File size: 2,996 Bytes
59faeae
56266ec
 
 
 
 
 
 
 
 
 
 
d36a83c
 
56266ec
817f54f
 
56266ec
 
 
d2d2aca
 
56266ec
 
d2d2aca
 
56266ec
 
 
 
d36a83c
56266ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9627035
56266ec
 
 
 
9627035
56266ec
 
 
 
9627035
 
56266ec
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
# import gradio as gr
import tensorflow as tf
import numpy as np
from keras.models import load_model
from tensorflow.keras.preprocessing.text import Tokenizer
import pickle
from tensorflow.keras.preprocessing.sequence import pad_sequences
import os
from pathlib import Path
import pandas as pd
import plotly.express as px

from underthesea import word_tokenize

#Load tokenizer
#fp = Path(__file__).with_name('tokenizer.pkl')
with open('train/tokenizer/tokenizer.pkl',mode="rb") as f:
    tokenizer = pickle.load(f)

#Load LSTM
#fp = Path(__file__).with_name('lstm_model.h5')
LSTM_model = tf.keras.models.load_model('train/model/lstm_model.h5', compile=True)

#Load GRU
#fp = Path(__file__).with_name('gru_model.h5')
GRU_model = load_model('train/model/gru_model.h5')


def tokenizer_pad(tokenizer,comment_text,max_length=200):
   
    comment_text = word_tokenize(comment_text, format="text")
    comment_text = [comment_text]
    tokenized_text = tokenizer.texts_to_sequences(comment_text)

    padded_sequences = pad_sequences(sequences=tokenized_text,maxlen=max_length,padding="post",truncating="post")

    return padded_sequences

def LSTM_predict(x):
    x = tokenizer_pad(tokenizer=tokenizer,comment_text=x)

    pred_proba = LSTM_model.predict(x)[0]

    pred_proba = [round(i,2) for i in pred_proba]

    #print(pred_proba)

    return pred_proba

def GRU_predict(x):
    x = tokenizer_pad(tokenizer=tokenizer,comment_text=x)

    
    pred_proba = GRU_model.predict(x)[0]

    pred_proba = [round(i,2) for i in pred_proba]

    #print(pred_proba)

    return pred_proba

def plot(result):
  label = ['độc hại', 'cực kì độc hại', 'tục tĩu', 'đe dọa', 'xúc phạm', 'thù ghét cá nhân']
  data = pd.DataFrame()
  data['Nhãn'] = label
  data['Điểm'] = result

  #print(data)

  p = px.bar(data, x='Nhãn', y='Điểm', color='Nhãn', range_y=[0, 1] )
  return p
  pass

def judge(x):

  label = ['độc hại', 'cực kì độc hại', 'tục tĩu', 'đe dọa', 'xúc phạm', 'thù ghét cá nhân']
  result = []
  judge_result = []

  lstm_pred = LSTM_predict(x)
  gru_pred = GRU_predict(x)

  #print(result)
  
  return_result = 'Result'
  result_lstm = np.round(lstm_pred, 2)
  result_gru = np.round(gru_pred, 2)
  for i in range(6):
    result.append((result_lstm[i]+result_gru[i])/2)
  
  

  #print(final_result)
  return_result += '\nMô hình LSTM\n'
  return_result += f"{result_lstm}\n"
 

  return_result += '\nMô hình GRU\n'
  return_result += f"{result_gru}\n"

 
  return (result)


# if __name__ == "__main__":
#   #  print("Loading")
#   #  while(True):
#   #   string = input("\nMời nhập văn bản: ")
#   #   os.system('cls')
#   #   print(f"Văn bản đã nhập: {string}")
#   #   judge(string)
#   interface = gr.Interface(fn=judge,
#                          inputs=gr.Textbox(lines=2, placeholder='Please write something', label="Input Text"),
#                         outputs=['text','plot','text'])
#   interface.launch()