Spaces:
Sleeping
Sleeping
File size: 12,697 Bytes
6c63e71 83b902b 6c63e71 f447ffd 6c63e71 f447ffd 6c63e71 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 |
import numpy as np
import cv2
from PIL import Image, ImageEnhance
from io import BytesIO
from pdf2image import convert_from_path
import json
from gapi_client import get_genai_client
from utils import extract_json_from_output
# Global GenAI client
CLIENT = None
def init_genai():
"""
Initialize the global GenAI client with the provided API key.
"""
global CLIENT
CLIENT = get_genai_client()
def parse_all_answers(image_input: Image.Image) -> str:
"""
Extracts answers from a full answer-sheet image using Gemini.
Returns the raw JSON string from the model.
"""
output_format = '''
Answer in the following JSON format. Do not write anything else:
{
"Paper name": {"name": "<paper Alphabet>"},
"Answers": {
"1": "<option or text>",
"2": "<option or text>",
"3": "<option or text>",
"4": "<option or text>",
"5": "<option or text>",
"6": "<option or text>",
"7": "<option or text>",
"8": "<option or text>",
"9": "<option or text>",
"10": "<option or text>",
"11": "<option or text>",
"12": "<option or text>",
"13": "<option or text>",
"14": "<option or text>",
"15": "<option or text>",
"16": "<option or text>",
"17": "<option or text>",
"18": "<option or text>",
"19": "<option or text>",
"20": "<option or text>",
"21": "<free text answer>",
"22": "<free text answer>",
"23": "<free text answer>",
"24": "<free text answer>",
"25": "<free text answer>"
}
}
'''
prompt = f"""
You are an assistant that extracts answers from an image.
Write only the Alphabet(A,B,C,D,E,F) of the paper in the \"Paper name\" field.
The image is a screenshot of an answer sheet containing 25 questions.
For questions 1 to 20, the answers are multiple-choice selections.
For questions 21 to 25, the answers are free-text responses.
Extract the answer for each question (1 to 25) and provide the result in JSON using the format below:
{output_format}
"""
response = CLIENT.models.generate_content(
model="gemini-2.0-flash",
contents=[prompt, image_input]
)
return response.text
def preprocess_pdf_last_page(image: Image.Image) -> Image.Image:
"""
Preprocesses the last page PIL image:
- Convert to OpenCV BGR
- Mask vertical region
- Crop to mask
- Unsharp mask sharpen
- Enhance with PIL
"""
# Convert to BGR
img_cv = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
h, w = img_cv.shape[:2]
# Mask
mask = np.zeros((h, w), dtype="uint8")
top, bottom = int(h * 0.14), int(h * 0.73)
cv2.rectangle(mask, (0, top), (w, h - bottom), 255, -1)
masked = cv2.bitwise_and(img_cv, img_cv, mask=mask)
# Crop
coords = cv2.findNonZero(mask)
x, y, cw, ch = cv2.boundingRect(coords)
cropped = masked[y:y+ch, x:x+cw]
# Sharpen
blurred = cv2.GaussianBlur(cropped, (0, 0), sigmaX=3)
sharpened = cv2.addWeighted(cropped, 1.5, blurred, -0.5, 0)
# PIL enhancements
pil2 = Image.fromarray(cv2.cvtColor(sharpened, cv2.COLOR_BGR2RGB))
pil2 = ImageEnhance.Sharpness(pil2).enhance(1.3)
pil2 = ImageEnhance.Contrast(pil2).enhance(1.4)
pil2 = ImageEnhance.Brightness(pil2).enhance(1.1)
return pil2
def parse_info_with_gemini(pil_img: Image.Image) -> dict:
"""
Calls Gemini on a header image to extract candidate info fields.
"""
output_format = '''
Answer in the following JSON format. Do not write anything else:
{
"Candidate Info": {
"Paper": "<paper>",
"Level": "<level>",
"Candidate Name": "<name>",
"Candidate Number": "<number>",
"School": "<school>",
"Country": "<country>",
"grade level": "<grade level>",
"Date": "<date>"
}
}
'''
prompt = f"""
You are a helper that accurately reads a sharpened exam header image and extracts exactly these fields:
β’ Paper (e.g. \"B\")
β’ Level (e.g. \"MIDDLE PRIMARY\")
β’ Candidate Name
β’ Candidate Number
β’ School
β’ Country
β’ grade level
β’ Date (with time)
Return **only** valid JSON in this format:
{output_format}
"""
response = CLIENT.models.generate_content(
model="gemini-2.0-flash",
contents=[prompt, pil_img]
)
return extract_json_from_output(response.text)
def extract_candidate_data(image: Image.Image) -> dict:
"""
Preprocess last page and parse candidate info.
"""
prepped = preprocess_pdf_last_page(image)
info = parse_info_with_gemini(prepped)
return info
def parse_mcq_answers(pil_image: Image.Image) -> str:
"""
Extracts MCQ answers 1β10 from an image.
"""
output_format = '''
Answer in the following JSON format. Do not write anything else:
{
"Answers": {
"1": "<option>",
"2": "<option>",
"3": "<option>",
"4": "<option>",
"5": "<option>",
"6": "<option>",
"7": "<option>",
"8": "<option>",
"9": "<option>",
"10": "<option>"
}
}
'''
prompt = f"""
You are an assistant that extracts MCQ answers from an image.
The image is a screenshot of a 10-question multiple-choice answer sheet.
Extract which option is marked for each question (1β10) and provide the answers in JSON:
{output_format}
"""
response = CLIENT.models.generate_content(
model="gemini-2.0-flash",
contents=[prompt, pil_image]
)
return response.text
def get_mcqs1st(pil_image: Image.Image) -> dict:
"""
Mask, crop, enhance, and parse MCQs 1β10.
"""
img_cv = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR)
h, w = img_cv.shape[:2]
mask = np.zeros((h, w), dtype="uint8")
top, bot, right = int(h*0.30), int(h*0.44), int(w*0.35)
cv2.rectangle(mask, (0, top), (right, h-bot), 255, -1)
masked = cv2.bitwise_and(img_cv, img_cv, mask=mask)
coords = cv2.findNonZero(mask)
x, y, cw, ch = cv2.boundingRect(coords)
cropped = masked[y:y+ch, x:x+cw]
blur = cv2.GaussianBlur(cropped, (0,0), sigmaX=3)
sharp = cv2.addWeighted(cropped, 1.5, blur, -0.5, 0)
pil_sh = Image.fromarray(cv2.cvtColor(sharp, cv2.COLOR_BGR2RGB))
pil_sh = ImageEnhance.Sharpness(pil_sh).enhance(1.3)
pil_sh = ImageEnhance.Contrast(pil_sh).enhance(1.4)
final = ImageEnhance.Brightness(pil_sh).enhance(1.1)
raw = parse_mcq_answers(final)
return extract_json_from_output(raw)
def parse_mcq_answers_11_20(pil_image: Image.Image) -> str:
"""
Extracts MCQ answers 11β20 from an image.
"""
output_format = '''
Answer in the following JSON format. Do not write anything else:
{
"Answers": {
"11": "<option>",
"12": "<option>",
"13": "<option>",
"14": "<option>",
"15": "<option>",
"16": "<option>",
"17": "<option>",
"18": "<option>",
"19": "<option>",
"20": "<option>"
}
}
'''
prompt = f"""
You are an assistant that extracts MCQ answers from an image.
The image is a screenshot of questions 11β20.
Extract the marked option for each and return JSON:
{output_format}
"""
response = CLIENT.models.generate_content(
model="gemini-2.0-flash",
contents=[prompt, pil_image]
)
return response.text
def get_mcqs2nd(pil_image: Image.Image) -> dict:
"""
Mask, crop, enhance, and parse MCQs 11β20.
"""
img_cv = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR)
h, w = img_cv.shape[:2]
mask = np.zeros((h, w), dtype="uint8")
top, bottom, right = int(h*0.56), int(h*0.21), int(w*0.35)
cv2.rectangle(mask, (0, top), (right, h-bottom), 255, -1)
masked = cv2.bitwise_and(img_cv, img_cv, mask=mask)
coords = cv2.findNonZero(mask)
x, y, cw, ch = cv2.boundingRect(coords)
cropped = masked[y:y+ch, x:x+cw]
blurred = cv2.GaussianBlur(cropped, (0,0), sigmaX=3)
sharp = cv2.addWeighted(cropped, 1.5, blurred, -0.5, 0)
pil_sharp = Image.fromarray(cv2.cvtColor(sharp, cv2.COLOR_BGR2RGB))
pil_sharp = ImageEnhance.Sharpness(pil_sharp).enhance(1.3)
pil_sharp = ImageEnhance.Contrast(pil_sharp).enhance(1.4)
final_pil = ImageEnhance.Brightness(pil_sharp).enhance(1.1)
raw = parse_mcq_answers_11_20(final_pil)
return extract_json_from_output(raw)
def parse_text_answers(pil_image: Image.Image) -> str:
"""
Extracts free-text answers 21β25 from an image.
"""
output_format = '''
Answer in the following JSON format. Do not write anything else:
{
"Answers": {
"21": "<text>",
"22": "<text>",
"23": "<text>",
"24": "<text>",
"25": "<text>"
}
}
'''
prompt = f"""
You are an assistant that extracts free-text answers from an image.
The image shows answers to questions 21β25.
Extract the text for each and return JSON:
{output_format}
"""
response = CLIENT.models.generate_content(
model="gemini-2.0-flash",
contents=[prompt, pil_image]
)
return response.text
def get_answer(pil_image: Image.Image) -> dict:
"""
Mask, crop, enhance, and parse free-text 21β25.
"""
img_cv = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR)
h, w = img_cv.shape[:2]
mask = np.zeros((h, w), dtype="uint8")
top, bottom = int(h*0.31), int(h*0.31)
left, right = int(w*0.35), int(w*0.66)
cv2.rectangle(mask, (left, top), (right, h-bottom), 255, -1)
masked = cv2.bitwise_and(img_cv, img_cv, mask=mask)
coords = cv2.findNonZero(mask)
x, y, cw, ch = cv2.boundingRect(coords)
cropped = masked[y:y+ch, x:x+cw]
blurred = cv2.GaussianBlur(cropped, (0,0), sigmaX=3)
sharp = cv2.addWeighted(cropped, 1.5, blurred, -0.5, 0)
pil_sharp = Image.fromarray(cv2.cvtColor(sharp, cv2.COLOR_BGR2RGB))
pil_sharp = ImageEnhance.Sharpness(pil_sharp).enhance(1.3)
pil_sharp = ImageEnhance.Contrast(pil_sharp).enhance(1.4)
final_pil = ImageEnhance.Brightness(pil_sharp).enhance(1.1)
raw = parse_text_answers(final_pil)
return extract_json_from_output(raw)
def infer_page(pil_image: Image.Image) -> dict:
"""
Full pipeline for a single exam page.
"""
student_info = extract_candidate_data(pil_image)
mcq1 = get_mcqs1st(pil_image) or {}
mcq2 = get_mcqs2nd(pil_image) or {}
free_txt = get_answer(pil_image) or {}
all_answers = {**mcq1.get("Answers", {}), **mcq2.get("Answers", {}), **free_txt.get("Answers", {})}
return {"Candidate Info": student_info.get("Candidate Info", {}), "Answers": all_answers}
def infer_all_pages(pdf_path: str) -> dict:
"""
Processes every page in the PDF and infers student data.
"""
results = {}
pages = convert_from_path(pdf_path)
for idx, page in enumerate(pages, start=1):
data = infer_page(page)
info = data.get("Candidate Info", {})
key = info.get("Candidate Number") or f"Page_{idx}"
if data.get("Answers"):
results[key] = data
return results
def load_answer_key(pdf_path: str) -> dict:
"""
Parses the official answer-key PDF into a dict of paper->answers.
"""
images = convert_from_path(pdf_path)
key_dict = {}
for page in images:
raw = parse_all_answers(page)
parsed = extract_json_from_output(raw)
name = parsed.get("Paper name", {}).get("name")
key_dict[name] = parsed.get("Answers", {})
return key_dict
def grade_page(student_page_data: dict, answer_key_dict: dict) -> dict:
"""
Grades a single student page against the loaded key.
"""
paper = student_page_data.get("Candidate Info", {}).get("Paper")
correct = answer_key_dict.get(paper, {})
student_ans = student_page_data.get("Answers", {})
total_q = len(correct)
correct_count = 0
detailed = {}
for q, key_ans in correct.items():
stud_ans = student_ans.get(q, "")
is_corr = str(stud_ans).strip().upper() == str(key_ans).strip().upper()
if is_corr:
correct_count += 1
detailed[q] = {"Correct Answer": key_ans, "Student Answer": stud_ans, "Is Correct": is_corr}
percentage = round(correct_count/total_q*100, 2) if total_q else 0.0
return {"Candidate Info": student_page_data.get("Candidate Info", {}), "Total Marks": correct_count, "Total Questions": total_q, "Percentage": percentage, "Detailed Results": detailed}
def grade_all_students(answer_key_pdf: str, student_pdf: str, out_json: str = "results.json") -> dict:
"""
Loads key, infers all students, grades them, and writes JSON.
"""
key_dict = load_answer_key(answer_key_pdf)
students = infer_all_pages(student_pdf)
results = {}
for cand, data in students.items():
results[cand] = grade_page(data, key_dict)
with open(out_json, "w") as f:
json.dump(results, f, indent=2)
return results
|