Spaces:
Running
Running
File size: 15,739 Bytes
2b4f1a9 0e1a3bd 2b4f1a9 0e1a3bd 2b4f1a9 0e1a3bd 2b4f1a9 0e1a3bd 2b4f1a9 0e1a3bd 2b4f1a9 0e1a3bd 2b4f1a9 0e1a3bd 2b4f1a9 0e1a3bd 2b4f1a9 0e1a3bd 2b4f1a9 0e1a3bd 9c6cbca 0e1a3bd 9c6cbca 0e1a3bd 2b4f1a9 0e1a3bd 2b4f1a9 0e1a3bd 2b4f1a9 0e1a3bd 2b4f1a9 0e1a3bd 2b4f1a9 0e1a3bd 2b4f1a9 cfc4f6b 2b4f1a9 cfc4f6b 2b4f1a9 0e1a3bd 2b4f1a9 999af57 2b4f1a9 0e1a3bd 2b4f1a9 cfc4f6b 2b4f1a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 |
###############################################################################
# CAA β OneReg | Dual Document Cleaning & Comparison Tool #
###############################################################################
import io
import os
import re
import html
import json
import traceback
import difflib
import platform
import pandas as pd
from datetime import datetime
import fitz # PyMuPDF
from PyPDF2 import PdfReader # plain text extraction
import gradio as gr # UI
from dotenv import load_dotenv # optional .env support
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 1. PDF & TEXT PROCESSING
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def extract_pdf_text(pdf_file) -> str:
"""Extracts text from a PDF file using PyPDF2."""
reader = PdfReader(pdf_file)
return "\n".join(p.extract_text() or "" for p in reader.pages)
def extract_pdf_word(pdf_file) -> str:
"""Extracts text from PDF using PyMuPDF (fitz) for better layout preservation."""
doc = fitz.open(pdf_file)
text_blocks = [page.get_text("text") for page in doc]
return "\n".join(filter(None, text_blocks))
def merge_pdf_wrapped_lines(raw_text: str) -> list[str]:
"""Re-join hard-wrapped lines from PDF extraction."""
merged = []
for ln in raw_text.splitlines():
ln_stripped = ln.strip()
if not ln_stripped: continue
if merged:
prev = merged[-1]
if (re.search(r'[a-z]$', prev) and re.match(r'^[\(a-z]', ln_stripped)) or \
(re.search(r'\b(?:rule|may|and|or)$', prev, re.I) and re.match(r'^\d+\.\d+', ln_stripped)) or \
(re.search(r'\brule\s+\d+\.$', prev, re.I) and re.match(r'^\d', ln_stripped)):
merged[-1] = prev + (' ' if re.search(r'[a-z]$', prev) else '') + ln_stripped
continue
merged.append(ln_stripped)
return merged
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 2. RULE PARSING & CLEANING (Initial Automated Pass)
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# --- Regex for rule structure ---
rule_pat = re.compile(
r'^(?:(?:\d+\.){2,}\s*)?(?P<base_rule>\d+\.\d+(?:[A-Z]?))(?P<parens>(?:\s*\([^)]+\))*?)\s*(?P<title>.*)$',
re.IGNORECASE
)
appendix_item_pat = re.compile(
r'^\s*([A-Z])\.(\d+(?:\.\d+)*)(?:\s*\(([^)]+)\))?\s+(?P<title>[A-Za-z0-9].*)$',
re.IGNORECASE
)
subpart_pat = re.compile(
r'^\s*\d+\.\s*Subpart\s+([A-Z]{1,2})\s*[β-]\s*(.+)$',
re.IGNORECASE
)
# --- Regex for cleaning ---
page_pat = re.compile(r'Page\s+\d+\s*/\s*\d+', re.IGNORECASE)
date_pat = re.compile(
r'(?:Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec)[a-z.]*\s+\d{1,2},?\s+\d{4}',
re.IGNORECASE
)
header_pat = re.compile(
r'^(?:Purpose\s+)?(?:[A-Z][a-z]{2}\.)\s+\d{1,2},\s*\d{4},.*$', re.IGNORECASE
)
def clean_line(line: str, source: str) -> str:
"""Performs a basic, automated cleaning pass on a line of text."""
if source == "onereg":
line = re.sub(r'\b(?:\d+\.){3,}\s*', '', line) # Zap outline IDs 1.2.3.
if header_pat.match(line):
return ""
# Generic cleaning for both
line = page_pat.sub('', line)
line = date_pat.sub('', line)
line = re.sub(r'Civil Aviation Rules\s+Part\s+\d+\s+CAA Consolidation', '', line, flags=re.I)
line = re.sub(r'^\d{1,2}\s+[A-Za-z]+\s+\d{4}\s*\d*\s*CAA of NZ', '', line, flags=re.I)
line = re.sub(r'\S+@\S+', '', line) # email
line = re.sub(r'\s{2,}', ' ', line)
return line.strip()
def parse_rules(text: str, source: str) -> dict[str, str]:
"""Parses raw text into a dictionary of {rule_id: rule_text}."""
rules, current, title = {}, None, ""
lines = merge_pdf_wrapped_lines(text)
for raw_line in lines:
line = clean_line(raw_line, source)
if not line: continue
m_ap_item = appendix_item_pat.match(line)
m_sp = subpart_pat.match(line)
m_rule = rule_pat.match(line)
new_key = None
new_title = ""
if m_ap_item:
key_parts = [m_ap_item.group(1).upper(), m_ap_item.group(2)]
if m_ap_item.group(3): key_parts.append(f"({m_ap_item.group(3).strip()})")
new_key = ".".join(key_parts)
new_title = m_ap_item.group('title').strip()
elif m_sp:
new_key = f"subpart-{m_sp.group(1).upper()}"
new_title = f"Subpart {m_sp.group(1).upper()} β {m_sp.group(2).strip()}"
elif m_rule:
base = m_rule.group('base_rule')
parens_str = m_rule.group('parens') or ""
new_key = base + "".join(re.findall(r'\([^)]+\)', parens_str))
new_title = m_rule.group('title').strip()
if new_key:
current = new_key
title = new_title
rules.setdefault(current, [])
if title:
rules[current].append(title)
elif current:
if not title or line.lower() != title.lower():
rules[current].append(line)
return {k: " ".join(v).strip() for k, v in rules.items()}
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 3. COMPARISON & UI LOGIC
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def diff_unified(one: str, caa: str) -> str:
"""Generates a single HTML string showing differences inline."""
sm = difflib.SequenceMatcher(None, one, caa, autojunk=False)
output = []
for tag, i1, i2, j1, j2 in sm.get_opcodes():
one_segment = html.escape(one[i1:i2])
caa_segment = html.escape(caa[j1:j2])
if tag == "equal":
output.append(one_segment)
elif tag == "delete":
output.append(
f"<del style='background:#fdd; text-decoration: line-through; color: #000;'>{one_segment}</del>")
elif tag == "insert":
output.append(f"<ins style='background:#dfd; text-decoration: none; color: #000;'>{caa_segment}</ins>")
elif tag == "replace":
output.append(
f"<del style='background:#fdd; text-decoration: line-through; color: #000;'>{one_segment}</del>")
output.append(f"<ins style='background:#dfd; text-decoration: none; color: #000;'>{caa_segment}</ins>")
return f"<span style='white-space: pre-wrap; color: var(--text);'>{''.join(output)}</span>"
def combined_sort_key(key: str):
"""Robustly sorts rules, subparts, and appendices."""
if key.startswith("subpart-"):
return (1, key)
sortable_tuple = ()
if re.match(r'^\d+\.\d+', key):
sortable_tuple += (2,)
elif re.match(r'^[A-Z]\.', key):
sortable_tuple += (3,)
else:
return (4, key)
parts = re.split(r'[.()]', key)
parts = [p for p in parts if p]
for part in parts:
if part.isdigit():
sortable_tuple += ((1, int(part)),)
else:
sortable_tuple += ((2, part.lower()),)
return sortable_tuple
def save_clean_and_dirty_versions(dirty_one, dirty_caa, clean_one, clean_caa, filename: str) -> str:
"""Saves both original and cleaned versions to a .jsonl file."""
all_ids = sorted(
list(set(dirty_one.keys()) | set(dirty_caa.keys())),
key=combined_sort_key
)
with open(filename, 'w', encoding='utf-8') as f:
for rule_id in all_ids:
# OneReg record
record_one = {
"rule_id": rule_id,
"source": "onereg",
"dirty_text": dirty_one.get(rule_id, ""),
"clean_text": clean_one.get(rule_id, "")
}
f.write(json.dumps(record_one) + '\n')
# CAA record
record_caa = {
"rule_id": rule_id,
"source": "caa",
"dirty_text": dirty_caa.get(rule_id, ""),
"clean_text": clean_caa.get(rule_id, "")
}
f.write(json.dumps(record_caa) + '\n')
return filename
# --- STAGE 1: Process PDFs and prepare for user review ---
def stage1_process_and_review(part, onereg_pdf, caa_pdf):
if not (onereg_pdf and caa_pdf):
raise gr.Error("Please upload both PDF files.")
try:
# Process OneReg PDF
raw_one = extract_pdf_word(onereg_pdf.name)
one_data = parse_rules(raw_one, "onereg")
# Process CAA PDF
raw_caa = extract_pdf_text(caa_pdf.name)
caa_data = parse_rules(raw_caa, "caa")
# Get all rule IDs and sort them
all_ids = sorted(
list(set(one_data.keys()) | set(caa_data.keys())),
key=combined_sort_key
)
rules_to_review = [
r for r in all_ids
if r.startswith(f"{part}.") or r.startswith("subpart-") or re.match(r'^[A-Z]\.', r)
]
# Prepare DataFrame for user editing with both documents
review_rows = []
for rule_id in rules_to_review:
one_text = one_data.get(rule_id, "[Rule not found in OneReg]")
caa_text = caa_data.get(rule_id, "[Rule not found in CAA]")
review_rows.append([rule_id, one_text, caa_text])
df = pd.DataFrame(review_rows, columns=["Rule ID", "OneReg Text (Editable)", "CAA Text (Editable)"])
return {
original_one_state: one_data,
original_caa_state: caa_data,
review_df: gr.update(value=df, visible=True),
btn_finalize: gr.update(visible=True),
}
except Exception as e:
traceback.print_exc()
raise gr.Error(f"Failed during initial processing: {e}")
# --- STAGE 2: Take user-cleaned text and perform the final comparison ---
def stage2_finalize_and_compare(review_df, original_one, original_caa):
if review_df is None or review_df.empty:
raise gr.Error("No data to compare. Please process the files first.")
# Convert the user-edited DataFrame back into dictionaries
clean_one_data = pd.Series(review_df['OneReg Text (Editable)'].values, index=review_df['Rule ID']).to_dict()
clean_caa_data = pd.Series(review_df['CAA Text (Editable)'].values, index=review_df['Rule ID']).to_dict()
# Save the training data file
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
jsonl_filename = f"cleaned_rules_{timestamp}.jsonl"
saved_filepath = save_clean_and_dirty_versions(original_one, original_caa, clean_one_data, clean_caa_data,
jsonl_filename)
# Perform the final comparison
all_ids = sorted(
list(set(clean_one_data.keys()) | set(clean_caa_data.keys())),
key=combined_sort_key
)
sections = []
for rule_id in all_ids:
one_clean = clean_one_data.get(rule_id, "")
caa_clean = clean_caa_data.get(rule_id, "")
diff_html = diff_unified(one_clean, caa_clean)
sections.append(f"""
<div class="rule-section">
<strong class="rule-label">{rule_id}</strong>
<div class="rule-content">
{diff_html}
</div>
</div>
<hr>
""")
style = """
<style>
body { font-family: sans-serif; color: var(--body-text-color); }
.rule-label { font-size: 1.1em; background: #f0f0f0; padding: 5px; display: block; border-top-left-radius: 5px; border-top-right-radius: 5px; }
.rule-content { padding: 10px; border: 1px solid #f0f0f0; border-top: none; margin-bottom: 1em; white-space: pre-wrap; }
hr { border: none; border-top: 1px solid #ccc; margin: 1.5em 0; }
</style>
"""
final_html = style + "".join(sections)
return {
out_html: gr.update(value=final_html, visible=True),
download_jsonl: gr.update(value=saved_filepath, visible=True)
}
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# 4. GRADIO UI LAYOUT
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
with gr.Blocks(theme=gr.themes.Soft(), title="Dual Rule Cleaning Tool") as demo:
gr.Markdown("## CAA β OneReg β Dual Document Cleaning & Comparison Tool")
# State to hold the original "dirty" data between steps
original_one_state = gr.State({})
original_caa_state = gr.State({})
# --- Stage 1: Inputs and Initial Processing ---
with gr.Row():
part_num = gr.Textbox(label="Part Number", value="139")
onereg_pdf = gr.File(label="Upload OneReg PDF")
caa_pdf = gr.File(label="Upload CAA PDF")
btn_process = gr.Button("1. Process PDFs & Prepare for Cleaning", variant="secondary")
gr.Markdown("---")
# --- Stage 2: User Review and Cleaning ---
gr.Markdown("### 2. Review and Manually Clean Both Documents")
gr.Markdown(
"Edit the text in the table below to remove any headers, footers, or other noise from **both** documents. Once you are finished, click the 'Finalize, Compare & Save' button.")
review_df = gr.DataFrame(
headers=["Rule ID", "OneReg Text (Editable)", "CAA Text (Editable)"],
datatype=["str", "str", "str"],
interactive=True,
visible=False,
wrap=True,
row_count=(10, "dynamic")
)
btn_finalize = gr.Button("3. Finalize, Compare & Save", variant="primary", visible=False)
gr.Markdown("---")
# --- Stage 3: Final Comparison Output & Export ---
gr.Markdown("### 4. Final Comparison & Export")
gr.Markdown(
"Deletions from OneReg are in <del style='background:#fdd;'>red</del> and additions from CAA are in <ins style='background:#dfd;'>green</ins>.")
out_html = gr.HTML(visible=False)
download_jsonl = gr.File(label="Download Cleaned & Dirty Data (.jsonl)", visible=False)
# --- Wire up UI events ---
btn_process.click(
fn=stage1_process_and_review,
inputs=[part_num, onereg_pdf, caa_pdf],
outputs=[original_one_state, original_caa_state, review_df, btn_finalize]
)
btn_finalize.click(
fn=stage2_finalize_and_compare,
inputs=[review_df, original_one_state, original_caa_state],
outputs=[out_html, download_jsonl]
)
if __name__ == "__main__":
current_os = platform.system()
server_name = "0.0.0.0" if current_os == "Linux" else "127.0.0.1"
demo.launch(
server_name=server_name,
server_port=int(os.environ.get("GRADIO_SERVER_PORT", 7860)),
) |