File size: 21,066 Bytes
3d0c560
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
# -*- coding: utf-8 -*-
"""MarchMachineLearningMania2021.ipynb

Automatically generated by Colaboratory.

Original file is located at
    https://colab.research.google.com/drive/1FeGm3qNqLAlrQd6R9EkuNFWy9oOlnxWy
"""

# Commented out IPython magic to ensure Python compatibility.
import numpy as np 
import pandas as pd 
import matplotlib.pyplot as plt
# %matplotlib inline
import seaborn as sns; sns.set()

from sklearn.model_selection import GroupKFold, KFold
from sklearn.metrics import log_loss
import lightgbm as lgb

from google.colab import drive

drive.mount('/content/drive')

data = '/content/drive/MyDrive/MarchMachineLearningMania2021/ncaam-march-mania-2021 (1)/MDataFiles_Stage2'
STAGE_1 = False

MRSCResults = pd.read_csv(data + '/MRegularSeasonCompactResults.csv')
MRSCResults

A_w = MRSCResults[MRSCResults.WLoc == 'A']\
    .groupby(['Season','WTeamID'])['WTeamID'].count().to_frame()\
    .rename(columns={"WTeamID": "win_A"})
print(A_w.head())
N_w = MRSCResults[MRSCResults.WLoc == 'N']\
    .groupby(['Season','WTeamID'])['WTeamID'].count().to_frame()\
    .rename(columns={"WTeamID": "win_N"})
H_w = MRSCResults[MRSCResults.WLoc == 'H']\
    .groupby(['Season','WTeamID'])['WTeamID'].count().to_frame()\
    .rename(columns={"WTeamID": "win_H"})
win = A_w.join(N_w, how='outer').join(H_w, how='outer').fillna(0)

H_l = MRSCResults[MRSCResults.WLoc == 'A']\
    .groupby(['Season','LTeamID'])['LTeamID'].count().to_frame()\
    .rename(columns={"LTeamID": "lost_H"})
N_l = MRSCResults[MRSCResults.WLoc == 'N']\
    .groupby(['Season','LTeamID'])['LTeamID'].count().to_frame()\
    .rename(columns={"LTeamID": "lost_N"})
A_l = MRSCResults[MRSCResults.WLoc == 'H']\
    .groupby(['Season','LTeamID'])['LTeamID'].count().to_frame()\
    .rename(columns={"LTeamID": "lost_A"})
lost = A_l.join(N_l, how='outer').join(H_l, how='outer').fillna(0)
print(win)
print(lost)
win.index = win.index.rename(['Season', 'TeamID'])
lost.index = lost.index.rename(['Season', 'TeamID'])
wl = win.join(lost, how='outer').reset_index()
print(wl)
wl['win_pct_A'] = wl['win_A'] / (wl['win_A'] + wl['lost_A'])
wl['win_pct_N'] = wl['win_N'] / (wl['win_N'] + wl['lost_N'])
wl['win_pct_H'] = wl['win_H'] / (wl['win_H'] + wl['lost_H'])
wl['win_pct_All'] = (wl['win_A'] + wl['win_N'] + wl['win_H']) / \
    (wl['win_A'] + wl['win_N'] + wl['win_H'] + wl['lost_A']\
     + wl['lost_N'] + wl['lost_H'])
print(wl)
del A_w, N_w, H_w, H_l, N_l, A_l, win, lost

MRSCResults['relScore'] = MRSCResults.WScore - MRSCResults.LScore

w_scr = MRSCResults.loc[:, ['Season', 'WTeamID', 'WScore', 'WLoc','relScore']]
w_scr.columns = ['Season', 'TeamID','Score','Loc','relScore']
#print(w_scr)
l_scr = MRSCResults.loc[:, ['Season', 'LTeamID', 'LScore', 'WLoc','relScore']]
#print(l_scr)
l_scr['WLoc'] = l_scr.WLoc.apply(lambda x: 'H' if x == 'A' else 'A' if x == 'H' else 'N')
l_scr['relScore'] = -1 * l_scr.relScore 
l_scr.columns = ['Season', 'TeamID','Score','Loc','relScore']
#print(l_scr)
wl_scr = pd.concat([w_scr,l_scr])
#print(wl_scr)
A_scr = wl_scr[wl_scr.Loc == 'A'].groupby(['Season','TeamID'])\
        ['Score','relScore'].mean()\
        .rename(columns={"Score": "Score_A", "relScore": "relScore_A"})
#print(A_scr)
N_scr = wl_scr[wl_scr.Loc == 'N'].groupby(['Season','TeamID'])\
        ['Score','relScore'].mean()\
        .rename(columns={"Score": "Score_N", "relScore": "relScore_N"})
H_scr = wl_scr[wl_scr.Loc == 'H'].groupby(['Season','TeamID'])\
        ['Score','relScore'].mean()\
        .rename(columns={"Score": "Score_H", "relScore": "relScore_H"})
All_scr = wl_scr.groupby(['Season','TeamID'])['Score','relScore']\
    .mean().rename(columns={"Score": "Score_All", "relScore": "relScore_All"})
scr = A_scr.join(N_scr, how='outer').join(H_scr, how='outer')\
    .join(All_scr, how='outer').fillna(0).reset_index()
print(scr)
del w_scr, l_scr, wl_scr, A_scr, H_scr, N_scr, All_scr

MRSDetailedResults = pd.read_csv(data + '/MRegularSeasonDetailedResults.csv')
MRSDetailedResults

w = MRSDetailedResults.loc[:, ['Season', 'WTeamID', 'WFGM','WFGA','WFGM3'
                               ,'WFGA3','WFTM','WFTA','WOR','WDR','WAst',
                               'WTO','WStl','WBlk','WPF']]
w.columns = ['Season', 'TeamID', 'FGM','FGA','FGM3','FGA3','FTM','FTA','OR','DR',
             'Ast','TO','Stl','Blk','PF']
#print(w)
l = MRSDetailedResults.loc[:, ['Season', 'LTeamID', 'LFGM','LFGA','LFGM3',
                               'LFGA3','LFTM','LFTA','LOR','LDR','LAst',
                               'LTO','LStl','LBlk','LPF']]
l.columns = ['Season', 'TeamID', 'FGM','FGA','FGM3','FGA3','FTM','FTA','OR','DR',
             'Ast','TO','Stl','Blk','PF']

detail = pd.concat([w,l])
#print(detail)
detail['goal_rate'] = detail.FGM / detail.FGA 
detail['3p_goal_rate'] = detail.FGM3 / detail.FGA3  
detail['ft_goal_rate'] = detail.FTM  / detail.FTA  

dt = detail.groupby(['Season','TeamID'])['FGM','FGA','FGM3','FGA3','FTM','FTA',
                                         'OR','DR','Ast','TO','Stl','Blk','PF',
                                          'goal_rate', '3p_goal_rate',
                                         'ft_goal_rate']\
                                        .mean().fillna(0).reset_index()
print(dt)

del w, l, detail

MMOrdinals = pd.read_csv(data + '/MMasseyOrdinals.csv')
MMOrdinals

MOR_127_128 = MMOrdinals[(MMOrdinals.SystemName == 'MOR') & ((MMOrdinals.RankingDayNum == 127) \
                | (MMOrdinals.RankingDayNum == 128))]\
                [['Season','TeamID','OrdinalRank']]
MOR_50_51 = MMOrdinals[(MMOrdinals.SystemName == 'MOR') & \
                ((MMOrdinals.RankingDayNum == 50) \
                 | (MMOrdinals.RankingDayNum == 51))]\
                [['Season','TeamID','OrdinalRank']]
MOR_15_16 = MMOrdinals[(MMOrdinals.SystemName == 'MOR') & \
                ((MMOrdinals.RankingDayNum == 15) \
                 | (MMOrdinals.RankingDayNum == 16))]\
                [['Season','TeamID','OrdinalRank']]

MOR_127_128 = MOR_127_128.rename(columns={'OrdinalRank':'OrdinalRank_127_128'})
#print(MOR_127_128)
MOR_50_51 = MOR_50_51.rename(columns={'OrdinalRank':'OrdinalRank_50_51'})
#print(MOR_50_51)
MOR_15_16 = MOR_15_16.rename(columns={'OrdinalRank':'OrdinalRank_15_16'})
#print(MOR_15_16)
MOR = MOR_127_128.merge(MOR_50_51, how='left', on=['Season','TeamID'])\
        .merge(MOR_15_16, how='left', on=['Season','TeamID'])
#print(MOR)
## normalizing Rank values by its season maxium as it varies by seasons
MOR_max = MOR.groupby('Season')['OrdinalRank_127_128','OrdinalRank_50_51',
                                'OrdinalRank_15_16'].max().reset_index()
MOR_max.columns = ['Season', 'maxRank_127_128', 'maxRank_50_51', 'maxRank_15_16']
#print(MOR_max)

MOR_tmp = MMOrdinals[(MMOrdinals.SystemName == 'MOR') \
                     & (MMOrdinals.RankingDayNum < 133)]
#print(MOR_tmp)
MOR_stats = MOR_tmp.groupby(['Season','TeamID'])['OrdinalRank']\
            .agg(['max','min','std','mean']).reset_index()

MOR_stats.columns = ['Season','TeamID','RankMax','RankMin','RankStd','RankMean']
#print(MOR_stats)
MOR = MOR.merge(MOR_max, how='left', on='Season')\
        .merge(MOR_stats, how='left', on=['Season','TeamID'])
#print(MOR)
MOR['OrdinalRank_127_128'] = MOR['OrdinalRank_127_128'] / MOR['maxRank_127_128']
MOR['OrdinalRank_50_51'] = MOR['OrdinalRank_50_51'] / MOR['maxRank_50_51']
MOR['OrdinalRank_15_16'] = MOR['OrdinalRank_15_16'] / MOR['maxRank_15_16']
MOR['RankTrans_50_51_to_127_128'] = MOR['OrdinalRank_127_128'] \
                                    - MOR['OrdinalRank_50_51']
MOR['RankTrans_15_16_to_127_128'] = MOR['OrdinalRank_127_128'] \
                                    - MOR['OrdinalRank_15_16']

wl_1 = wl.loc[:,['Season','TeamID','win_pct_A','win_pct_N',
                 'win_pct_H','win_pct_All']]
wl_1.columns = [str(col) + '_1' if col not in ['Season','TeamID'] \
                else str(col) for col in wl_1.columns ]
#print(wl_1)

wl_2 = wl.loc[:,['Season','TeamID','win_pct_A','win_pct_N',
                 'win_pct_H','win_pct_All']]
wl_2.columns = [str(col) + '_2' if col not in ['Season','TeamID'] \
                else str(col) for col in wl_2.columns ]
#print(wl_2)
scr_1 = scr.copy()
scr_1.columns = [str(col) + '_1' if col not in ['Season','TeamID'] \
                 else str(col) for col in scr_1.columns ]
#print(scr_1)
scr_2 = scr.copy()
scr_2.columns = [str(col) + '_2' if col not in ['Season','TeamID'] \
                 else str(col) for col in scr_2.columns ]
#print(scr_2)
dt_1 = dt.copy()
dt_1.columns = [str(col) + '_1' if col not in ['Season','TeamID'] \
                else str(col) for col in dt_1.columns ]

dt_2 = dt.copy()
dt_2.columns = [str(col) + '_2' if col not in ['Season','TeamID'] \
                else str(col) for col in dt_2.columns ]

MOR_1 = MOR.copy()
MOR_1.columns = [str(col) + '_1' if col not in ['Season','TeamID'] \
                 else str(col) for col in MOR_1.columns ]

MOR_2 = MOR.copy()
MOR_2.columns = [str(col) + '_2' if col not in ['Season','TeamID'] \
                 else str(col) for col in MOR_2.columns ]

TCResults = pd.read_csv(data + '/MNCAATourneyCompactResults.csv')
TCResults

tourney1 = TCResults.loc[:, ['Season','WTeamID','LTeamID']]
tourney1.columns = ['Season','TeamID1','TeamID2']
tourney1['result'] = 1

tourney2 = TCResults.loc[:, ['Season','LTeamID','WTeamID']]
tourney2.columns = ['Season','TeamID1','TeamID2']
tourney2['result'] = 0
print(TCResults)
print(tourney1)
print(tourney2)
tourney = pd.concat([tourney1, tourney2])
print(tourney)
del tourney1, tourney2

def merge_data(df):

    df = df.merge(wl_1, how='left', left_on=['Season','TeamID1'],
                  right_on=['Season','TeamID'])
    df = df.merge(wl_2, how='left', left_on=['Season','TeamID2'],
                  right_on=['Season','TeamID'])
    df = df.drop(['TeamID_x','TeamID_y'], axis=1)


    df = df.merge(scr_1, how='left', left_on=['Season','TeamID1'],
                  right_on=['Season','TeamID'])
    df = df.merge(scr_2, how='left', left_on=['Season','TeamID2'],
                  right_on=['Season','TeamID'])
    df = df.drop(['TeamID_x','TeamID_y'], axis=1)

    df = df.merge(dt_1, how='left', left_on=['Season','TeamID1'],
                  right_on=['Season','TeamID'])
    df = df.merge(dt_2, how='left', left_on=['Season','TeamID2'],
                  right_on=['Season','TeamID'])
    
    df = df.drop(['TeamID_x','TeamID_y'], axis=1)

    df = df.merge(MOR_1, how='left', left_on=['Season','TeamID1'],
                  right_on=['Season','TeamID'])
    df = df.merge(MOR_2, how='left', left_on=['Season','TeamID2'],
                  right_on=['Season','TeamID'])
    df = df.drop(['TeamID_x','TeamID_y'], axis=1)

    df['OrdinalRank_127_128_diff'] = df['OrdinalRank_127_128_1'] \
        - df['OrdinalRank_127_128_2']
    
    df['magic1'] = df['OrdinalRank_127_128_diff'] - df['RankMean_1']
    df['magic2'] = df['RankMean_1'] - df['RankMean_2']
    df['magic3'] = df['OrdinalRank_127_128_diff'] - df['RankMean_2']
    
    df['magic11'] = df['OrdinalRank_127_128_diff'] * df['RankMean_1']
    df['magic21'] = df['RankMean_1'] * df['RankMean_2']
    df['magic31'] = df['OrdinalRank_127_128_diff'] * df['RankMean_2']
    
    df['magic12'] = df['OrdinalRank_127_128_diff'] / df['RankMean_1']
    df['magic22'] = df['RankMean_1'] / df['RankMean_2']
    df['magic32'] = df['OrdinalRank_127_128_diff'] / df['RankMean_2']

    df = df.fillna(-1)

    for col in df.columns:
        if (df[col] == np.inf).any() or (df[col] == -np.inf).any():
            df[col][(df[col] == np.inf) | (df[col] == -np.inf)] = -1
    
    return df

tourney = merge_data(tourney)
tourney = tourney.loc[tourney.Season >= 2003,:].reset_index(drop=True)

if STAGE_1:
    tourney = tourney.loc[tourney.Season < 2015, :]

if STAGE_1:
    MSampleSubmission = pd.read_csv(data + '/MSampleSubmissionStage1.csv')
else:
    MSampleSubmission = pd.read_csv(data + '/MSampleSubmissionStage2.csv') 

test1 = MSampleSubmission.copy()
test1['Season'] = test1.ID.apply(lambda x: int(x[0:4]))
test1['TeamID1'] = test1.ID.apply(lambda x: int(x[5:9]))
test1['TeamID2'] = test1.ID.apply(lambda x: int(x[10:14]))

test2 = MSampleSubmission.copy()
test2['Season'] = test2.ID.apply(lambda x: int(x[0:4]))
test2['TeamID1'] = test2.ID.apply(lambda x: int(x[10:14]))
test2['TeamID2'] = test2.ID.apply(lambda x: int(x[5:9]))

test = pd.concat([test1,test2]).drop(['Pred'], axis=1)
print(test)
test = merge_data(test)
print(test)

tourney

test

X = tourney.drop(['Season','TeamID1','TeamID2','result'], axis=1)
y = tourney["result"]
s = tourney["Season"]

X_test = test.drop(['ID', 'Season','TeamID1','TeamID2'], axis=1)
X_test

s.head()

s.value_counts()

len(X_test)

def model_training(X, y, cv, groups, params, metric, early_stopping=10, \
    plt_iter=True, X_test=[], cat_features=[]):

    feature_importance = pd.DataFrame()
    val_scores=[]
    train_evals=[]
    valid_evals=[]

    if len(X_test) > 0:
        test_pred = np.zeros(len(X_test))

    for idx, (train_index, val_index) in enumerate(cv.split(X, y, groups)):

        print("###### fold %d ######" % (idx+1))
        X_train, X_val = X.iloc[train_index], X.iloc[val_index]
        y_train, y_val = y.iloc[train_index], y.iloc[val_index]

        model = lgb.LGBMClassifier(**params)

        model.fit(X_train, y_train,
                  eval_set=[(X_train, y_train), (X_val, y_val)],
                  early_stopping_rounds=early_stopping,
                  verbose=20
                  )
        val_scores.append(model.best_score_['valid_1'][metric])
        train_evals.append(model.evals_result_['training'][metric])
        valid_evals.append(model.evals_result_['valid_1'][metric])

        if len(X_test) > 0:
            test_pred = test_pred + model.predict_proba(X_test, num_iteration=model.best_iteration_)[:,1]

        fold_importance = pd.DataFrame()
        fold_importance["feature"] = X_train.columns
        fold_importance["importance"] = model.feature_importances_
        fold_importance["fold"] = idx+1
        feature_importance = pd.concat([feature_importance, fold_importance]
                                       , axis=0)

    if plt_iter:
        
        fig, axs = plt.subplots(2, 2, figsize=(9,6))
        
        for i, ax in enumerate(axs.flatten()):
            ax.plot(train_evals[i], label='training')
            ax.plot(valid_evals[i], label='validation')
            ax.set(xlabel='interations', ylabel=f'{metric}')
            ax.set_title(f'fold {i+1}', fontsize=12)
            ax.legend(loc='upper right', prop={'size': 9})
        fig.tight_layout()
        plt.show()
    
    print('### CV scores by fold ###')
    for i in range(cv.get_n_splits(X)):
        print(f'fold {i+1}: {val_scores[i]:.4f}')
    print('CV mean score: {0:.4f}, std: {1:.4f}.'\
          .format(np.mean(val_scores), np.std(val_scores)))
    
    feature_importance = feature_importance[["feature", "importance"]]\
                         .groupby("feature").mean().sort_values(
                         by="importance", ascending=False)
    feature_importance.reset_index(inplace=True)

    if len(X_test) > 0:
        test_pred = test_pred / cv.get_n_splits(X)
        return feature_importance, test_pred
    else:
        return feature_importance

lgb_params = {'objective': 'binary',
              'metric': 'binary_logloss',
              'boosting': 'gbdt',
              'num_leaves': 31,
              'feature_fraction': 0.8,
              'bagging_fraction': 0.8,
              'bagging_freq': 5,
              'learning_rate': 0.1,
              'n_estimators': 1000,
}

N_FOLDS = 10

# Commented out IPython magic to ensure Python compatibility.
# %%time
# group_kfold = GroupKFold(n_splits=N_FOLDS)
# 
# feature_importance, test_pred = model_training(X, y, group_kfold, s, lgb_params, 'binary_logloss', plt_iter = True, X_test = X_test)

plt.figure(figsize=(10, 10));
sns.barplot(x="importance", y="feature", data=feature_importance[:30])
plt.title('Feature Importnace')

import warnings
warnings.filterwarnings("ignore")
import numpy as np
import pandas as pd
from sklearn.experimental import enable_hist_gradient_boosting
from sklearn.ensemble import HistGradientBoostingRegressor, HistGradientBoostingClassifier, RandomForestClassifier
from sklearn.model_selection import KFold, GroupKFold
from sklearn.linear_model import LinearRegression, LogisticRegression
from sklearn.svm import SVC
from sklearn.metrics import log_loss
from tqdm.notebook import tqdm
import glob
import os
import gc
import xgboost as xgb

train = tourney
test = test

xgb_params= {
        "objective": "binary:logistic",
        "max_depth": 2,
        "learning_rate": 0.1,
        "colsample_bytree": 0.8,
        "subsample": 0.8,
        "min_child_weight": 30,
        "n_jobs": 2,
        "seed": 2021,
        'tree_method': "gpu_hist",
        "gpu_id": 0,
        'predictor': 'gpu_predictor'
    }

y = train["result"]
s = train["Season"]
X = train.drop(['Season','TeamID1','TeamID2','result'], axis=1)

X_test = test.drop(['ID', 'Season','TeamID1','TeamID2'], axis=1)

train_oof = np.zeros((X.shape[0],))
test_preds = 0
train_oof.shape

NUM_FOLDS = 5
kf = GroupKFold(n_splits=NUM_FOLDS)
max_iter = 550

for f, (train_ind, val_ind) in tqdm(enumerate(kf.split(X, y, s))):
        train_df, val_df = X.iloc[train_ind], X.iloc[val_ind]
        train_target, val_target = y.iloc[train_ind], y.iloc[val_ind]
        train_df_xgb = xgb.DMatrix(train_df, label=train_target)
        val_df_xgb = xgb.DMatrix(val_df, label=val_target)
        
        model = HistGradientBoostingClassifier(max_iter=max_iter, validation_fraction=None, learning_rate=0.01, max_depth=2, min_samples_leaf=32)
        model1 = RandomForestClassifier()
        model2 = LogisticRegression(C=1)
        model3 = xgb.train(xgb_params, train_df_xgb, 1000)

        model =  model.fit(train_df, train_target)
        model1 =  model1.fit(train_df, train_target)
        model2 =  model2.fit(train_df, train_target)
        
        temp_oof = (model.predict_proba(val_df)[:,1] + model1.predict_proba(val_df)[:,1] + model2.predict_proba(val_df)[:,1] + model3.predict(val_df_xgb)) / 4

        temp_test = (model.predict_proba(X_test)[:,1] + model1.predict_proba(X_test)[:,1] + model2.predict_proba(X_test)[:,1] + model3.predict(xgb.DMatrix(X_test))) / 4

        train_oof[val_ind] = temp_oof

        test_preds += temp_test / NUM_FOLDS
        
        print(log_loss(val_target, temp_oof))
        
print('CV', log_loss(y, train_oof))        
np.save('train_oof', train_oof)
np.save('test_preds', test_preds)

test = test
MSampleSubmission = pd.read_csv(data + '/MSampleSubmissionStage2.csv')

idx = test_preds.shape[0] //2
test_preds[idx:] = 1 - test_preds[idx:]

pred = pd.concat([test.ID, pd.Series(test_preds)], axis=1).groupby('ID')[0]\
        .mean().reset_index().rename(columns={0:'Pred'})
sub3 = MSampleSubmission.drop(['Pred'],axis=1).merge(pred, on='ID')
pred_3 = sub3['Pred']

0.5539459504635523

idx = test_pred.shape[0] //2
test_pred[idx:] = 1 - test_pred[idx:]

pred = pd.concat([test.ID, pd.Series(test_pred)], axis=1).groupby('ID')[0]\
        .mean().reset_index().rename(columns={0:'Pred'})
sub = MSampleSubmission.drop(['Pred'],axis=1).merge(pred, on='ID')
sub['Pred'] = sub['Pred'] * 0.3 + sub3['Pred'] * 0.7
sub.to_csv('submission.csv', index=False)
sub.head()

if STAGE_1:
    rslt = pd.DataFrame()
    TCResults_s = TCResults.loc[TCResults.Season >= 2015,:]
    rslt['season'] = TCResults_s.Season
    rslt['team1'] = TCResults_s.apply(lambda x: x.WTeamID \
                                      if x.WTeamID < x.LTeamID else x.LTeamID
                                      , axis=1)
    rslt['team2'] = TCResults_s.apply(lambda x: x.WTeamID \
                                      if x.WTeamID > x.LTeamID else x.LTeamID
                                      , axis=1)
    rslt['wl'] = TCResults_s.apply(lambda x: 1 if x.WTeamID < x.LTeamID else 0
                                   , axis=1)
    rslt['ID'] = rslt.apply(lambda x: str(x.season) + '_' + str(x.team1) \
                            + '_' + str(x.team2), axis=1)
    sub2 = sub.merge(rslt.loc[:,['ID','wl']], how='inner', on='ID')

    preds = []
    for i in sub2.Pred:
        preds.append([1-i, i])

    print('Test logloss is {:.5f}'.format(log_loss(sub2.wl.values, preds)))

0.51971

!pip install gradio

sub

import gradio as gr

def prediction_result(teamID_1, teamID_2):
    id = f"2021_{int(teamID_1)}_{int(teamID_2)}"
    pred = sub["Pred"].loc[sub["ID"] == id]
    p = pred.values
    return f"The winning probability of teamID {int(teamID_1)} is {round(p[0] * 100, 2)}%"

demo = gr.Interface(
    fn = prediction_result,
    inputs = ["number", "number"],
    outputs = "text", 
    title = "MENS MARCH MANIA 2021",
    description = """Predicted the outcome of the 2021 tournament""",
    examples = [[1101, 1104], [1101, 1111], [1101, 1116], [1101, 1124], [1101, 1140]],
    live = True
)

demo.launch(share = True)

!git clone https://huggingface.co/spaces/Harshi/MarchMachineLearningMania