Spaces:
Runtime error
Runtime error
File size: 12,246 Bytes
8279c69 e55a2c8 8279c69 e55a2c8 8279c69 e55a2c8 8279c69 e55a2c8 8279c69 e55a2c8 8279c69 e55a2c8 8279c69 e55a2c8 8279c69 e55a2c8 8279c69 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 |
import pickle
import numpy as np
import torch
from rdkit import Chem
from torch_geometric.data import (Data, InMemoryDataset)
import os.path as osp
from tqdm import tqdm
import re
from rdkit import RDLogger
import pandas as pd
RDLogger.DisableLog('rdApp.*')
class DruggenDataset(InMemoryDataset):
def __init__(self, root, dataset_file, raw_files, max_atom, features, transform=None, pre_transform=None, pre_filter=None):
self.dataset_name = dataset_file.split(".")[0]
self.dataset_file = dataset_file
self.raw_files = raw_files
self.max_atom = max_atom
self.features = features
super().__init__(root, transform, pre_transform, pre_filter)
path = osp.join(self.processed_dir, dataset_file)
self.data, self.slices = torch.load(path)
self.root = root
@property
def processed_dir(self):
return self.root
@property
def raw_file_names(self):
return self.raw_files
@property
def processed_file_names(self):
return self.dataset_file
def _generate_encoders_decoders(self, data):
self.data = data
print('Creating atoms and bonds encoder and decoder..')
atom_labels = set()
bond_labels = set()
max_length = 0
smiles_list = []
for smiles in tqdm(data):
mol = Chem.MolFromSmiles(smiles)
molecule_size = mol.GetNumAtoms()
if molecule_size > self.max_atom:
continue
smiles_list.append(smiles)
atom_labels.update([atom.GetAtomicNum() for atom in mol.GetAtoms()])
max_length = max(max_length, molecule_size)
bond_labels.update([bond.GetBondType() for bond in mol.GetBonds()])
atom_labels.update([0]) # add PAD symbol (for unknown atoms)
atom_labels = sorted(atom_labels) # turn set into list and sort it
bond_labels = sorted(bond_labels)
bond_labels = [Chem.rdchem.BondType.ZERO] + bond_labels
# atom_labels = sorted(set([atom.GetAtomicNum() for mol in self.data for atom in mol.GetAtoms()] + [0]))
self.atom_encoder_m = {l: i for i, l in enumerate(atom_labels)}
self.atom_decoder_m = {i: l for i, l in enumerate(atom_labels)}
self.atom_num_types = len(atom_labels)
print('Created atoms encoder and decoder with {} atom types and 1 PAD symbol!'.format(
self.atom_num_types - 1))
print("atom_labels", atom_labels)
# print('Creating bonds encoder and decoder..')
# bond_labels = [Chem.rdchem.BondType.ZERO] + list(sorted(set(bond.GetBondType()
# for mol in self.data
# for bond in mol.GetBonds())))
# bond_labels = [
# Chem.rdchem.BondType.ZERO,
# Chem.rdchem.BondType.SINGLE,
# Chem.rdchem.BondType.DOUBLE,
# Chem.rdchem.BondType.TRIPLE,
# Chem.rdchem.BondType.AROMATIC,
# ]
print("bond labels", bond_labels)
self.bond_encoder_m = {l: i for i, l in enumerate(bond_labels)}
self.bond_decoder_m = {i: l for i, l in enumerate(bond_labels)}
self.bond_num_types = len(bond_labels)
print('Created bonds encoder and decoder with {} bond types and 1 PAD symbol!'.format(
self.bond_num_types - 1))
#dataset_names = str(self.dataset_name)
with open("data/encoders/" +"atom_" + self.dataset_name + ".pkl","wb") as atom_encoders:
pickle.dump(self.atom_encoder_m,atom_encoders)
with open("data/decoders/" +"atom_" + self.dataset_name + ".pkl","wb") as atom_decoders:
pickle.dump(self.atom_decoder_m,atom_decoders)
with open("data/encoders/" +"bond_" + self.dataset_name + ".pkl","wb") as bond_encoders:
pickle.dump(self.bond_encoder_m,bond_encoders)
with open("data/decoders/" +"bond_" + self.dataset_name + ".pkl","wb") as bond_decoders:
pickle.dump(self.bond_decoder_m,bond_decoders)
return max_length, smiles_list # data is filtered now
def _genA(self, mol, connected=True, max_length=None):
max_length = max_length if max_length is not None else mol.GetNumAtoms()
A = np.zeros(shape=(max_length, max_length))
begin, end = [b.GetBeginAtomIdx() for b in mol.GetBonds()], [b.GetEndAtomIdx() for b in mol.GetBonds()]
bond_type = [self.bond_encoder_m[b.GetBondType()] for b in mol.GetBonds()]
A[begin, end] = bond_type
A[end, begin] = bond_type
degree = np.sum(A[:mol.GetNumAtoms(), :mol.GetNumAtoms()], axis=-1)
return A if connected and (degree > 0).all() else None
def _genX(self, mol, max_length=None):
max_length = max_length if max_length is not None else mol.GetNumAtoms()
return np.array([self.atom_encoder_m[atom.GetAtomicNum()] for atom in mol.GetAtoms()] + [0] * (
max_length - mol.GetNumAtoms()))
def _genF(self, mol, max_length=None):
max_length = max_length if max_length is not None else mol.GetNumAtoms()
features = np.array([[*[a.GetDegree() == i for i in range(5)],
*[a.GetExplicitValence() == i for i in range(9)],
*[int(a.GetHybridization()) == i for i in range(1, 7)],
*[a.GetImplicitValence() == i for i in range(9)],
a.GetIsAromatic(),
a.GetNoImplicit(),
*[a.GetNumExplicitHs() == i for i in range(5)],
*[a.GetNumImplicitHs() == i for i in range(5)],
*[a.GetNumRadicalElectrons() == i for i in range(5)],
a.IsInRing(),
*[a.IsInRingSize(i) for i in range(2, 9)]] for a in mol.GetAtoms()], dtype=np.int32)
return np.vstack((features, np.zeros((max_length - features.shape[0], features.shape[1]))))
def decoder_load(self, dictionary_name, file):
with open("data/decoders/" + dictionary_name + "_" + file + '.pkl', 'rb') as f:
return pickle.load(f)
def drugs_decoder_load(self, dictionary_name):
with open("data/decoders/" + dictionary_name +'.pkl', 'rb') as f:
return pickle.load(f)
def matrices2mol(self, node_labels, edge_labels, strict=True, file_name=None):
mol = Chem.RWMol()
RDLogger.DisableLog('rdApp.*')
atom_decoders = self.decoder_load("atom", file_name)
bond_decoders = self.decoder_load("bond", file_name)
for node_label in node_labels:
mol.AddAtom(Chem.Atom(atom_decoders[node_label]))
for start, end in zip(*np.nonzero(edge_labels)):
if start > end:
mol.AddBond(int(start), int(end), bond_decoders[edge_labels[start, end]])
#mol = self.correct_mol(mol)
if strict:
try:
Chem.SanitizeMol(mol)
except:
mol = None
return mol
def drug_decoder_load(self, dictionary_name, file):
''' Loading the atom and bond decoders '''
with open("data/decoders/" + dictionary_name +"_" + file +'.pkl', 'rb') as f:
return pickle.load(f)
def matrices2mol_drugs(self, node_labels, edge_labels, strict=True, file_name=None):
mol = Chem.RWMol()
RDLogger.DisableLog('rdApp.*')
atom_decoders = self.drug_decoder_load("atom", file_name)
bond_decoders = self.drug_decoder_load("bond", file_name)
for node_label in node_labels:
mol.AddAtom(Chem.Atom(atom_decoders[node_label]))
for start, end in zip(*np.nonzero(edge_labels)):
if start > end:
mol.AddBond(int(start), int(end), bond_decoders[edge_labels[start, end]])
#mol = self.correct_mol(mol)
if strict:
try:
Chem.SanitizeMol(mol)
except:
mol = None
return mol
def check_valency(self,mol):
"""
Checks that no atoms in the mol have exceeded their possible
valency
:return: True if no valency issues, False otherwise
"""
try:
Chem.SanitizeMol(mol, sanitizeOps=Chem.SanitizeFlags.SANITIZE_PROPERTIES)
return True, None
except ValueError as e:
e = str(e)
p = e.find('#')
e_sub = e[p:]
atomid_valence = list(map(int, re.findall(r'\d+', e_sub)))
return False, atomid_valence
def correct_mol(self,x):
xsm = Chem.MolToSmiles(x, isomericSmiles=True)
mol = x
while True:
flag, atomid_valence = self.check_valency(mol)
if flag:
break
else:
assert len (atomid_valence) == 2
idx = atomid_valence[0]
v = atomid_valence[1]
queue = []
for b in mol.GetAtomWithIdx(idx).GetBonds():
queue.append(
(b.GetIdx(), int(b.GetBondType()), b.GetBeginAtomIdx(), b.GetEndAtomIdx())
)
queue.sort(key=lambda tup: tup[1], reverse=True)
if len(queue) > 0:
start = queue[0][2]
end = queue[0][3]
t = queue[0][1] - 1
mol.RemoveBond(start, end)
#if t >= 1:
#mol.AddBond(start, end, self.decoder_load('bond_decoders')[t])
# if '.' in Chem.MolToSmiles(mol, isomericSmiles=True):
# mol.AddBond(start, end, self.decoder_load('bond_decoders')[t])
# print(tt)
# print(Chem.MolToSmiles(mol, isomericSmiles=True))
return mol
def label2onehot(self, labels, dim):
"""Convert label indices to one-hot vectors."""
out = torch.zeros(list(labels.size())+[dim])
out.scatter_(len(out.size())-1,labels.unsqueeze(-1),1.)
return out.float()
def process(self, size= None):
smiles_list = pd.read_csv(self.raw_files, header=None)[0].tolist()
max_length, smiles_list = self._generate_encoders_decoders(smiles_list)
data_list = []
self.m_dim = len(self.atom_decoder_m)
for smiles in tqdm(smiles_list, desc='Processing chembl dataset', total=len(smiles_list)):
mol = Chem.MolFromSmiles(smiles)
A = self._genA(mol, connected=True, max_length=max_length)
if A is not None:
x = torch.from_numpy(self._genX(mol, max_length=max_length)).to(torch.long).view(1, -1)
x = self.label2onehot(x,self.m_dim).squeeze()
if self.features:
f = torch.from_numpy(self._genF(mol, max_length=max_length)).to(torch.long).view(x.shape[0], -1)
x = torch.concat((x,f), dim=-1)
adjacency = torch.from_numpy(A)
edge_index = adjacency.nonzero(as_tuple=False).t().contiguous()
edge_attr = adjacency[edge_index[0], edge_index[1]].to(torch.long)
data = Data(x=x, edge_index=edge_index, edge_attr=edge_attr, smiles=smiles)
if self.pre_filter is not None and not self.pre_filter(data):
continue
if self.pre_transform is not None:
data = self.pre_transform(data)
data_list.append(data)
torch.save(self.collate(data_list), osp.join(self.processed_dir, self.dataset_file))
if __name__ == '__main__':
data = DruggenDataset("data")
|