File size: 9,856 Bytes
7ca901a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
"""
Hugging Face integration for dataset management and model deployment.
"""

import os
import pandas as pd
from datasets import Dataset, DatasetDict
from huggingface_hub import HfApi, create_repo, upload_file
from pathlib import Path
from typing import Optional, Dict, Any
import json

class HuggingFaceIntegration:
    """Handles Hugging Face dataset and model operations."""
    
    def __init__(self, token: Optional[str] = None, dataset_id: str = "HackathonCRA/2024"):
        self.token = token or os.environ.get("HF_TOKEN")
        self.dataset_id = dataset_id
        self.api = HfApi(token=self.token) if self.token else None
        
    def prepare_dataset_from_local_files(self, data_path: str) -> Dataset:
        """Prepare dataset from local CSV/Excel files."""
        from data_loader import AgriculturalDataLoader
        
        # Load and combine all data files
        loader = AgriculturalDataLoader(data_path=data_path)
        df = loader.load_all_files()
        
        # Convert to Hugging Face Dataset
        dataset = Dataset.from_pandas(df)
        
        return dataset
    
    def upload_dataset(self, data_path: str, private: bool = False) -> str:
        """Upload agricultural data to Hugging Face Hub."""
        if not self.token:
            raise ValueError("HF_TOKEN required for uploading")
        
        # Prepare dataset
        dataset = self.prepare_dataset_from_local_files(data_path)
        
        # Create repository if it doesn't exist
        try:
            create_repo(
                repo_id=self.dataset_id,
                token=self.token,
                repo_type="dataset",
                private=private,
                exist_ok=True
            )
        except Exception as e:
            print(f"Repository might already exist: {e}")
        
        # Upload dataset
        dataset.push_to_hub(
            repo_id=self.dataset_id,
            token=self.token,
            private=private
        )
        
        return f"Dataset uploaded to https://huggingface.co/datasets/{self.dataset_id}"
    
    def create_dataset_card(self) -> str:
        """Create a dataset card for the agricultural data."""
        card_content = """
---
license: cc-by-4.0
task_categories:
- tabular-regression
- time-series-forecasting
language:
- fr
tags:
- agriculture
- herbicides
- weed-pressure
- crop-rotation
- france
- bretagne
size_categories:
- 1K<n<10K
---

# 🚜 Station Expérimentale de Kerguéhennec - Agricultural Interventions Dataset

## Dataset Description

This dataset contains agricultural intervention records from the Station Expérimentale de Kerguéhennec in Brittany, France, spanning from 2014 to 2024. The data includes detailed information about agricultural practices, crop rotations, herbicide treatments, and field management operations.

## Dataset Summary

- **Source**: Station Expérimentale de Kerguéhennec
- **Time Period**: 2014-2024  
- **Location**: Brittany, France
- **Records**: ~10,000+ intervention records
- **Format**: CSV/Excel exports from farm management system

## Use Cases

This dataset is particularly valuable for:

1. **Weed Pressure Analysis**: Calculate and predict Treatment Frequency Index (IFT) for herbicides
2. **Crop Rotation Optimization**: Analyze the impact of different crop sequences on pest pressure
3. **Sustainable Agriculture**: Support reduction of herbicide use while maintaining productivity
4. **Precision Agriculture**: Identify suitable plots for sensitive crops (peas, beans)
5. **Agricultural Research**: Study relationships between practices and outcomes

## Data Fields

### Core Fields
- `millesime`: Year of intervention
- `nomparc`: Plot/field name
- `surfparc`: Plot surface area (hectares)
- `libelleusag`: Crop type/usage
- `datedebut`/`datefin`: Intervention start/end dates
- `libevenem`: Intervention type
- `familleprod`: Product family (herbicides, fungicides, etc.)
- `produit`: Specific product used
- `quantitetot`: Total quantity applied
- `unite`: Unit of measurement

### Derived Fields
- `year`: Intervention year
- `crop_type`: Standardized crop classification
- `is_herbicide`: Boolean flag for herbicide treatments
- `ift_herbicide`: Treatment Frequency Index calculation

## Data Quality

- All personal identifying information has been removed
- Geographic coordinates are generalized to protect farm location
- Product codes (AMM) are preserved for regulatory analysis
- Missing values are clearly marked and documented

## Methodology

### IFT Calculation
The Treatment Frequency Index (IFT) is calculated as:
```
IFT = Number of applications / Plot surface area
```

This metric is crucial for:
- Regulatory compliance monitoring
- Sustainable practice assessment  
- Risk evaluation for sensitive crops

## Applications

### 1. Weed Pressure Prediction
Use machine learning models to predict future IFT values based on:
- Historical treatment patterns
- Crop rotation sequences
- Environmental factors
- Plot characteristics

### 2. Sustainable Plot Selection
Identify plots suitable for sensitive crops (peas, beans) by:
- Analyzing historical IFT trends
- Evaluating rotation impacts
- Assessing risk levels

### 3. Alternative Strategy Development
Support herbicide reduction strategies through:
- Product usage pattern analysis
- Rotation optimization recommendations
- Risk assessment frameworks

## Citation

If you use this dataset in your research, please cite:

```
@dataset{hackathon_cra_2024,
  title={Station Expérimentale de Kerguéhennec Agricultural Interventions Dataset},
  author={Hackathon CRA Team},
  year={2024},
  publisher={Hugging Face},
  url={https://huggingface.co/datasets/HackathonCRA/2024}
}
```

## License

This dataset is released under CC-BY-4.0 license, allowing for both commercial and research use with proper attribution.

## Contact

For questions about this dataset or collaboration opportunities, please contact the research team through the Hugging Face dataset page.

---

**Keywords**: agriculture, herbicides, crop rotation, sustainable farming, France, Brittany, IFT, weed management, precision agriculture
"""
        return card_content
    
    def upload_app_space(self, local_app_path: str, space_name: str = "agricultural-analysis") -> str:
        """Upload the Gradio app as a Hugging Face Space."""
        if not self.token:
            raise ValueError("HF_TOKEN required for uploading")
        
        repo_id = f"{self.api.whoami()['name']}/{space_name}"
        
        # Create Space repository
        try:
            create_repo(
                repo_id=repo_id,
                token=self.token,
                repo_type="space",
                space_sdk="gradio",
                private=False,
                exist_ok=True
            )
        except Exception as e:
            print(f"Space might already exist: {e}")
        
        # Upload files
        app_files = [
            "app.py",
            "requirements.txt", 
            "gradio_app.py",
            "data_loader.py",
            "analysis_tools.py",
            "mcp_server.py",
            "README.md"
        ]
        
        for file_name in app_files:
            file_path = Path(local_app_path) / file_name
            if file_path.exists():
                upload_file(
                    path_or_fileobj=str(file_path),
                    path_in_repo=file_name,
                    repo_id=repo_id,
                    repo_type="space",
                    token=self.token
                )
                print(f"Uploaded {file_name}")
        
        return f"Space created at https://huggingface.co/spaces/{repo_id}"
    
    def create_space_readme(self) -> str:
        """Create README for Hugging Face Space."""
        readme_content = """
---
title: Agricultural Analysis - Kerguéhennec
emoji: 🚜
colorFrom: green
colorTo: blue
sdk: gradio
sdk_version: 4.0.0
app_file: app.py
pinned: false
license: cc-by-4.0
---

# 🚜 Agricultural Analysis - Station de Kerguéhennec

Outil d'analyse des données agricoles pour l'optimisation des pratiques phytosanitaires et l'identification des parcelles adaptées aux cultures sensibles.

## Fonctionnalités

- 📊 Analyse des données d'interventions agricoles
- 🌿 Évaluation de la pression adventices (IFT)
- 🔮 Prédictions pour les 3 prochaines années
- 🔄 Analyse de l'impact des rotations culturales
- 💊 Étude des herbicides utilisés
- 🎯 Identification des parcelles pour cultures sensibles

## Utilisation

1. Sélectionnez l'onglet correspondant à votre analyse
2. Configurez les filtres selon vos besoins
3. Lancez l'analyse pour obtenir les résultats
4. Explorez les visualisations interactives

## Données

Basé sur les données de la Station Expérimentale de Kerguéhennec (2014-2024).
"""
        return readme_content
    
    def setup_environment_variables(self) -> Dict[str, str]:
        """Setup environment variables for Hugging Face deployment."""
        env_vars = {
            "HF_TOKEN": self.token or "your_hf_token_here",
            "DATASET_ID": self.dataset_id,
            "GRADIO_SERVER_NAME": "0.0.0.0",
            "GRADIO_SERVER_PORT": "7860"
        }
        
        return env_vars

# Usage example
if __name__ == "__main__":
    # Initialize HF integration
    hf = HuggingFaceIntegration()
    
    # Upload dataset (requires HF_TOKEN)
    if hf.token:
        try:
            result = hf.upload_dataset("/Users/tracyandre/Downloads/OneDrive_1_9-17-2025")
            print(result)
        except Exception as e:
            print(f"Dataset upload failed: {e}")
    
    # Create dataset card
    card = hf.create_dataset_card()
    print("Dataset card created")
    
    # Show environment setup
    env_vars = hf.setup_environment_variables()
    print("Environment variables:", env_vars)