \n",
" inflating: benchmarks/wat2021-devtest/dev.ta \n",
" inflating: benchmarks/wat2021-devtest/test.pa \n",
" inflating: benchmarks/wat2021-devtest/test.en \n",
" inflating: benchmarks/wat2021-devtest/test.mr \n",
" inflating: benchmarks/wat2021-devtest/test.kn \n",
" inflating: benchmarks/wat2021-devtest/dev.ml \n",
" inflating: benchmarks/wat2021-devtest/test.ta \n",
" inflating: benchmarks/wat2021-devtest/test.gu \n",
" inflating: benchmarks/wat2021-devtest/dev.or \n",
" inflating: benchmarks/wat2021-devtest/test.or \n",
" inflating: benchmarks/wat2021-devtest/test.te \n",
" inflating: benchmarks/wat2021-devtest/dev.mr \n",
" inflating: benchmarks/wat2021-devtest/test.ml \n",
" inflating: benchmarks/wat2021-devtest/dev.pa \n",
" inflating: benchmarks/wat2021-devtest/dev.te \n",
" inflating: benchmarks/wat2021-devtest/dev.hi \n",
" creating: benchmarks/wat2020-devtest/\n",
" creating: benchmarks/wat2020-devtest/en-bn/\n",
" inflating: benchmarks/wat2020-devtest/en-bn/dev.en \n",
" inflating: benchmarks/wat2020-devtest/en-bn/test.bn \n",
" inflating: benchmarks/wat2020-devtest/en-bn/dev.bn \n",
" inflating: benchmarks/wat2020-devtest/en-bn/test.en \n",
" creating: benchmarks/wat2020-devtest/en-ta/\n",
" inflating: benchmarks/wat2020-devtest/en-ta/dev.en \n",
" inflating: benchmarks/wat2020-devtest/en-ta/dev.ta \n",
" inflating: benchmarks/wat2020-devtest/en-ta/test.en \n",
" inflating: benchmarks/wat2020-devtest/en-ta/test.ta \n",
" creating: benchmarks/wat2020-devtest/en-mr/\n",
" inflating: benchmarks/wat2020-devtest/en-mr/dev.en \n",
" inflating: benchmarks/wat2020-devtest/en-mr/test.en \n",
" inflating: benchmarks/wat2020-devtest/en-mr/test.mr \n",
" inflating: benchmarks/wat2020-devtest/en-mr/dev.mr \n",
" creating: benchmarks/wat2020-devtest/en-te/\n",
" inflating: benchmarks/wat2020-devtest/en-te/dev.en \n",
" inflating: benchmarks/wat2020-devtest/en-te/test.en \n",
" inflating: benchmarks/wat2020-devtest/en-te/test.te \n",
" inflating: benchmarks/wat2020-devtest/en-te/dev.te \n",
" creating: benchmarks/wat2020-devtest/en-hi/\n",
" inflating: benchmarks/wat2020-devtest/en-hi/dev.en \n",
" inflating: benchmarks/wat2020-devtest/en-hi/test.hi \n",
" inflating: benchmarks/wat2020-devtest/en-hi/test.en \n",
" inflating: benchmarks/wat2020-devtest/en-hi/dev.hi \n",
" creating: benchmarks/wat2020-devtest/en-gu/\n",
" inflating: benchmarks/wat2020-devtest/en-gu/dev.gu \n",
" inflating: benchmarks/wat2020-devtest/en-gu/dev.en \n",
" inflating: benchmarks/wat2020-devtest/en-gu/test.en \n",
" inflating: benchmarks/wat2020-devtest/en-gu/test.gu \n",
" creating: benchmarks/wat2020-devtest/en-ml/\n",
" inflating: benchmarks/wat2020-devtest/en-ml/dev.en \n",
" inflating: benchmarks/wat2020-devtest/en-ml/test.en \n",
" inflating: benchmarks/wat2020-devtest/en-ml/dev.ml \n",
" inflating: benchmarks/wat2020-devtest/en-ml/test.ml \n",
" creating: benchmarks/ufal-ta/\n",
" creating: benchmarks/ufal-ta/en-ta/\n",
" inflating: benchmarks/ufal-ta/en-ta/dev.en \n",
" inflating: benchmarks/ufal-ta/en-ta/dev.ta \n",
" inflating: benchmarks/ufal-ta/en-ta/test.en \n",
" inflating: benchmarks/ufal-ta/en-ta/test.ta \n",
" creating: benchmarks/wmt-news/\n",
" creating: benchmarks/wmt-news/en-ta/\n",
" inflating: benchmarks/wmt-news/en-ta/dev.en \n",
" inflating: benchmarks/wmt-news/en-ta/dev.ta \n",
" inflating: benchmarks/wmt-news/en-ta/test.en \n",
" inflating: benchmarks/wmt-news/en-ta/test.ta \n",
" creating: benchmarks/wmt-news/en-hi/\n",
" inflating: benchmarks/wmt-news/en-hi/dev.en \n",
" inflating: benchmarks/wmt-news/en-hi/test.hi \n",
" inflating: benchmarks/wmt-news/en-hi/test.en \n",
" inflating: benchmarks/wmt-news/en-hi/dev.hi \n",
" creating: benchmarks/wmt-news/en-gu/\n",
" inflating: benchmarks/wmt-news/en-gu/test.en \n",
" inflating: benchmarks/wmt-news/en-gu/test.gu \n"
]
}
],
"source": [
"## for the latest samanantar dataset v0.3 -> please use this link: https://storage.googleapis.com/samanantar-public/V0.3/source_wise_splits.zip\n",
"# This v0.3 dataset has source wise splits to indicate where the data has been collected from\n",
"# For preprocessing simplicity we will use v0.2( which just uses raw text files without source information) in this tutorial\n",
"# \n",
"# \n",
"# lets now download the indictrans data v0.2 dataset\n",
"! wget https://storage.googleapis.com/samanantar-public/V0.2/data/en2indic/samanatar-en-indic-v0.2.zip\n",
"\n",
"\n",
"\n",
"# lets also download the benchmarks for dev and test set\n",
"\n",
"! wget https://storage.googleapis.com/samanantar-public/benchmarks.zip\n",
"\n",
"# training data is organized as en-X folders where each folder contains two text files containing parallel data for en-X lang pair.\n",
"\n",
"# final_data\n",
"# βββ en-as\n",
"# β βββ train.as\n",
"# β βββ train.en\n",
"# βββ en-bn\n",
"# β βββ train.bn\n",
"# β βββ train.en\n",
"# βββ en-gu\n",
"# β βββ train.en\n",
"# β βββ train.gu\n",
"# βββ en-hi\n",
"# β βββ train.en\n",
"# β βββ train.hi\n",
"# βββ en-kn\n",
"# β βββ train.en\n",
"# β βββ train.kn\n",
"# βββ en-ml\n",
"# β βββ train.en\n",
"# β βββ train.ml\n",
"# βββ en-mr\n",
"# β βββ train.en\n",
"# β βββ train.mr\n",
"# βββ en-or\n",
"# β βββ train.en\n",
"# β βββ train.or\n",
"# βββ en-pa\n",
"# β βββ train.en\n",
"# β βββ train.pa\n",
"# βββ en-ta\n",
"# β βββ train.en\n",
"# β βββ train.ta\n",
"# βββ en-te\n",
"# βββ train.en\n",
"# βββ train.te\n",
"\n",
"\n",
"! unzip samanatar-en-indic-v0.2.zip\n",
"\n",
"# benchmarks folder consists of all the benchmarks we report in the paper - pmi, ufal-ta, wat2020, wat2021, wmt-news\n",
"\n",
"! unzip benchmarks.zip"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "MR_2GQoa84Jn"
},
"outputs": [],
"source": [
"# create an experiment dir to store train data, devtest data. \n",
"# This folder will also store vocabulary files (created with subword_nmt for bpe), fairseq bin files (for training), model checkpoints.\n",
"\n",
"# for this example we will be training indic to en translation model. We will name our exp_dir as indic-en-exp\n",
"! mkdir indic-en-exp\n",
"# copying all the train folders to exp_dir\n",
"! cp -r final_data/* indic-en-exp\n",
"\n",
"! mkdir -p indic-en-exp/devtest\n",
"\n",
"# copying all benchmarks to devtest folder in exp_dir\n",
"! cp -r benchmarks/* indic-en-exp/devtest\n",
"\n",
"# folder to store combined devtest data (based on the domains you want to test, you can combine multiple benchmarks dev datasets, remove duplicates)\n",
"! mkdir -p indic-en-exp/devtest/all\n",
"\n",
"# in this tutorial, for simplicity, we will just use wat2020 devtest for dev and test set\n",
"! cp -r indic-en-exp/devtest/wat2020-devtest/* indic-en-exp/devtest/all\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "lorcT8wkFPtQ"
},
"outputs": [],
"source": [
"% cd indicTrans"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "vhvYXUc1FaVn"
},
"outputs": [],
"source": [
"# prepare_data_joint_training.sh takes experiment dir, src_lang, tgt_lang as input \n",
"# This does preprocessing, building vocab, binarization for joint training\n",
"\n",
"# The learning and applying vocabulary will take a while if the dataset is huge. To make it faster, run it on a multicore system\n",
"\n",
"! bash prepare_data_joint_training.sh '../indic-en-exp' 'indic' 'en'"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "p1i3fRQzF2-x"
},
"outputs": [],
"source": [
"# Training the model\n",
"\n",
"# pls refer to fairseq documentaion to know more about each of these options (https://fairseq.readthedocs.io/en/latest/command_line_tools.html)\n",
"\n",
"\n",
"# some notable args:\n",
"# --max-updates -> maximum update steps the model will be trained for\n",
"# --arch=transformer_4x -> we use a custom transformer model and name it transformer_4x (4 times the parameter size of transformer base)\n",
"# --user_dir -> we define the custom transformer arch in model_configs folder and pass it as an argument to user_dir for fairseq to register this architechture\n",
"# --lr -> learning rate. From our limited experiments, we find that lower learning rates like 3e-5 works best for finetuning.\n",
"# --max_tokens -> this is max tokens per batch. You should limit to lower values if you get oom errors.\n",
"# --update-freq -> gradient accumulation steps\n",
"\n",
"\n",
"!( fairseq-train ../indic-en-exp/final_bin \\\n",
"--max-source-positions=210 \\\n",
"--max-target-positions=210 \\\n",
"--max-update=<max_updates> \\\n",
"--save-interval=1 \\\n",
"--arch=transformer_4x \\\n",
"--criterion=label_smoothed_cross_entropy \\\n",
"--source-lang=SRC \\\n",
"--lr-scheduler=inverse_sqrt \\\n",
"--target-lang=TGT \\\n",
"--label-smoothing=0.1 \\\n",
"--optimizer adam \\\n",
"--adam-betas \"(0.9, 0.98)\" \\\n",
"--clip-norm 1.0 \\\n",
"--warmup-init-lr 1e-07 \\\n",
"--lr 0.0005 \\\n",
"--warmup-updates 4000 \\\n",
"--dropout 0.2 \\\n",
"--save-dir ../indic-en-exp/model \\\n",
"--keep-last-epochs 5 \\\n",
"--patience 5 \\\n",
"--skip-invalid-size-inputs-valid-test \\\n",
"--fp16 \\\n",
"--user-dir model_configs \\\n",
"--wandb-project <wandb_project_name> \\\n",
"--update-freq=<grad_accumulation_steps> \\\n",
"--distributed-world-size <num_gpus> \\\n",
"--max-tokens <max_tokens_in_a_batch> )"
]
}
],
"metadata": {
"colab": {
"authorship_tag": "ABX9TyO6AA5gXphZ5kJ6h+dgeSqb",
"collapsed_sections": [],
"include_colab_link": true,
"name": "IndicTrans_training.ipynb",
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.7"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|