File size: 12,299 Bytes
b308ad4
 
 
 
 
 
 
 
 
ff25539
 
 
 
 
b308ad4
2534fa7
ff25539
b308ad4
 
3671dd0
 
 
 
 
 
b308ad4
 
 
3671dd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e98d50
7ce6778
3e98d50
7ce6778
 
 
3671dd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e98d50
b308ad4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc454dd
b308ad4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e98d50
3671dd0
 
b308ad4
3671dd0
 
b308ad4
3671dd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e98d50
3671dd0
 
 
 
b308ad4
3e98d50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ce6778
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c822a7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import gradio as gr
import pandas as pd
import re
import os
import json
import yaml
import matplotlib.pyplot as plt
import seaborn as sns
import plotnine as p9
import sys

script_dir = os.path.dirname(os.path.abspath(__file__))
sys.path.append('..')
sys.path.append('.')

from about import *

global data_component, filter_component

def get_baseline_df(selected_methods, selected_metrics):
    df = pd.read_csv(CSV_RESULT_PATH)
    present_columns = ["method_name"] + selected_metrics
    df = df[df['method_name'].isin(selected_methods)][present_columns]
    return df

def get_method_color(method):
    return color_dict.get(method, 'black')  # If method is not in color_dict, use black

def set_colors_and_marks_for_representation_groups(ax):
    for label in ax.get_xticklabels():
        text = label.get_text()
        color = group_color_dict.get(text, 'black')  # Default to black if label not in dict
        label.set_color(color)
        label.set_fontweight('bold')
        
        # Add a caret symbol to specific labels
        if text in {'MUT2VEC', 'PFAM', 'GENE2VEC', 'BERT-PFAM'}:
            label.set_text(f"^ {text}")

def benchmark_plot(benchmark_type, methods_selected, x_metric, y_metric):
    if benchmark_type == 'flexible':
        # Use general visualizer logic
        return general_visualizer_plot(methods_selected, x_metric=x_metric, y_metric=y_metric)
    elif benchmark_type == 'similarity':
        title = f"{x_metric} vs {y_metric}"
        return draw_scatter_plot_similarity(methods_selected, x_metric, y_metric, title)
    elif benchmark_type == 'function':
        return plot_function_results("./data/function_results.csv", x_metric, y_metric, methods_selected)
    elif benchmark_type == 'family':
        return plot_family_results("./data/family_results.csv", methods_selected, x_metric, save_path="./plot_images")
    elif benchmark_type == "affinity":
        return plot_affinity_results("./data/affinity_results.csv", methods_selected, x_metric, save_path="./plot_images")

def general_visualizer(methods_selected, x_metric, y_metric):
    df = pd.read_csv(CSV_RESULT_PATH)
    filtered_df = df[df['method_name'].isin(methods_selected)]

    # Create a Seaborn lineplot with method as hue
    plt.figure(figsize=(10, 8))  # Increase figure size
    sns.lineplot(
        data=filtered_df, 
        x=x_metric, 
        y=y_metric, 
        hue="method_name",  # Different colors for different methods
        marker="o",  # Add markers to the line plot
    )
    
    # Add labels and title
    plt.xlabel(x_metric)
    plt.ylabel(y_metric)
    plt.title(f'{y_metric} vs {x_metric} for selected methods')
    plt.grid(True)
    
    # Save the plot to display it in Gradio
    plot_path = "plot.png"
    plt.savefig(plot_path)
    plt.close()
    
    return plot_path

def plot_similarity_results(methods_selected, x_metric, y_metric, title):
    df = pd.read_csv(CSV_RESULT_PATH)
    # Filter the dataframe based on selected methods
    filtered_df = df[df['method_name'].isin(methods_selected)]

    def get_method_color(method):
        return color_dict.get(method.upper(), 'black')

    # Add a new column to the dataframe for the color
    filtered_df['color'] = filtered_df['method_name'].apply(get_method_color)

    adjust_text_dict = {
        'expand_text': (1.15, 1.4), 'expand_points': (1.15, 1.25), 'expand_objects': (1.05, 1.5),
        'expand_align': (1.05, 1.2), 'autoalign': 'xy', 'va': 'center', 'ha': 'center',
        'force_text': (.0, 1.), 'force_objects': (.0, 1.),
        'lim': 500000, 'precision': 1., 'avoid_points': True, 'avoid_text': True
    }

    # Create the scatter plot using plotnine (ggplot)
    g = (p9.ggplot(data=filtered_df,
                   mapping=p9.aes(x=x_metric,  # Use the selected x_metric
                                  y=y_metric,  # Use the selected y_metric
                                  color='color',  # Use the dynamically generated color
                                  label='method_name'))  # Label each point by the method name
         + p9.geom_point(size=3)  # Add points with no jitter, set point size
         + p9.geom_text(nudge_y=0.02, size=8)  # Add method names as labels, nudge slightly above the points
         + p9.labs(title=title, x=f"{x_metric}", y=f"{y_metric}")  # Dynamic labels for X and Y axes
         + p9.scale_color_identity()  # Use colors directly from the dataframe
         + p9.theme(legend_position='none', 
                    figure_size=(8, 8),  # Set figure size
                    axis_text=p9.element_text(size=10),   
                    axis_title_x=p9.element_text(size=12),
                    axis_title_y=p9.element_text(size=12))
    )

    # Save the plot as an image
    save_path = "./plot_images"  # Ensure this folder exists or adjust the path
    os.makedirs(save_path, exist_ok=True)  # Create directory if it doesn't exist
    filename = os.path.join(save_path, title.replace(" ", "_") + "_Similarity_Scatter.png")
    
    g.save(filename=filename, dpi=400)
    
    return filename

def plot_function_results(file_path, aspect, metric, method_names):
    # Load data
    df = pd.read_csv(file_path)
    
    # Filter for selected methods
    df = df[df['Method'].isin(method_names)]
    
    # Filter columns for specified aspect and metric
    columns_to_plot = [col for col in df.columns if col.startswith(f"{aspect}_") and col.endswith(f"_{metric}")]
    df = df[['Method'] + columns_to_plot]
    df.set_index('Method', inplace=True)
    
    # Create clustermap
    g = sns.clustermap(df, annot=True, cmap="YlGnBu", row_cluster=False, col_cluster=False, figsize=(15, 15))
    
    # Get heatmap axis and customize labels
    ax = g.ax_heatmap
    ax.set_xlabel("")
    ax.set_ylabel("")
    
    # Apply color and caret adjustments to x-axis labels
    set_colors_and_marks_for_representation_groups(ax)

    # Save the plot as an image
    save_path = "./plot_images"  # Ensure this folder exists or adjust the path
    os.makedirs(save_path, exist_ok=True)  # Create directory if it doesn't exist
    filename = os.path.join(save_path, f"{aspect}_{metric}_heatmap.png")
    plt.savefig(filename, dpi=400, bbox_inches='tight')
    plt.close()  # Close the plot to free memory
    
    return filename

def plot_family_results(file_path, method_names, metric, save_path="./plot_images"):
    # Load data
    df = pd.read_csv(file_path)
    
    # Filter by method names and selected metric columns
    df = df[df['Method'].isin(method_names)]
    metric_columns = [col for col in df.columns if col.startswith(f"{metric}_")]
    
    # Check if there are columns matching the selected metric
    if not metric_columns:
        print(f"No columns found for metric '{metric}'.")
        return None
    
    # Reshape data for plotting
    df_long = pd.melt(df[['Method'] + metric_columns], id_vars=['Method'], var_name='Fold', value_name='Value')
    df_long['Fold'] = df_long['Fold'].apply(lambda x: int(x.split('_')[-1]))  # Extract fold index

    # Set up the plot
    sns.set(rc={'figure.figsize': (13.7, 18.27)})
    sns.set_theme(style="whitegrid", color_codes=True)
    ax = sns.boxplot(data=df_long, x='Value', y='Method', hue='Fold', whis=np.inf, orient="h")
    
    # Customize x-axis and y-axis tickers and grid
    ax.xaxis.set_major_locator(ticker.MultipleLocator(0.2))
    ax.get_xaxis().set_minor_locator(ticker.AutoMinorLocator())
    ax.get_yaxis().set_minor_locator(ticker.AutoMinorLocator())
    ax.grid(b=True, which='major', color='gainsboro', linewidth=1.0)
    ax.grid(b=True, which='minor', color='whitesmoke', linewidth=0.5)
    ax.set_xlim(0, 1)

    # Draw dashed lines between different representations on y-axis
    yticks = ax.get_yticks()
    for ytick in yticks:
        ax.hlines(ytick + 0.5, -0.1, 1, linestyles='dashed')

    # Apply color settings to y-axis labels
    set_colors_and_marks_for_representation_groups(ax)
    
    # Ensure save directory exists
    os.makedirs(save_path, exist_ok=True)
    
    # Save the plot
    filename = os.path.join(save_path, f"{metric}_family_results.png")
    ax.get_figure().savefig(filename, dpi=400, bbox_inches='tight')
    plt.close()  # Close the plot to free memory

    return filename

def plot_affinity_results(file_path, method_names, metric, save_path="./plot_images"):
    # Load the CSV data
    df = pd.read_csv(file_path)
    
    # Filter for selected methods
    df = df[df['Method'].isin(method_names)]
    
    # Gather columns related to the specified metric and validate
    metric_columns = [col for col in df.columns if col.startswith(f"{metric}_")]
    if not metric_columns:
        print(f"No columns found for metric '{metric}'.")
        return None
    
    # Reshape data for plotting
    df_long = pd.melt(df[['Method'] + metric_columns], id_vars=['Method'], var_name='Fold', value_name='Value')
    df_long['Fold'] = df_long['Fold'].apply(lambda x: int(x.split('_')[-1]))  # Extract fold index for sorting

    # Set up the plot
    sns.set(rc={'figure.figsize': (13.7, 8.27)})
    sns.set_theme(style="whitegrid", color_codes=True)

    # Create a boxplot for the metric
    ax = sns.boxplot(data=df_long, x='Value', y='Method', hue='Fold', whis=np.inf, orient="h")
    
    # Customize x-axis and y-axis tickers and grid
    ax.xaxis.set_major_locator(ticker.MultipleLocator(5))
    ax.get_xaxis().set_minor_locator(mpl.ticker.AutoMinorLocator())
    ax.get_yaxis().set_minor_locator(mpl.ticker.AutoMinorLocator())
    ax.grid(b=True, which='major', color='gainsboro', linewidth=1.0)
    ax.grid(b=True, which='minor', color='whitesmoke', linewidth=0.5)

    # Apply custom color settings to y-axis labels
    set_colors_and_marks_for_representation_groups(ax)

    # Ensure save path exists
    os.makedirs(save_path, exist_ok=True)

    # Save the plot
    filename = os.path.join(save_path, f"{metric}_affinity_results.png")
    ax.get_figure().savefig(filename, dpi=400, bbox_inches='tight')
    plt.close()  # Close the plot to free memory

    return filename

def update_metric_choices(benchmark_type):
    if benchmark_type == 'similarity':
        # Show x and y metric selectors for similarity
        metric_names = benchmark_specific_metrics.get(benchmark_type, [])
        return (
            gr.update(choices=metric_names, value=metric_names[0], visible=True),
            gr.update(choices=metric_names, value=metric_names[1], visible=True),
            gr.update(visible=False), gr.update(visible=False), 
            gr.update(visible=False), gr.update(visible=False)
        )
    elif benchmark_type == 'function':
        # Show aspect and dataset type selectors for function
        aspect_types = benchmark_specific_metrics[benchmark_type]['aspect_types']
        dataset_types = benchmark_specific_metrics[benchmark_type]['dataset_types']
        return (
            gr.update(visible=False), gr.update(visible=False),
            gr.update(choices=aspect_types, value=aspect_types[0], visible=True),
            gr.update(choices=dataset_types, value=dataset_types[0], visible=True),
            gr.update(visible=False), gr.update(visible=False)
        )
    elif benchmark_type == 'family':
        # Show dataset and metric selectors for family
        datasets = benchmark_specific_metrics[benchmark_type]['datasets']
        metrics = benchmark_specific_metrics[benchmark_type]['metrics']
        return (
            gr.update(visible=False), gr.update(visible=False),
            gr.update(visible=False), gr.update(visible=False),
            gr.update(choices=datasets, value=datasets[0], visible=True),
            gr.update(choices=metrics, value=metrics[0], visible=True)
        )
    elif benchmark_type == 'affinity':
        # Show single metric selector for affinity
        metrics = benchmark_specific_metrics[benchmark_type]
        return (
            gr.update(visible=False), gr.update(visible=False),
            gr.update(visible=False), gr.update(visible=False),
            gr.update(visible=False), gr.update(choices=metrics, value=metrics[0], visible=True)
        )
        
    return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)