Spaces:
Running
Running
File size: 3,747 Bytes
a16695d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
---
title: HF LLM API
emoji: ☯️
colorFrom: gray
colorTo: gray
sdk: docker
app_port: 23333
---
## HF-LLM-API
API for LLM inference in Huggingface spaces.
## Features
✅ Implemented:
- Support Models
- `mixtral-8x7b`
- Support OpenAI API format
- Can use api endpoint via official `openai-python` package
- Support stream response
- Support infinite-round chat
- Support Docker deployment
🔨 In progress:
- [ ] Support more models
## Run API service
### Run in Command Line
**Install dependencies:**
```bash
# pipreqs . --force --mode no-pin
pip install -r requirements.txt
```
**Run API:**
```bash
python -m apis.chat_api
```
## Run via Docker
**Docker build:**
```bash
sudo docker build -t hf-llm-api:1.0 . --build-arg http_proxy=$http_proxy --build-arg https_proxy=$https_proxy
```
**Docker run:**
```bash
# no proxy
sudo docker run -p 23333:23333 hf-llm-api:1.0
# with proxy
sudo docker run -p 23333:23333 --env http_proxy="http://<server>:<port>" hf-llm-api:1.0
```
## API Usage
### Using `openai-python`
See: [examples/chat_with_openai.py](https://github.com/Hansimov/hf-llm-api/blob/main/examples/chat_with_openai.py)
```py
from openai import OpenAI
# If runnning this service with proxy, you might need to unset `http(s)_proxy`.
base_url = "http://127.0.0.1:23333"
api_key = "sk-xxxxx"
client = OpenAI(base_url=base_url, api_key=api_key)
response = client.chat.completions.create(
model="mixtral-8x7b",
messages=[
{
"role": "user",
"content": "what is your model",
}
],
stream=True,
)
for chunk in response:
if chunk.choices[0].delta.content is not None:
print(chunk.choices[0].delta.content, end="", flush=True)
elif chunk.choices[0].finish_reason == "stop":
print()
else:
pass
```
### Using post requests
See: [examples/chat_with_post.py](https://github.com/Hansimov/hf-llm-api/blob/main/examples/chat_with_post.py)
```py
import ast
import httpx
import json
import re
# If runnning this service with proxy, you might need to unset `http(s)_proxy`.
chat_api = "http://127.0.0.1:23333"
api_key = "sk-xxxxx"
requests_headers = {}
requests_payload = {
"model": "mixtral-8x7b",
"messages": [
{
"role": "user",
"content": "what is your model",
}
],
"stream": True,
}
with httpx.stream(
"POST",
chat_api + "/chat/completions",
headers=requests_headers,
json=requests_payload,
timeout=httpx.Timeout(connect=20, read=60, write=20, pool=None),
) as response:
# https://docs.aiohttp.org/en/stable/streams.html
# https://github.com/openai/openai-cookbook/blob/main/examples/How_to_stream_completions.ipynb
response_content = ""
for line in response.iter_lines():
remove_patterns = [r"^\s*data:\s*", r"^\s*\[DONE\]\s*"]
for pattern in remove_patterns:
line = re.sub(pattern, "", line).strip()
if line:
try:
line_data = json.loads(line)
except Exception as e:
try:
line_data = ast.literal_eval(line)
except:
print(f"Error: {line}")
raise e
# print(f"line: {line_data}")
delta_data = line_data["choices"][0]["delta"]
finish_reason = line_data["choices"][0]["finish_reason"]
if "role" in delta_data:
role = delta_data["role"]
if "content" in delta_data:
delta_content = delta_data["content"]
response_content += delta_content
print(delta_content, end="", flush=True)
if finish_reason == "stop":
print()
```
|