Spaces:
Sleeping
Sleeping
File size: 13,118 Bytes
1cc2077 25f445b b90013e dc9c8a6 4826928 1cc2077 a2e6203 1cc2077 4826928 524ef7e 4826928 a176a73 8bddae0 a176a73 4826928 a176a73 4826928 a176a73 b8fb55c 1224c55 8964eb3 a176a73 96b47ff a176a73 4826928 a176a73 9a3ecc1 a176a73 524ef7e 4826928 524ef7e 4826928 8964eb3 0c329c2 524ef7e b20cd7e 1cc2077 10afd07 1cc2077 524ef7e b90013e ec6bef2 dc9c8a6 ec6bef2 dc9c8a6 b90013e dc9c8a6 b90013e 53feeb3 1cc2077 d10decd 1cc2077 d10decd 1cc2077 b20cd7e 1cc2077 b90013e 1cc2077 524ef7e 10afd07 e2f9781 10afd07 b20cd7e 10afd07 b20cd7e e2f9781 b20cd7e 524ef7e 013f253 524ef7e 363f92a 524ef7e 1cc2077 b90013e 1cc2077 b90013e 1cc2077 c806fef 1cc2077 9063698 53feeb3 1cc2077 b90013e 1cc2077 c806fef 1cc2077 b20cd7e 1cc2077 b90013e 1cc2077 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
__all__ = ['block', 'make_clickable_model', 'make_clickable_user', 'get_submissions']
import gradio as gr
import pandas as pd
import re
import os
import json
import yaml
import matplotlib.pyplot as plt
import seaborn as sns
import plotnine as p9
from src.about import *
from src.bin.PROBE import run_probe
global data_component, filter_component
def get_method_color(method):
return color_dict.get(method, 'black') # If method is not in color_dict, use black
def draw_scatter_plot_similarity(methods_selected, x_metric, y_metric, title):
df = pd.read_csv(CSV_RESULT_PATH)
# Filter the dataframe based on selected methods
filtered_df = df[df['method_name'].isin(methods_selected)]
def get_method_color(method):
return color_dict.get(method.upper(), 'black')
# Add a new column to the dataframe for the color
filtered_df['color'] = filtered_df['method_name'].apply(get_method_color)
adjust_text_dict = {
'expand_text': (1.15, 1.4), 'expand_points': (1.15, 1.25), 'expand_objects': (1.05, 1.5),
'expand_align': (1.05, 1.2), 'autoalign': 'xy', 'va': 'center', 'ha': 'center',
'force_text': (.0, 1.), 'force_objects': (.0, 1.),
'lim': 500000, 'precision': 1., 'avoid_points': True, 'avoid_text': True
}
# Create the scatter plot using plotnine (ggplot)
g = (p9.ggplot(data=filtered_df,
mapping=p9.aes(x=x_metric, # Use the selected x_metric
y=y_metric, # Use the selected y_metric
color='color', # Use the dynamically generated color
label='method_names')) # Label each point by the method name
+ p9.geom_point(size=3) # Add points with no jitter, set point size
+ p9.geom_text(nudge_y=0.02, size=8) # Add method names as labels, nudge slightly above the points
+ p9.labs(title=title, x=f"{x_metric}", y=f"{y_metric}") # Dynamic labels for X and Y axes
+ p9.scale_color_identity() # Use colors directly from the dataframe
+ p9.theme(legend_position='none',
figure_size=(8, 8), # Set figure size
axis_text=p9.element_text(size=10),
axis_title_x=p9.element_text(size=12),
axis_title_y=p9.element_text(size=12))
)
# Save the plot as an image
save_path = "./plot_images" # Ensure this folder exists or adjust the path
os.makedirs(save_path, exist_ok=True) # Create directory if it doesn't exist
filename = os.path.join(save_path, title.replace(" ", "_") + "_Similarity_Scatter.png")
g.save(filename=filename, dpi=400)
return filename
def benchmark_plot(benchmark_type, methods_selected, x_metric, y_metric):
if benchmark_type == 'flexible':
# Use general visualizer logic
return general_visualizer_plot(methods_selected, x_metric=x_metric, y_metric=y_metric)
elif benchmark_type == 'similarity':
title = f"{x_metric} vs {y_metric}"
return draw_scatter_plot_similarity(methods_selected, x_metric, y_metric, title)
elif benchmark_type == 'Benchmark 3':
return benchmark_3_plot(x_metric, y_metric)
elif benchmark_type == 'Benchmark 4':
return benchmark_4_plot(x_metric, y_metric)
else:
return "Invalid benchmark type selected."
def get_baseline_df(selected_methods, selected_metrics):
df = pd.read_csv(CSV_RESULT_PATH)
present_columns = ["method_name"] + selected_metrics
df = df[df['method_name'].isin(selected_methods)][present_columns]
return df
def general_visualizer(methods_selected, x_metric, y_metric):
df = pd.read_csv(CSV_RESULT_PATH)
filtered_df = df[df['method_name'].isin(methods_selected)]
# Create a Seaborn lineplot with method as hue
plt.figure(figsize=(10, 8)) # Increase figure size
sns.lineplot(
data=filtered_df,
x=x_metric,
y=y_metric,
hue="method_name", # Different colors for different methods
marker="o", # Add markers to the line plot
)
# Add labels and title
plt.xlabel(x_metric)
plt.ylabel(y_metric)
plt.title(f'{y_metric} vs {x_metric} for selected methods')
plt.grid(True)
# Save the plot to display it in Gradio
plot_path = "plot.png"
plt.savefig(plot_path)
plt.close()
return plot_path
def add_new_eval(
human_file,
skempi_file,
model_name_textbox: str,
revision_name_textbox: str,
benchmark_type,
similarity_tasks,
function_prediction_aspect,
function_prediction_dataset,
family_prediction_dataset,
):
representation_name = model_name_textbox if revision_name_textbox == '' else revision_name_textbox
results = run_probe(benchmark_type, representation_name, human_file, skempi_file, similarity_tasks, function_prediction_aspect, function_prediction_dataset, family_prediction_dataset)
return None
# Function to update leaderboard dynamically based on user selection
def update_leaderboard(selected_methods, selected_metrics):
return get_baseline_df(selected_methods, selected_metrics)
block = gr.Blocks()
with block:
gr.Markdown(LEADERBOARD_INTRODUCTION)
with gr.Tabs(elem_classes="tab-buttons") as tabs:
# table jmmmu bench
with gr.TabItem("🏅 PROBE Leaderboard", elem_id="probe-benchmark-tab-table", id=1):
method_names = pd.read_csv(CSV_RESULT_PATH)['method_name'].unique().tolist()
metric_names = pd.read_csv(CSV_RESULT_PATH).columns.tolist()
metrics_with_method = metric_names.copy()
metric_names.remove('method_name') # Remove method_name from the metric options
# Leaderboard section with method and metric selectors
with gr.Row():
# Add method and metric selectors for leaderboard
leaderboard_method_selector = gr.CheckboxGroup(
choices=method_names, label="Select method_names for Leaderboard", value=method_names, interactive=True
)
leaderboard_metric_selector = gr.CheckboxGroup(
choices=metric_names, label="Select Metrics for Leaderboard", value=metric_names, interactive=True
)
# Display the filtered leaderboard
baseline_value = get_baseline_df(method_names, metric_names)
baseline_header = ["method_name"] + metric_names
baseline_datatype = ['markdown'] + ['number'] * len(metric_names)
data_component = gr.components.Dataframe(
value=baseline_value,
headers=baseline_header,
type="pandas",
datatype=baseline_datatype,
interactive=False,
visible=True,
)
# Update leaderboard when method/metric selection changes
leaderboard_method_selector.change(
update_leaderboard,
inputs=[leaderboard_method_selector, leaderboard_metric_selector],
outputs=data_component
)
leaderboard_metric_selector.change(
update_leaderboard,
inputs=[leaderboard_method_selector, leaderboard_metric_selector],
outputs=data_component
)
# Dropdown for benchmark type
benchmark_types = TASK_INFO + ['flexible']
benchmark_type_selector = gr.Dropdown(choices=benchmark_types, label="Select Benchmark Type for Visualization", value="flexible")
# Dynamic metric selectors (will be updated based on benchmark type)
x_metric_selector = gr.Dropdown(choices=[], label="Select X-axis Metric")
y_metric_selector = gr.Dropdown(choices=[], label="Select Y-axis Metric")
method_selector = gr.CheckboxGroup(choices=method_names, label="Select methods to visualize", interactive=True, value=method_names)
# Button to draw the plot for the selected benchmark
plot_button = gr.Button("Plot Visualization")
plot_output = gr.Image(label="Plot")
# Update metric selectors when benchmark type is chosen
def update_metric_choices(benchmark_type):
if benchmark_type == 'flexible':
# Show all metrics for the flexible visualizer
metric_names = df.columns.tolist()
return gr.update(choices=metric_names, value=metric_names[0]), gr.update(choices=metric_names, value=metric_names[1])
elif benchmark_type in benchmark_specific_metrics:
metrics = benchmark_specific_metrics[benchmark_type]
return gr.update(choices=metrics, value=metrics[0]), gr.update(choices=metrics)
return gr.update(choices=[]), gr.update(choices=[])
benchmark_type_selector.change(
update_metric_choices,
inputs=[benchmark_type_selector],
outputs=[x_metric_selector, y_metric_selector]
)
# Generate the plot based on user input
plot_button.click(
benchmark_plot,
inputs=[benchmark_type_selector, method_selector, x_metric_selector, y_metric_selector],
outputs=plot_output
)
with gr.TabItem("📝 About", elem_id="probe-benchmark-tab-table", id=2):
with gr.Row():
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
with gr.TabItem("🚀 Submit here! ", elem_id="probe-benchmark-tab-table", id=3):
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Row():
gr.Markdown("# ✉️✨ Submit your model's representation files here!", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(
label="Model name",
)
revision_name_textbox = gr.Textbox(
label="Revision Model Name",
)
benchmark_type = gr.CheckboxGroup(
choices=TASK_INFO,
label="Benchmark Type",
interactive=True,
)
similarity_tasks = gr.CheckboxGroup(
choices=similarity_tasks_options,
label="Select Similarity Tasks",
interactive=True,
)
function_prediction_aspect = gr.Radio(
choices=function_prediction_aspect_options,
label="Select Function Prediction Aspect",
interactive=True,
)
function_prediction_dataset = gr.Radio(
choices=function_prediction_dataset_options,
label="Select Function Prediction Dataset",
interactive=True,
)
family_prediction_dataset = gr.CheckboxGroup(
choices=family_prediction_dataset_options,
label="Select Family Prediction Dataset",
interactive=True,
)
with gr.Column():
human_file = gr.components.File(label="Click to Upload the representation file (csv) for Human dataset", file_count="single", type='filepath')
skempi_file = gr.components.File(label="Click to Upload the representation file (csv) for SKEMPI dataset", file_count="single", type='filepath')
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
inputs=[
human_file,
skempi_file,
model_name_textbox,
revision_name_textbox,
benchmark_type,
similarity_tasks,
function_prediction_aspect,
function_prediction_dataset,
family_prediction_dataset,
],
)
def refresh_data():
value = get_baseline_df(method_names, metric_names)
return value
with gr.Row():
data_run = gr.Button("Refresh")
data_run.click(refresh_data, outputs=[data_component])
with gr.Accordion("Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
elem_id="citation-button",
show_copy_button=True,
)
block.launch()
|