Spaces:
Sleeping
Sleeping
File size: 12,408 Bytes
1cc2077 25f445b b90013e dc9c8a6 4826928 df66c51 1cc2077 3e6bf0e a2e6203 1cc2077 3624a97 1cc2077 2781be6 d10decd 72f465f 1cc2077 cdf41df 11d1b83 cdf41df 11d1b83 cdf41df 56d7438 b363799 1cc2077 b972165 7f7ea9c 11d1b83 56d7438 7f7ea9c 72f465f 56d7438 7f7ea9c e1bfbc1 56d7438 7f7ea9c 72f465f 1cc2077 90fcb15 37c0c8d 8cc60a4 b20cd7e c0e572f 56d7438 1cc2077 b90013e 1cc2077 524ef7e 10afd07 c939ef1 508ed01 90fcb15 51bfc88 508ed01 c0e572f 51bfc88 c939ef1 51bfc88 c0e572f 51bfc88 c0e572f 51bfc88 2a5f723 508ed01 51bfc88 6962b8e 761c866 6962b8e 51bfc88 90fcb15 51bfc88 c0e572f 51bfc88 90fcb15 51bfc88 6962b8e ac5cac3 86ba25a 6962b8e 51bfc88 101c8c7 51bfc88 de9c1b0 51bfc88 d167cc2 51bfc88 6962b8e de9c1b0 51bfc88 f24fa7c 51bfc88 de9c1b0 51bfc88 f24fa7c 51bfc88 524ef7e 1cc2077 fe897f2 1cc2077 d280876 b90013e 1cc2077 d280876 1cc2077 b90013e 72f465f 1cc2077 72f465f 1cc2077 c806fef 6323d6b c806fef 72f465f c806fef 72f465f c806fef 1cc2077 6323d6b 72f465f 6323d6b 2d82793 72f465f d280876 1b91391 b601310 1cc2077 d280876 1cc2077 b90013e 1cc2077 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
__all__ = ['block', 'make_clickable_model', 'make_clickable_user', 'get_submissions']
import gradio as gr
import pandas as pd
import re
import os
import json
import yaml
import matplotlib.pyplot as plt
import seaborn as sns
import plotnine as p9
import sys
sys.path.append('./src')
sys.path.append('.')
from src.about import *
from src.saving_utils import *
from src.vis_utils import *
from src.bin.PROBE import run_probe
def add_new_eval(
human_file,
skempi_file,
model_name_textbox: str,
revision_name_textbox: str,
benchmark_types,
similarity_tasks,
function_prediction_aspect,
function_prediction_dataset,
family_prediction_dataset,
save,
):
if any(task in benchmark_types for task in ['similarity', 'family', 'function']) and human_file is None:
gr.Warning("Human representations are required for similarity, family, or function benchmarks!")
return -1
if 'affinity' in benchmark_types and skempi_file is None:
gr.Warning("SKEMPI representations are required for affinity benchmark!")
return -1
processing_info = gr.Info("Your submission is being processed...")
representation_name = model_name_textbox if revision_name_textbox == '' else revision_name_textbox
try:
results = run_probe(benchmark_types, representation_name, human_file, skempi_file, similarity_tasks, function_prediction_aspect, function_prediction_dataset, family_prediction_dataset)
except:
completion_info = gr.Warning("Your submission has not been processed. Please check your representation files!")
return -1
if save:
save_results(representation_name, benchmark_types, results)
completion_info = gr.Info("Your submission has been processed and results are saved!")
else:
completion_info = gr.Info("Your submission has been processed!")
return 0
def refresh_data():
benchmark_types = ["similarity", "function", "family", "affinity", "leaderboard"]
for benchmark_type in benchmark_types:
path = f"/tmp/{benchmark_type}_results.csv"
if os.path.exists(path):
os.remove(path)
benchmark_types.remove("leaderboard")
download_from_hub(benchmark_types)
# Define a function to update metrics based on benchmark type selection
def update_metrics(selected_benchmarks):
updated_metrics = set()
for benchmark in selected_benchmarks:
updated_metrics.update(benchmark_metric_mapping.get(benchmark, []))
return list(updated_metrics)
# Define a function to update the leaderboard
def update_leaderboard(selected_methods, selected_metrics):
updated_df = get_baseline_df(selected_methods, selected_metrics)
return updated_df
block = gr.Blocks()
with block:
gr.Markdown(LEADERBOARD_INTRODUCTION)
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("🏅 PROBE Leaderboard", elem_id="probe-benchmark-tab-table", id=1):
leaderboard = get_baseline_df(None, None) #get baseline leaderboard without filtering
method_names = leaderboard['Method'].unique().tolist()
metric_names = leaderboard.columns.tolist()
metrics_with_method = metric_names.copy()
metric_names.remove('Method') # Remove method_name from the metric options
benchmark_metric_mapping = {
"similarity": [metric for metric in metric_names if metric.startswith('sim_')],
"function": [metric for metric in metric_names if metric.startswith('func')],
"family": [metric for metric in metric_names if metric.startswith('fam_')],
"affinity": [metric for metric in metric_names if metric.startswith('aff_')],
}
# Leaderboard section with method and metric selectors
leaderboard_method_selector = gr.CheckboxGroup(
choices=method_names, label="Select Methods for the Leaderboard", value=method_names, interactive=True
)
benchmark_type_selector = gr.CheckboxGroup(
choices=list(benchmark_metric_mapping.keys()),
label="Select Benchmark Types",
value=None, # Initially select all benchmark types
interactive=True
)
leaderboard_metric_selector = gr.CheckboxGroup(
choices=metric_names, label="Select Metrics for the Leaderboard", value=None, interactive=True
)
# Display the filtered leaderboard
baseline_value = get_baseline_df(method_names, metric_names)
baseline_value = baseline_value.applymap(lambda x: round(x, 4) if isinstance(x, (int, float)) else x) # Round all numeric values to 4 decimal places
baseline_header = ["Method"] + metric_names
baseline_datatype = ['markdown'] + ['number'] * len(metric_names)
with gr.Row(show_progress=True, variant='panel'):
data_component = gr.components.Dataframe(
value=baseline_value,
headers=baseline_header,
type="pandas",
datatype=baseline_datatype,
interactive=False,
visible=True,
)
# Update leaderboard when method/metric selection changes
leaderboard_method_selector.change(
get_baseline_df,
inputs=[leaderboard_method_selector, leaderboard_metric_selector],
outputs=data_component
)
# Update metrics when benchmark type changes
benchmark_type_selector.change(
lambda selected_benchmarks: update_metrics(selected_benchmarks),
inputs=[benchmark_type_selector],
outputs=leaderboard_metric_selector
)
leaderboard_metric_selector.change(
get_baseline_df,
inputs=[leaderboard_method_selector, leaderboard_metric_selector],
outputs=data_component
)
with gr.Row():
gr.Markdown(
"""
## **Below, you can visualize the results displayed in the Leaderboard.**
### Once you choose a benchmark type, the related options for metrics, datasets, and other parameters will become visible. Select the methods and metrics of interest from the options to generate visualizations.
"""
)
# Dropdown for benchmark type
benchmark_type_selector = gr.Dropdown(choices=list(benchmark_specific_metrics.keys()), label="Select Benchmark Type", value=None)
with gr.Row():
# Dynamic selectors
x_metric_selector = gr.Dropdown(choices=[], label="Select X-axis Metric", visible=False)
y_metric_selector = gr.Dropdown(choices=[], label="Select Y-axis Metric", visible=False)
aspect_type_selector = gr.Dropdown(choices=[], label="Select Aspect Type", visible=False)
dataset_selector = gr.Dropdown(choices=[], label="Select Dataset", visible=False)
single_metric_selector = gr.Dropdown(choices=[], label="Select Metric", visible=False)
method_selector = gr.CheckboxGroup(choices=method_names, label="Select methods to visualize", interactive=True, value=method_names)
# Button to draw the plot for the selected benchmark
plot_button = gr.Button("Plot")
with gr.Row(show_progress=True, variant='panel'):
plot_output = gr.Image(label="Plot")
# Update selectors when benchmark type changes
benchmark_type_selector.change(
update_metric_choices,
inputs=[benchmark_type_selector],
outputs=[x_metric_selector, y_metric_selector, aspect_type_selector, dataset_selector, single_metric_selector]
)
plot_button.click(
benchmark_plot,
inputs=[benchmark_type_selector, method_selector, x_metric_selector, y_metric_selector, aspect_type_selector, dataset_selector, single_metric_selector],
outputs=plot_output
)
with gr.TabItem("📝 About", elem_id="probe-benchmark-tab-table", id=2):
with gr.Row():
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
with gr.Row():
gr.Image(
value="./src/data/PROBE_workflow_figure.jpg", # Replace with your image file path or URL
label="PROBE Workflow Figure", # Optional label
elem_classes="about-image", # Optional CSS class for styling
)
with gr.TabItem("🚀 Submit here! ", elem_id="probe-benchmark-tab-table", id=3):
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Row():
gr.Markdown("# ✉️✨ Submit your model's representation files here!", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(
label="Method name",
)
revision_name_textbox = gr.Textbox(
label="Revision Method Name",
)
benchmark_types = gr.CheckboxGroup(
choices=TASK_INFO,
label="Benchmark Types",
interactive=True,
)
similarity_tasks = gr.CheckboxGroup(
choices=similarity_tasks_options,
label="Similarity Tasks",
interactive=True,
)
function_prediction_aspect = gr.Radio(
choices=function_prediction_aspect_options,
label="Function Prediction Aspects",
interactive=True,
)
family_prediction_dataset = gr.CheckboxGroup(
choices=family_prediction_dataset_options,
label="Family Prediction Datasets",
interactive=True,
)
function_dataset = gr.Textbox(
label="Function Prediction Datasets",
visible=False,
value="All_Data_Sets"
)
save_checkbox = gr.Checkbox(
label="Save results for leaderboard and visualization",
value=True
)
#with gr.Column():
with gr.Row():
human_file = gr.components.File(label="The representation file (csv) for Human dataset", file_count="single", type='filepath')
skempi_file = gr.components.File(label="The representation file (csv) for SKEMPI dataset", file_count="single", type='filepath')
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
inputs=[
human_file,
skempi_file,
model_name_textbox,
revision_name_textbox,
benchmark_types,
similarity_tasks,
function_prediction_aspect,
function_dataset,
family_prediction_dataset,
save_checkbox,
],
)
with gr.Row():
data_run = gr.Button("Refresh")
data_run.click(refresh_data, outputs=[data_component])
with gr.Accordion("Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
elem_id="citation-button",
show_copy_button=True,
)
block.launch()
|