File size: 9,645 Bytes
f79ca48 0461ac3 f79ca48 047777e f79ca48 0461ac3 f79ca48 047777e f79ca48 047777e f79ca48 047777e f79ca48 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
import gradio as gr
import os
import whisper
import torch
from gtts import gTTS
from sentence_transformers import SentenceTransformer
import faiss
import pandas as pd
from datasets import load_dataset
from deep_translator import GoogleTranslator
from langdetect import detect
#from groq import Groq # Correct import for Groq API
# Set up Whisper with a smaller model or on CPU
model_name = "small" # Use "small", "base", or "medium" for smaller models
whisper_model = whisper.load_model(model_name)
device = "cuda" if torch.cuda.is_available() else "cpu"
whisper_model.to(device)
# Initialize the GoogleTranslator from deep-translator
translator = GoogleTranslator(source='auto', target='en')
# Load and prepare the dataset for retrieval
dataset = load_dataset("qgyd2021/e_commerce_customer_service", "faq")
train_dataset = dataset['train']
# Initialize the SentenceTransformer model
embedder = SentenceTransformer('paraphrase-MiniLM-L6-v2')
# Encode the questions from the dataset and set up FAISS
dataset_embeddings = embedder.encode(train_dataset['question'], convert_to_tensor=True)
index = faiss.IndexFlatL2(dataset_embeddings.shape[1]) # Create an index based on L2 distance
index.add(dataset_embeddings.cpu().numpy()) # Add the embeddings to the index
# Set up Groq API with direct API key
api_key = os.getenv("api_key")
import torch
from transformers import pipeline
from langdetect import detect
from deep_translator import GoogleTranslator
from gtts import gTTS
# Initialize the sentiment analysis pipeline
device = 0 if torch.cuda.is_available() else -1
try:
sentiment_analyzer = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english", device=device)
except Exception as e:
print(f"Error loading sentiment analysis model: {e}")
# Function to detect the language
def detect_language(text):
try:
return detect(text)
except Exception as e:
print(f"Error during language detection: {e}")
return "en" # Default to English if detection fails
# Translate text using deep-translator
def translate_text(text, dest_lang):
try:
return GoogleTranslator(source='auto', target=dest_lang).translate(text)
except Exception as e:
print(f"Error during translation: {e}")
return text # Return original text if translation fails
# Function to generate a greeting based on sentiment
def generate_greeting(sentiment, lang):
try:
if sentiment == 'NEGATIVE':
if lang in ['ur', 'hi']:
return "پریشان نہ ہوں، میں آپ کی مدد کے لئے یہاں ہوں."
else:
return "Please don't be sad, I'm here to solve your problem."
elif sentiment == 'NEUTRAL':
if lang in ['ur', 'hi']:
return "آپ کا مسئلہ حل کرتے ہیں، آپ فکر نہ کریں."
else:
return "I understand your concern, let's get that sorted out."
elif sentiment == 'POSITIVE':
if lang in ['ur', 'hi']:
return "یہ خوشی کی بات ہے کہ آپ خوش ہیں! آئیں، ہم اسے بہتر بناتے ہیں."
else:
return "I'm glad you're feeling positive! Let's make things even better."
else:
if lang in ['ur', 'hi']:
return "ہیلو! میں آج تمہاری مدد کیسے کر سکتا ہوں؟"
else:
return "Hello! How can I assist you today?"
except Exception as e:
print(f"Error generating greeting: {e}")
return "Hello!"
# Function to transcribe audio using Whisper
def transcribe_audio(audio_path):
try:
result = whisper_model.transcribe(audio_path)
transcription = result['text']
print(f"Transcription result: {transcription}")
return transcription
except Exception as e:
print(f"Error during transcription: {e}")
return "Error during transcription"
# Function to generate a chatbot response based on transcription
def generate_chatbot_response(transcription):
try:
# Detect language of the transcription
detected_language = detect_language(transcription)
# Translate to English if necessary
if detected_language in ['ur', 'hi']:
transcription = translate_text(transcription, 'en')
# Perform sentiment analysis
sentiment_result = sentiment_analyzer(transcription)[0]
sentiment = sentiment_result['label'].upper()
# Generate a greeting based on sentiment
greeting = generate_greeting(sentiment, detected_language)
# Retrieve relevant context using FAISS
transcription_embedding = embedder.encode([transcription], convert_to_tensor=True)
_, indices = index.search(transcription_embedding.cpu().numpy(), k=1)
best_match_index = indices[0][0]
context = train_dataset['answer'][best_match_index]
url = train_dataset['url'][best_match_index]
# Generate the full response
response = f"{greeting}\n\n{context}\n\nPlease visit this link for your query: {url}"
# Translate the response back to Urdu if necessary
if detected_language in ['ur', 'hi']:
response = translate_text(response, 'ur')
return response
except Exception as e:
print(f"Error during chatbot response generation: {e}")
return "Error during response generation"
# Function to convert text to speech using gTTS
def text_to_speech(text, lang='en'):
try:
tts = gTTS(text=text, lang=lang)
tts.save("response.mp3")
return "response.mp3"
except Exception as e:
print(f"Error during text-to-speech conversion: {e}")
return "Error during text-to-speech conversion"
# Main function for Gradio interface
def chatbot(text_input=None, audio_input=None):
if audio_input:
# Step 1: Transcribe audio to text if audio input is provided
transcription = transcribe_audio(audio_input)
input_text = transcription
else:
# Use the text input directly if provided
input_text = text_input
# Step 2: Generate a chatbot response based on the input text
response = generate_chatbot_response(input_text)
# Step 3: Convert the response text to speech if the original input was audio
if audio_input:
lang = 'ur' if detect_language(input_text) in ['ur', 'hi'] else 'en'
audio_path = text_to_speech(response, lang=lang)
return input_text, response, audio_path
else:
return input_text, response, None
# Custom CSS for styling the interface and buttons
custom_css = """
body {
font-family: 'Arial', sans-serif;
background-color: #1e1e1e; /* Black background */
color: white; /* White text */
}
h1 {
font-size: 36px;
color: white;
text-align: center;
margin-bottom: 20px;
}
h2 {
font-size: 24px;
color: white;
text-align: center;
margin-bottom: 10px;
}
.instructions {
font-size: 16px; /* Smaller font size for instructions */
color: #cccccc; /* Light gray color for instructions */
text-align: center;
margin-bottom: 20px;
}
.gradio-container {
background-color: #1e1e1e;
padding: 20px;
border-radius: 10px;
}
.gr-box {
border-radius: 5px;
border: 1px solid #333;
padding: 10px;
margin-bottom: 10px;
}
.gr-button {
border-radius: 5px;
padding: 10px;
font-weight: bold;
font-size: 16px;
transition: background-color 0.3s;
}
.gr-button-submit {
background-color: #28a745; /* Green submit button */
color: white;
}
.gr-button-submit:hover {
background-color: #218838;
}
.gr-button-clear {
background-color: #dc3545; /* Red clear button */
color: white;
}
.gr-button-clear:hover {
background-color: #c82333;
}
.gr-textbox, .gr-audio {
border-radius: 5px;
border: 1px solid #0056b3; /* Blue border */
padding: 8px;
background-color: #2e2e2e;
color: white;
}
.gr-textbox {
background-color: #0056b3; /* Blue background for textboxes */
color: white;
}
.gr-container {
max-width: 900px;
margin: auto;
}
"""
import gradio as gr
# Gradio interface setup with updated CSS
with gr.Blocks(css=custom_css) as iface:
gr.Markdown("<h1>Multilingual Customer Service Chatbot</h1>")
gr.Markdown("<h2>Ask your questions</h2>")
gr.Markdown("<p class='instructions'>If you type in Urdu, it will respond in Urdu. If in English, it will respond in English. Same with voice.</p>")
with gr.Row():
with gr.Column():
text_input = gr.Textbox(lines=2, placeholder="Type your query here...", label="Text Input (Optional)")
audio_input = gr.Audio(type="filepath", label="Audio Input (Optional)")
with gr.Column():
transcription_output = gr.Textbox(label="Transcription") # Add transcription output
response_text = gr.Textbox(label="Chatbot Response")
response_audio = gr.Audio(label="Response Audio (if applicable)")
with gr.Row():
submit_btn = gr.Button("Submit", elem_id="submit-btn", variant="primary")
clear_btn = gr.Button("Clear", elem_id="clear-btn", variant="secondary")
submit_btn.click(chatbot, inputs=[text_input, audio_input], outputs=[transcription_output, response_text, response_audio])
clear_btn.click(lambda: (None, None, None, None, None), inputs=[], outputs=[text_input, audio_input, transcription_output, response_text, response_audio])
# Launch the Gradio interface
iface.launch()
|