File size: 9,813 Bytes
1cc2077
 
 
 
 
 
 
25f445b
b90013e
dc9c8a6
4826928
df66c51
 
 
1cc2077
 
3e6bf0e
 
a2e6203
1cc2077
 
 
 
 
 
d10decd
 
 
 
 
1cc2077
 
d10decd
d488d89
b694a77
e4eaeef
 
 
 
 
 
 
 
 
 
1cc2077
b20cd7e
 
 
 
1cc2077
 
 
b90013e
 
1cc2077
 
524ef7e
10afd07
b4cc46c
51bfc88
 
 
 
 
 
 
6962b8e
51bfc88
 
 
 
 
 
 
 
 
 
6962b8e
761c866
 
 
 
 
 
 
 
6962b8e
51bfc88
 
 
 
 
 
 
 
 
 
 
 
6962b8e
 
 
ac5cac3
86ba25a
6962b8e
 
 
51bfc88
 
 
 
 
 
 
 
 
 
 
 
de9c1b0
51bfc88
d167cc2
51bfc88
6962b8e
 
 
de9c1b0
51bfc88
 
 
 
 
 
de9c1b0
51bfc88
 
 
 
 
524ef7e
1cc2077
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b90013e
1cc2077
 
 
b90013e
1cc2077
 
 
 
 
c806fef
 
6323d6b
c806fef
 
 
 
 
6323d6b
c806fef
 
 
 
 
6323d6b
c806fef
 
1cc2077
3c41702
6323d6b
 
 
 
 
2d82793
1cc2077
9063698
53feeb3
1cc2077
 
 
 
 
b90013e
1cc2077
 
 
 
c806fef
 
 
2d82793
c806fef
1cc2077
 
 
 
b20cd7e
1cc2077
 
 
 
b90013e
1cc2077
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
__all__ = ['block', 'make_clickable_model', 'make_clickable_user', 'get_submissions']

import gradio as gr
import pandas as pd
import re
import os
import json
import yaml
import matplotlib.pyplot as plt
import seaborn as sns
import plotnine as p9
import sys
sys.path.append('./src')
sys.path.append('.')

from src.about import *
from src.saving_utils import *
from src.vis_utils import *
from src.bin.PROBE import run_probe

def add_new_eval(
    human_file,
    skempi_file,
    model_name_textbox: str,
    revision_name_textbox: str,
    benchmark_type,
    similarity_tasks,
    function_prediction_aspect,
    function_prediction_dataset,
    family_prediction_dataset,
):
    representation_name = model_name_textbox if revision_name_textbox == '' else revision_name_textbox
    results = run_probe(benchmark_type, representation_name, human_file, skempi_file, similarity_tasks, function_prediction_aspect, function_prediction_dataset, family_prediction_dataset)
    print(results)
    return results

    for benchmark_type in results:
        if benchmark_type == 'similarity':
            save_similarity_output(results['similarity'], representation_name)
        elif benchmark_type == 'function':
            save_function_output(results['function'], representation_name)
        elif benchmark_type == 'family':
            save_family_output(results['family'], representation_name)
        elif benchmark_type == "affinity":
            save_affinity_output(results['affinity', representation_name])

# Function to update leaderboard dynamically based on user selection
def update_leaderboard(selected_methods, selected_metrics):
    return get_baseline_df(selected_methods, selected_metrics)

block = gr.Blocks()

with block:
    gr.Markdown(LEADERBOARD_INTRODUCTION)
    
    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        # table jmmmu bench
        with gr.TabItem("🏅 PROBE Leaderboard", elem_id="probe-benchmark-tab-table", id=1):


            method_names = pd.read_csv(CSV_RESULT_PATH)['method_name'].unique().tolist()
            metric_names = pd.read_csv(CSV_RESULT_PATH).columns.tolist()
            metrics_with_method = metric_names.copy()
            metric_names.remove('method_name')  # Remove method_name from the metric options
            
            # Leaderboard section with method and metric selectors
            leaderboard_method_selector = gr.CheckboxGroup(
                choices=method_names, label="Select Methods for Leaderboard", value=method_names, interactive=True
            )
            leaderboard_metric_selector = gr.CheckboxGroup(
                choices=metric_names, label="Select Metrics for Leaderboard", value=metric_names, interactive=True
            )

            # Display the filtered leaderboard
            baseline_value = get_baseline_df(method_names, metric_names)
            baseline_header = ["method_name"] + metric_names
            baseline_datatype = ['markdown'] + ['number'] * len(metric_names)

            with gr.Row(show_progress=True, variant='panel'):
                data_component = gr.components.Dataframe(
                    value=baseline_value,
                    headers=baseline_header,
                    type="pandas",
                    datatype=baseline_datatype,
                    interactive=False,
                    visible=True,
                )

            # Update leaderboard when method/metric selection changes
            leaderboard_method_selector.change(
                update_leaderboard, 
                inputs=[leaderboard_method_selector, leaderboard_metric_selector], 
                outputs=data_component
            )
            leaderboard_metric_selector.change(
                update_leaderboard, 
                inputs=[leaderboard_method_selector, leaderboard_metric_selector], 
                outputs=data_component
            )

            with gr.Row():
                gr.Markdown(
                    """
                    ## **Below, you can visualize the results displayed in the Leaderboard.**
                    ### Once you choose a benchmark type, the related options for metrics, datasets, and other parameters will become visible. Select the methods and metrics of interest from the options to generate visualizations. 
                    """
                )
            
            # Dropdown for benchmark type
            benchmark_type_selector = gr.Dropdown(choices=list(benchmark_specific_metrics.keys()), label="Select Benchmark Type")

            # Dynamic selectors
            x_metric_selector = gr.Dropdown(choices=[], label="Select X-axis Metric", visible=False)
            y_metric_selector = gr.Dropdown(choices=[], label="Select Y-axis Metric", visible=False)
            aspect_type_selector = gr.Dropdown(choices=[], label="Select Aspect Type", visible=False)
            dataset_type_selector = gr.Dropdown(choices=[], label="Select Dataset Type", visible=False)
            dataset_selector = gr.Dropdown(choices=[], label="Select Dataset", visible=False)
            single_metric_selector = gr.Dropdown(choices=[], label="Select Metric", visible=False)

            method_selector = gr.CheckboxGroup(choices=method_names, label="Select methods to visualize", interactive=True, value=method_names)
                
            # Button to draw the plot for the selected benchmark

            plot_button = gr.Button("Plot")

            with gr.Row(show_progress=True, variant='panel'):
                plot_output = gr.Image(label="Plot")
                
            # Update selectors when benchmark type changes
            benchmark_type_selector.change(
                update_metric_choices,
                inputs=[benchmark_type_selector],
                outputs=[x_metric_selector, y_metric_selector, aspect_type_selector, dataset_type_selector, dataset_selector, single_metric_selector]
            )
                
            plot_button.click(
                benchmark_plot,
                inputs=[benchmark_type_selector, method_selector, x_metric_selector, y_metric_selector, aspect_type_selector, dataset_type_selector, dataset_selector, single_metric_selector],
                outputs=plot_output
            )
            
        with gr.TabItem("📝 About", elem_id="probe-benchmark-tab-table", id=2):
            with gr.Row():
                gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")

        with gr.TabItem("🚀 Submit here! ", elem_id="probe-benchmark-tab-table", id=3):
            with gr.Row():
                gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")

            with gr.Row():
                gr.Markdown("# ✉️✨ Submit your model's representation files here!", elem_classes="markdown-text")

            with gr.Row():
                with gr.Column():
                    model_name_textbox = gr.Textbox(
                        label="Model name",
                    )
                    revision_name_textbox = gr.Textbox(
                        label="Revision Model Name",
                    )
                    
                    benchmark_type = gr.CheckboxGroup(
                        choices=TASK_INFO,
                        label="Benchmark Type",
                        interactive=True,
                    )
                    similarity_tasks = gr.CheckboxGroup(
                        choices=similarity_tasks_options,
                        label="Similarity Tasks",
                        interactive=True,
                    )
                
                    function_prediction_aspect = gr.Radio(
                        choices=function_prediction_aspect_options,
                        label="Function Prediction Aspect",
                        interactive=True,
                    )
                
                    family_prediction_dataset = gr.CheckboxGroup(
                        choices=family_prediction_dataset_options,
                        label="Family Prediction Dataset",
                        interactive=True,
                    )


                    function_dataset = gr.Textbox(
                        label="Function Prediction Dataset",
                        visible=False,
                        value="All_Data_Sets"
                    )

            with gr.Column():
                human_file = gr.components.File(label="Click to Upload the representation file (csv) for Human dataset", file_count="single", type='filepath')
                skempi_file = gr.components.File(label="Click to Upload the representation file (csv) for SKEMPI dataset", file_count="single", type='filepath')
    
                submit_button = gr.Button("Submit Eval")
                submission_result = gr.Markdown()
                submit_button.click(
                    add_new_eval,
                    inputs=[
                        human_file,
                        skempi_file,
                        model_name_textbox,
                        revision_name_textbox,
                        benchmark_type,
                        similarity_tasks,
                        function_prediction_aspect,
                        function_dataset,
                        family_prediction_dataset,
                    ],
                )

    def refresh_data():
        value = get_baseline_df(method_names, metric_names)
        return value

    with gr.Row():
        data_run = gr.Button("Refresh")
        data_run.click(refresh_data, outputs=[data_component])

    with gr.Accordion("Citation", open=False):
        citation_button = gr.Textbox(
            value=CITATION_BUTTON_TEXT,
            label=CITATION_BUTTON_LABEL,
            elem_id="citation-button",
            show_copy_button=True,
        )

block.launch()