Spaces:
Running
Running
File size: 6,829 Bytes
c712316 bf55a9d c712316 b83c412 c712316 b83c412 c712316 b83c412 c712316 b83c412 c712316 eac5d9d c712316 e1a890c c712316 b83c412 c712316 b83c412 c712316 effe2a1 c712316 b83c412 c712316 c18585d c712316 b83c412 c712316 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
import streamlit as st
import requests
from io import StringIO
from Bio import SeqIO
import os
import time
import pandas as pd
from run_domain2go_app import *
def convert_df(df):
return df.to_csv(index=False).encode('utf-8')
st.markdown("""
<div style="background-color:#f0f2f6;padding:10px">
<p style="color:#b22d2a;font-size:15px;">Disclaimer</p>
<p style="color:#000000;font-size:14px;">This program is designed to generate predictions for a single protein due to the extended runtime of InterProScan. If you need predictions for multiple UniProtKB/Swiss-Prot proteins, we recommend utilizing our comprehensive protein function prediction dataset available in our <a href="https://github.com/HUBioDataLab/Domain2GO">Github repository</a>.</p>
</div>
""", unsafe_allow_html=True)
domain_tab, pred_tab = st.tabs(['Domains', 'Function predictions'])
with domain_tab:
st.header('Domains in sequence')
with st.sidebar:
st.title("Domain2GO: Mutual Annotation-Based Prediction of Protein Domain Functions")
st.write("[![arXiv](https://img.shields.io/badge/bioRxiv-2022.11.03.514980-b31b1b.svg)](https://www.biorxiv.org/content/10.1101/2022.11.03.514980v1) [![github-repository](https://img.shields.io/badge/GitHub-black?logo=github)](https://github.com/HUBioDataLab/Domain2GO)")
if 'example_seq_button' not in st.session_state:
st.session_state.example_seq_button = False
def click_button():
st.session_state.example_seq_button = not st.session_state.example_seq_button
input_type = st.radio('Select input type', ['Enter sequence', 'Upload FASTA file'])
if input_type == 'Enter sequence':
if st.session_state.example_seq_button:
st.session_state['sequence'] = st.text_area('Enter protein sequence in FASTA format.',
value='>sp|O18783|PLMN_NOTEU\n'
'MEYGKVIFLFLLFLKSGQGESLENYIKTEGASLSNSQKKQFVASSTEECEALCEKETEFVCRSFEHYNKEQKCVIMSENSKTSSVERKRDVVLFEKRIYLSDCKSGNGRNYRGTLSKTKSGITCQKWSDLSPHVPNYAPSKYPDAGLEKNYCRNPDDDVKGPWCYTTNPDIRYEYCDVPECEDECMHCSGENYRGTISKTESGIECQPWDSQEPHSHEYIPSKFPSKDLKENYCRNPDGEPRPWCFTSNPEKRWEFCNIPRCSSPPPPPGPMLQCLKGRGENYRGKIAVTKSGHTCQRWNKQTPHKHNRTPENFPCRGLDENYCRNPDGELEPWCYTTNPDVRQEYCAIPSCGTSSPHTDRVEQSPVIQECYEGKGENYRGTTSTTISGKKCQAWSSMTPHQHKKTPDNFPNADLIRNYCRNPDGDKSPWCYTMDPTVRWEFCNLEKCSGTGSTVLNAQTTRVPSVDTTSHPESDCMYGSGKDYRGKRSTTVTGTLCQAWTAQEPHRHTIFTPDTYPRAGLEENYCRNPDGDPNGPWCYTTNPKKLFDYCDIPQCVSPSSFDCGKPRVEPQKCPGRIVGGCYAQPHSWPWQISLRTRFGEHFCGGTLIAPQWVLTAAHCLERSQWPGAYKVILGLHREVNPESYSQEIGVSRLFKGPLAADIALLKLNRPAAINDKVIPACLPSQDFMVPDRTLCHVTGWGDTQGTSPRGLLKQASLPVIDNRVCNRHEYLNGRVKSTELCAGHLVGRGDSCQGDSGGPLICFEDDKYVLQGVTSWGLGCARPNKPGVYVRVSRYISWIEDVMKNN')
else:
st.session_state['sequence'] = st.text_input('Enter protein sequence in FASTA format.')
st.session_state['name'] = st.session_state['sequence'].split('\n')[0].strip('>')
st.button('Use example sequence', on_click=click_button)
else:
protein_input = st.file_uploader('Choose file')
if protein_input:
protein_input_stringio = StringIO(protein_input.getvalue().decode("utf-8"))
fasta_sequences = SeqIO.parse(protein_input_stringio, 'fasta')
for fasta in fasta_sequences:
st.session_state['name'], st.session_state['sequence'] = fasta.id, str(fasta.seq)
st.session_state['email'] = st.text_input('Enter your email for InterProScan query: ')
# prevent user from clicking 'Find domains' button if email or sequence is empty
domains_submitted = False
if st.button('Find domains'):
if 'email' in st.session_state and 'sequence' in st.session_state:
domains_submitted = True
else:
st.warning('Please enter your email and protein sequence first.')
else:
with domain_tab:
st.warning('Please enter your query and click "Find domains" to see domains in sequence.')
with domain_tab:
no_domains = False
error_in_interproscan = False
if domains_submitted:
with st.spinner('Finding domains in sequence using InterProScan. This may take a while...'):
result = find_domains(st.session_state.email, st.session_state.sequence, st.session_state.name)
result_text = result[0]
if result_text == 'Domains found.':
st.success(result_text + ' You can now see function predictions for the sequence in the "Function predictions" tab.')
st.session_state['domain_df'] = result[1]
elif result_text == 'No domains found.':
st.warning(result_text)
no_domains = True
else:
st.error(result_text)
st.write(f'InterProScan job id: {result[1]}')
st.write(f'InterProScan job response: {result[2]}')
error_in_interproscan = True
if 'domain_df' in st.session_state:
with st.expander('Show domains in sequence'):
st.write(st.session_state.domain_df)
domains_csv = convert_df(st.session_state.domain_df)
st.download_button(
label="Download domains in sequence as CSV",
data=domains_csv,
file_name=f"{st.session_state.name}_domains.csv",
mime="text/csv",
)
with pred_tab:
st.header('Function predictions')
if 'domain_df' not in st.session_state:
if no_domains:
st.warning('No domains found. Please find domains in sequence first.')
elif error_in_interproscan:
st.error('Error in InterProScan. Please check InterProScan job id and response.')
else:
st.warning('Please find domains in sequence first.')
else:
with st.spinner('Generating function predictions...'):
cwd = os.getcwd()
# mapping_path = "{}/Domain2GO/data".format(cwd.split("Domain2GO")[0])
mapping_path = './data'
pred_results = generate_function_predictions(st.session_state.domain_df, mapping_path)
pred_result_text = pred_results[0]
if pred_result_text == 'Function predictions found.':
st.success(pred_result_text)
st.session_state['pred_df'] = pred_results[1]
elif pred_result_text == 'No function predictions found.':
st.warning(pred_result_text)
if 'pred_df' in st.session_state:
with st.expander('Show function predictions'):
st.write(st.session_state.pred_df)
pred_csv = convert_df(st.session_state.pred_df)
st.download_button(
label="Download function predictions as CSV",
data=pred_csv,
file_name=f"{st.session_state.name}_function_predictions.csv",
mime="text/csv",
)
|