File size: 10,484 Bytes
5b94380
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import pandas as pd
import os

import sys

script_dir = os.path.dirname(os.path.abspath(__file__))
sys.path.append('..')
sys.path.append('.')

def save_similarity_output(output_dict, method_name, leaderboard_path="./data/leaderboard_results.csv", similarity_path="./data/similarity_results.csv"):
    # Load or initialize the DataFrames
    if os.path.exists(leaderboard_path):
        leaderboard_df = pd.read_csv(leaderboard_path)
    else:
        leaderboard_df = pd.DataFrame()

    if os.path.exists(similarity_path):
        similarity_df = pd.read_csv(similarity_path)
    else:
        similarity_df = pd.DataFrame(columns=['Method'])

    # Check if method exists in similarity results
    if method_name not in similarity_df['Method'].values:
        similarity_df = pd.concat([similarity_df, pd.DataFrame({'Method': [method_name]})], ignore_index=True)
    
    # Initialize storage for averages
    averages = {}

    # Iterate through the output_dict and calculate averages if all aspects (MF, CC, BP) are present
    for dataset in ['sparse', '200', '500']:
        correlation_values = []
        pvalue_values = []

        # Check each aspect within the dataset (MF, BP, CC)
        for aspect in ['MF', 'BP', 'CC']:
            correlation_key = f"{dataset}_{aspect}_correlation"
            pvalue_key = f"{dataset}_{aspect}_pvalue"
            
            # Process correlation if present
            if correlation_key in output_dict:
                correlation_values.append(output_dict[correlation_key])
                similarity_df.at[similarity_df['Method'] == method_name, f"{dataset}_{aspect}_correlation"] = output_dict[correlation_key]
                leaderboard_df.at[0, f"sim_{dataset}_{aspect}_correlation"] = output_dict[correlation_key]
            
            # Process pvalue if present
            if pvalue_key in output_dict:
                pvalue_values.append(output_dict[pvalue_key])
                similarity_df.at[similarity_df['Method'] == method_name, f"{dataset}_{aspect}_pvalue"] = output_dict[pvalue_key]
                leaderboard_df.at[0, f"sim_{dataset}_{aspect}_pvalue"] = output_dict[pvalue_key]

        # Calculate averages if all three aspects (MF, BP, CC) are present
        if len(correlation_values) == 3:
            averages[f"{dataset}_Ave_correlation"] = sum(correlation_values) / 3
            similarity_df.at[similarity_df['Method'] == method_name, f"{dataset}_Ave_correlation"] = averages[f"{dataset}_Ave_correlation"]
            leaderboard_df.at[0, f"sim_{dataset}_Ave_correlation"] = averages[f"{dataset}_Ave_correlation"]

        if len(pvalue_values) == 3:
            averages[f"{dataset}_Ave_pvalue"] = sum(pvalue_values) / 3
            similarity_df.at[similarity_df['Method'] == method_name, f"{dataset}_Ave_pvalue"] = averages[f"{dataset}_Ave_pvalue"]
            leaderboard_df.at[0, f"sim_{dataset}_Ave_pvalue"] = averages[f"{dataset}_Ave_pvalue"]

    # Save the updated DataFrames back to CSV
    leaderboard_df.to_csv(leaderboard_path, index=False)
    similarity_df.to_csv(similarity_path, index=False)

    return 0

def save_function_output(model_output, method_name, func_results_path="./data/function_results.csv", leaderboard_path="./data/leaderboard_results.csv"):
    # Load or initialize the DataFrames
    if os.path.exists(func_results_path):
        func_results_df = pd.read_csv(func_results_path)
    else:
        func_results_df = pd.DataFrame(columns=['Method'])

    if os.path.exists(leaderboard_path):
        leaderboard_df = pd.read_csv(leaderboard_path)
    else:
        leaderboard_df = pd.DataFrame()

    # Ensure the method_name row exists in function results
    if method_name not in func_results_df['Method'].values:
        func_results_df = pd.concat([func_results_df, pd.DataFrame({'Method': [method_name]})], ignore_index=True)
    
    # Storage for averaging in leaderboard results
    metrics_sum = {
        'accuracy': {'BP': [], 'CC': [], 'MF': []},
        'F1': {'BP': [], 'CC': [], 'MF': []},
        'precision': {'BP': [], 'CC': [], 'MF': []},
        'recall': {'BP': [], 'CC': [], 'MF': []}
    }

    # Iterate over each entry in model_output
    for entry in model_output:
        key = entry[0]
        accuracy, f1, precision, recall = entry[1], entry[4], entry[7], entry[10]

        # Parse the key to extract the aspect and datasets
        aspect, dataset1, dataset2 = key.split('_')

        # Save each metric to function_results under its respective column
        func_results_df.at[func_results_df['Method'] == method_name, f"{aspect}_{dataset1}_{dataset2}_accuracy"] = accuracy
        func_results_df.at[func_results_df['Method'] == method_name, f"{aspect}_{dataset1}_{dataset2}_F1"] = f1
        func_results_df.at[func_results_df['Method'] == method_name, f"{aspect}_{dataset1}_{dataset2}_precision"] = precision
        func_results_df.at[func_results_df['Method'] == method_name, f"{aspect}_{dataset1}_{dataset2}_recall"] = recall

        # Add values for leaderboard averaging
        metrics_sum['accuracy'][aspect].append(accuracy)
        metrics_sum['F1'][aspect].append(f1)
        metrics_sum['precision'][aspect].append(precision)
        metrics_sum['recall'][aspect].append(recall)

    # Calculate averages for each aspect and overall (if all aspects have entries)
    for metric in ['accuracy', 'F1', 'precision', 'recall']:
        for aspect in ['BP', 'CC', 'MF']:
            if metrics_sum[metric][aspect]:
                aspect_average = sum(metrics_sum[metric][aspect]) / len(metrics_sum[metric][aspect])
                leaderboard_df.at[0, f"func_{aspect}_{metric}"] = aspect_average

        # Calculate overall average if each aspect has entries
        if all(metrics_sum[metric][aspect] for aspect in ['BP', 'CC', 'MF']):
            overall_average = sum(
                sum(metrics_sum[metric][aspect]) / len(metrics_sum[metric][aspect])
                for aspect in ['BP', 'CC', 'MF']
            ) / 3
            leaderboard_df.at[0, f"func_Ave_{metric}"] = overall_average

    # Save updated DataFrames to CSV
    func_results_df.to_csv(func_results_path, index=False)
    leaderboard_df.to_csv(leaderboard_path, index=False)

    return 0

def save_family_output(model_output, method_name, leaderboard_path="./data/leaderboard_results.csv", family_results_path="./data/family_results.csv"):
    # Load or initialize the DataFrames
    if os.path.exists(leaderboard_path):
        leaderboard_df = pd.read_csv(leaderboard_path)
    else:
        leaderboard_df = pd.DataFrame(columns=['Method'])

    if os.path.exists(family_results_path):
        family_results_df = pd.read_csv(family_results_path)
    else:
        family_results_df = pd.DataFrame(columns=['Method'])

    # Ensure the method_name row exists in the leaderboard results
    if method_name not in leaderboard_df['Method'].values:
        leaderboard_df = pd.concat([leaderboard_df, pd.DataFrame({'Method': [method_name]})], ignore_index=True)
    
    # Ensure the method_name row exists in family results
    if method_name not in family_results_df['Method'].values:
        family_results_df = pd.concat([family_results_df, pd.DataFrame({'Method': [method_name]})], ignore_index=True)

    # Iterate through the datasets and metrics
    for dataset, metrics in model_output.items():
        for metric, values in metrics.items():
            # Calculate the average for each metric in leaderboard results
            avg_value = sum(values) / len(values) if values else None
            leaderboard_df.at[leaderboard_df['Method'] == method_name, f"fam_{dataset}_{metric}_ave"] = avg_value

            # Save each fold result for family results
            for i, value in enumerate(values):
                family_results_df.at[family_results_df['Method'] == method_name, f"{dataset}_{metric}_{i}"] = value

    # Save updated DataFrames to CSV
    leaderboard_df.to_csv(leaderboard_path, index=False)
    family_results_df.to_csv(family_results_path, index=False)

    return leaderboard_df, family_results_df

def save_affinity_output(model_output, method_name, leaderboard_path="./data/leaderboard_results.csv", affinity_results_path="./data/affinity_results.csv"):
    # Load or initialize DataFrames
    if os.path.exists(leaderboard_path):
        leaderboard_df = pd.read_csv(leaderboard_path)
    else:
        leaderboard_df = pd.DataFrame(columns=['Method'])

    if os.path.exists(affinity_results_path):
        affinity_results_df = pd.read_csv(affinity_results_path)
    else:
        affinity_results_df = pd.DataFrame(columns=['Method'])

    # Ensure the method_name row exists in the leaderboard results
    if method_name not in leaderboard_df['Method'].values:
        leaderboard_df = pd.concat([leaderboard_df, pd.DataFrame({'Method': [method_name]})], ignore_index=True)
    
    # Ensure the method_name row exists in affinity results
    if method_name not in affinity_results_df['Method'].values:
        affinity_results_df = pd.concat([affinity_results_df, pd.DataFrame({'Method': [method_name]})], ignore_index=True)

    # Process 'summary' section for leaderboard results
    summary = model_output.get('summary', {})
    if summary:
        leaderboard_df.at[leaderboard_df['Method'] == method_name, 'aff_mse_ave'] = summary.get('val_mse_error')
        leaderboard_df.at[leaderboard_df['Method'] == method_name, 'aff_mae_ave'] = summary.get('val_mae_error')
        leaderboard_df.at[leaderboard_df['Method'] == method_name, 'aff_corr_ave'] = summary.get('validation_corr')

    # Process 'detail' section for affinity results
    detail = model_output.get('detail', {})
    if detail:
        # Save each 10-fold cross-validation result for mse, mae, and corr
        for i in range(10):
            if 'val_mse_errors' in detail:
                affinity_results_df.at[affinity_results_df['Method'] == method_name, f"mse_{i}"] = detail['val_mse_errors'][i]
            if 'val_mae_errors' in detail:
                affinity_results_df.at[affinity_results_df['Method'] == method_name, f"mae_{i}"] = detail['val_mae_errors'][i]
            if 'validation_corrs' in detail:
                affinity_results_df.at[affinity_results_df['Method'] == method_name, f"corr_{i}"] = detail['validation_corrs'][i]

    # Save updated DataFrames to CSV
    leaderboard_df.to_csv(leaderboard_path, index=False)
    affinity_results_df.to_csv(affinity_results_path, index=False)

    return 0