File size: 11,965 Bytes
1cc2077
 
 
 
 
 
 
25f445b
b90013e
dc9c8a6
4826928
df66c51
 
 
1cc2077
 
3e6bf0e
 
a2e6203
1cc2077
 
 
 
 
 
d10decd
 
 
 
 
1cc2077
 
d10decd
e4eaeef
 
 
 
 
 
 
 
 
 
1cc2077
b20cd7e
 
 
 
1cc2077
 
 
b90013e
 
1cc2077
 
524ef7e
10afd07
 
 
e2f9781
10afd07
 
b20cd7e
 
 
 
10afd07
b20cd7e
 
 
 
 
 
 
e2f9781
b20cd7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1fee397
0b73795
1fee397
 
0b73795
 
 
1fee397
524ef7e
1fee397
524ef7e
 
 
e4eaeef
524ef7e
1fee397
0b73795
524ef7e
0b73795
 
1fee397
 
 
 
0b73795
 
1fee397
0b73795
 
 
 
 
 
 
 
 
 
 
 
 
 
1fee397
0b73795
 
 
1fee397
 
0b73795
 
 
 
 
 
 
 
 
1fee397
 
 
 
 
524ef7e
1fee397
 
0b73795
524ef7e
1fee397
524ef7e
1fee397
0b73795
524ef7e
0b73795
524ef7e
1cc2077
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b90013e
1cc2077
 
 
b90013e
1cc2077
 
 
 
 
c806fef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cc2077
1fee397
1cc2077
9063698
53feeb3
1cc2077
 
 
 
 
b90013e
1cc2077
 
 
 
c806fef
 
 
 
 
1cc2077
 
 
 
b20cd7e
1cc2077
 
 
 
b90013e
1cc2077
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
__all__ = ['block', 'make_clickable_model', 'make_clickable_user', 'get_submissions']

import gradio as gr
import pandas as pd
import re
import os
import json
import yaml
import matplotlib.pyplot as plt
import seaborn as sns
import plotnine as p9
import sys
sys.path.append('./src')
sys.path.append('.')

from src.about import *
from src.saving_utils import *
from src.vis_utils import *
from src.bin.PROBE import run_probe

def add_new_eval(
    human_file,
    skempi_file,
    model_name_textbox: str,
    revision_name_textbox: str,
    benchmark_type,
    similarity_tasks,
    function_prediction_aspect,
    function_prediction_dataset,
    family_prediction_dataset,
):
    representation_name = model_name_textbox if revision_name_textbox == '' else revision_name_textbox
    results = run_probe(benchmark_type, representation_name, human_file, skempi_file, similarity_tasks, function_prediction_aspect, function_prediction_dataset, family_prediction_dataset)

    for benchmark_type in results:
        if benchmark_type == 'similarity':
            save_similarity_output(results['similarity'], representation_name)
        elif benchmark_type == 'function':
            save_function_output(results['function'], representation_name)
        elif benchmark_type == 'family':
            save_family_output(results['family'], representation_name)
        elif benchmark_type == "affinity":
            save_affinity_output(results['affinity', representation_name])

# Function to update leaderboard dynamically based on user selection
def update_leaderboard(selected_methods, selected_metrics):
    return get_baseline_df(selected_methods, selected_metrics)

block = gr.Blocks()

with block:
    gr.Markdown(LEADERBOARD_INTRODUCTION)
    
    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        # table jmmmu bench
        with gr.TabItem("🏅 PROBE Leaderboard", elem_id="probe-benchmark-tab-table", id=1):

            method_names = pd.read_csv(CSV_RESULT_PATH)['method_name'].unique().tolist()
            metric_names = pd.read_csv(CSV_RESULT_PATH).columns.tolist()
            metrics_with_method = metric_names.copy()
            metric_names.remove('method_name')  # Remove method_name from the metric options
        
            # Leaderboard section with method and metric selectors
            with gr.Row():
                # Add method and metric selectors for leaderboard
                leaderboard_method_selector = gr.CheckboxGroup(
                    choices=method_names, label="Select method_names for Leaderboard", value=method_names, interactive=True
                )
                leaderboard_metric_selector = gr.CheckboxGroup(
                    choices=metric_names, label="Select Metrics for Leaderboard", value=metric_names, interactive=True
                )

            # Display the filtered leaderboard
            baseline_value = get_baseline_df(method_names, metric_names)
            baseline_header = ["method_name"] + metric_names
            baseline_datatype = ['markdown'] + ['number'] * len(metric_names)

            data_component = gr.components.Dataframe(
                value=baseline_value,
                headers=baseline_header,
                type="pandas",
                datatype=baseline_datatype,
                interactive=False,
                visible=True,
            )

            # Update leaderboard when method/metric selection changes
            leaderboard_method_selector.change(
                update_leaderboard, 
                inputs=[leaderboard_method_selector, leaderboard_metric_selector], 
                outputs=data_component
            )
            leaderboard_metric_selector.change(
                update_leaderboard, 
                inputs=[leaderboard_method_selector, leaderboard_metric_selector], 
                outputs=data_component
            )

            # Dynamic selectors
            x_metric_selector = gr.Dropdown(choices=[], label="Select X-axis Metric", visible=False)
            y_metric_selector = gr.Dropdown(choices=[], label="Select Y-axis Metric", visible=False)
            aspect_type_selector = gr.Dropdown(choices=[], label="Select Aspect Type", visible=False)
            dataset_type_selector = gr.Dropdown(choices=[], label="Select Dataset Type", visible=False)
            dataset_selector = gr.Dropdown(choices=[], label="Select Dataset", visible=False)
            single_metric_selector = gr.Dropdown(choices=[], label="Select Metric", visible=False)
            
            # CheckboxGroup for methods
            method_selector = gr.CheckboxGroup(choices=method_names, label="Select methods to visualize", interactive=True, value=method_names)
            
            # Button to draw the plot for the selected benchmark
            plot_button = gr.Button("Plot")
            plot_output = gr.Image(label="Plot")
            
            # Update metric selectors based on benchmark type
            def update_metric_choices(benchmark_type):
                if benchmark_type == 'similarity':
                    # Show x and y metric selectors for similarity
                    metric_names = benchmark_specific_metrics.get(benchmark_type, [])
                    return (
                        gr.update(choices=metric_names, value=metric_names[0], visible=True),
                        gr.update(choices=metric_names, value=metric_names[1], visible=True),
                        gr.update(visible=False), gr.update(visible=False), 
                        gr.update(visible=False), gr.update(visible=False)
                    )
                elif benchmark_type == 'function':
                    # Show aspect and dataset type selectors for function
                    aspect_types = benchmark_specific_metrics[benchmark_type]['aspect_types']
                    dataset_types = benchmark_specific_metrics[benchmark_type]['dataset_types']
                    return (
                        gr.update(visible=False), gr.update(visible=False),
                        gr.update(choices=aspect_types, value=aspect_types[0], visible=True),
                        gr.update(choices=dataset_types, value=dataset_types[0], visible=True),
                        gr.update(visible=False), gr.update(visible=False)
                    )
                elif benchmark_type == 'family':
                    # Show dataset and metric selectors for family
                    datasets = benchmark_specific_metrics[benchmark_type]['datasets']
                    metrics = benchmark_specific_metrics[benchmark_type]['metrics']
                    return (
                        gr.update(visible=False), gr.update(visible=False),
                        gr.update(visible=False), gr.update(visible=False),
                        gr.update(choices=datasets, value=datasets[0], visible=True),
                        gr.update(choices=metrics, value=metrics[0], visible=True)
                    )
                elif benchmark_type == 'affinity':
                    # Show single metric selector for affinity
                    metrics = benchmark_specific_metrics[benchmark_type]
                    return (
                        gr.update(visible=False), gr.update(visible=False),
                        gr.update(visible=False), gr.update(visible=False),
                        gr.update(visible=False), gr.update(choices=metrics, value=metrics[0], visible=True)
                    )
                return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
            
            # Dropdown for benchmark type
            benchmark_type_selector = gr.Dropdown(choices=list(benchmark_specific_metrics.keys()), label="Select Benchmark Type")
            
            # Update selectors when benchmark type changes
            benchmark_type_selector.change(
                update_metric_choices,
                inputs=[benchmark_type_selector],
                outputs=[x_metric_selector, y_metric_selector, aspect_type_selector, dataset_type_selector, dataset_selector, single_metric_selector]
            )
            
            plot_button.click(
                benchmark_plot,
                inputs=[benchmark_type_selector, method_selector, x_metric_selector, y_metric_selector, aspect_type_selector, dataset_type_selector, dataset_selector, single_metric_selector],
                outputs=plot_output
            )
            
        with gr.TabItem("📝 About", elem_id="probe-benchmark-tab-table", id=2):
            with gr.Row():
                gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")

        with gr.TabItem("🚀 Submit here! ", elem_id="probe-benchmark-tab-table", id=3):
            with gr.Row():
                gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")

            with gr.Row():
                gr.Markdown("# ✉️✨ Submit your model's representation files here!", elem_classes="markdown-text")

            with gr.Row():
                with gr.Column():
                    model_name_textbox = gr.Textbox(
                        label="Model name",
                    )
                    revision_name_textbox = gr.Textbox(
                        label="Revision Model Name",
                    )
                    
                    benchmark_type = gr.CheckboxGroup(
                        choices=TASK_INFO,
                        label="Benchmark Type",
                        interactive=True,
                    )
                    similarity_tasks = gr.CheckboxGroup(
                        choices=similarity_tasks_options,
                        label="Select Similarity Tasks",
                        interactive=True,
                    )
                
                    function_prediction_aspect = gr.Radio(
                        choices=function_prediction_aspect_options,
                        label="Select Function Prediction Aspect",
                        interactive=True,
                    )
                
                    family_prediction_dataset = gr.CheckboxGroup(
                        choices=family_prediction_dataset_options,
                        label="Select Family Prediction Dataset",
                        interactive=True,
                    )

                    function_prediction_dataset = "All_Data_Sets"
            with gr.Column():
                human_file = gr.components.File(label="Click to Upload the representation file (csv) for Human dataset", file_count="single", type='filepath')
                skempi_file = gr.components.File(label="Click to Upload the representation file (csv) for SKEMPI dataset", file_count="single", type='filepath')
    
                submit_button = gr.Button("Submit Eval")
                submission_result = gr.Markdown()
                submit_button.click(
                    add_new_eval,
                    inputs=[
                        human_file,
                        skempi_file,
                        model_name_textbox,
                        revision_name_textbox,
                        benchmark_type,
                        similarity_tasks,
                        function_prediction_aspect,
                        function_prediction_dataset,
                        family_prediction_dataset,
                    ],
                )

    def refresh_data():
        value = get_baseline_df(method_names, metric_names)
        return value

    with gr.Row():
        data_run = gr.Button("Refresh")
        data_run.click(refresh_data, outputs=[data_component])

    with gr.Accordion("Citation", open=False):
        citation_button = gr.Textbox(
            value=CITATION_BUTTON_TEXT,
            label=CITATION_BUTTON_LABEL,
            elem_id="citation-button",
            show_copy_button=True,
        )

block.launch()