Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,493 Bytes
8f6558d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
"""This script contains base options for Deep3DFaceRecon_pytorch
"""
import argparse
import os
from util import util
import numpy as np
import torch
import face3d.models as models
import face3d.data as data
class BaseOptions():
"""This class defines options used during both training and test time.
It also implements several helper functions such as parsing, printing, and saving the options.
It also gathers additional options defined in <modify_commandline_options> functions in both dataset class and model class.
"""
def __init__(self, cmd_line=None):
"""Reset the class; indicates the class hasn't been initailized"""
self.initialized = False
self.cmd_line = None
if cmd_line is not None:
self.cmd_line = cmd_line.split()
def initialize(self, parser):
"""Define the common options that are used in both training and test."""
# basic parameters
parser.add_argument('--name', type=str, default='face_recon', help='name of the experiment. It decides where to store samples and models')
parser.add_argument('--gpu_ids', type=str, default='0', help='gpu ids: e.g. 0 0,1,2, 0,2. use -1 for CPU')
parser.add_argument('--checkpoints_dir', type=str, default='./checkpoints', help='models are saved here')
parser.add_argument('--vis_batch_nums', type=float, default=1, help='batch nums of images for visulization')
parser.add_argument('--eval_batch_nums', type=float, default=float('inf'), help='batch nums of images for evaluation')
parser.add_argument('--use_ddp', type=util.str2bool, nargs='?', const=True, default=True, help='whether use distributed data parallel')
parser.add_argument('--ddp_port', type=str, default='12355', help='ddp port')
parser.add_argument('--display_per_batch', type=util.str2bool, nargs='?', const=True, default=True, help='whether use batch to show losses')
parser.add_argument('--add_image', type=util.str2bool, nargs='?', const=True, default=True, help='whether add image to tensorboard')
parser.add_argument('--world_size', type=int, default=1, help='batch nums of images for evaluation')
# model parameters
parser.add_argument('--model', type=str, default='facerecon', help='chooses which model to use.')
# additional parameters
parser.add_argument('--epoch', type=str, default='latest', help='which epoch to load? set to latest to use latest cached model')
parser.add_argument('--verbose', action='store_true', help='if specified, print more debugging information')
parser.add_argument('--suffix', default='', type=str, help='customized suffix: opt.name = opt.name + suffix: e.g., {model}_{netG}_size{load_size}')
self.initialized = True
return parser
def gather_options(self):
"""Initialize our parser with basic options(only once).
Add additional model-specific and dataset-specific options.
These options are defined in the <modify_commandline_options> function
in model and dataset classes.
"""
if not self.initialized: # check if it has been initialized
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser = self.initialize(parser)
# get the basic options
if self.cmd_line is None:
opt, _ = parser.parse_known_args()
else:
opt, _ = parser.parse_known_args(self.cmd_line)
# set cuda visible devices
os.environ['CUDA_VISIBLE_DEVICES'] = opt.gpu_ids
# modify model-related parser options
model_name = opt.model
model_option_setter = models.get_option_setter(model_name)
parser = model_option_setter(parser, self.isTrain)
if self.cmd_line is None:
opt, _ = parser.parse_known_args() # parse again with new defaults
else:
opt, _ = parser.parse_known_args(self.cmd_line) # parse again with new defaults
# modify dataset-related parser options
if opt.dataset_mode:
dataset_name = opt.dataset_mode
dataset_option_setter = data.get_option_setter(dataset_name)
parser = dataset_option_setter(parser, self.isTrain)
# save and return the parser
self.parser = parser
if self.cmd_line is None:
return parser.parse_args()
else:
return parser.parse_args(self.cmd_line)
def print_options(self, opt):
"""Print and save options
It will print both current options and default values(if different).
It will save options into a text file / [checkpoints_dir] / opt.txt
"""
message = ''
message += '----------------- Options ---------------\n'
for k, v in sorted(vars(opt).items()):
comment = ''
default = self.parser.get_default(k)
if v != default:
comment = '\t[default: %s]' % str(default)
message += '{:>25}: {:<30}{}\n'.format(str(k), str(v), comment)
message += '----------------- End -------------------'
print(message)
# save to the disk
expr_dir = os.path.join(opt.checkpoints_dir, opt.name)
util.mkdirs(expr_dir)
file_name = os.path.join(expr_dir, '{}_opt.txt'.format(opt.phase))
try:
with open(file_name, 'wt') as opt_file:
opt_file.write(message)
opt_file.write('\n')
except PermissionError as error:
print("permission error {}".format(error))
pass
def parse(self):
"""Parse our options, create checkpoints directory suffix, and set up gpu device."""
opt = self.gather_options()
opt.isTrain = self.isTrain # train or test
# process opt.suffix
if opt.suffix:
suffix = ('_' + opt.suffix.format(**vars(opt))) if opt.suffix != '' else ''
opt.name = opt.name + suffix
# set gpu ids
str_ids = opt.gpu_ids.split(',')
gpu_ids = []
for str_id in str_ids:
id = int(str_id)
if id >= 0:
gpu_ids.append(id)
opt.world_size = len(gpu_ids)
# if len(opt.gpu_ids) > 0:
# torch.cuda.set_device(gpu_ids[0])
if opt.world_size == 1:
opt.use_ddp = False
if opt.phase != 'test':
# set continue_train automatically
if opt.pretrained_name is None:
model_dir = os.path.join(opt.checkpoints_dir, opt.name)
else:
model_dir = os.path.join(opt.checkpoints_dir, opt.pretrained_name)
if os.path.isdir(model_dir):
model_pths = [i for i in os.listdir(model_dir) if i.endswith('pth')]
if os.path.isdir(model_dir) and len(model_pths) != 0:
opt.continue_train= True
# update the latest epoch count
if opt.continue_train:
if opt.epoch == 'latest':
epoch_counts = [int(i.split('.')[0].split('_')[-1]) for i in model_pths if 'latest' not in i]
if len(epoch_counts) != 0:
opt.epoch_count = max(epoch_counts) + 1
else:
opt.epoch_count = int(opt.epoch) + 1
self.print_options(opt)
self.opt = opt
return self.opt
|