File size: 39,140 Bytes
e37f8aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
598cd1c
65056d9
89df8be
65056d9
 
 
 
598cd1c
65056d9
 
 
 
 
e37f8aa
 
 
 
 
 
65056d9
 
e37f8aa
 
 
65056d9
e37f8aa
ddf0f0c
e37f8aa
65056d9
e37f8aa
 
 
 
 
 
 
 
 
13c666d
65056d9
e37f8aa
 
 
b00eddb
 
 
65056d9
 
b00eddb
 
e37f8aa
 
 
a9bbb0b
e37f8aa
 
 
65056d9
e37f8aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
598cd1c
e37f8aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d72b2b9
e37f8aa
d72b2b9
a9bbb0b
d72b2b9
e37f8aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f68ab88
e37f8aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
598cd1c
e37f8aa
 
 
 
 
598cd1c
 
 
 
 
 
6d5f500
 
65056d9
e37f8aa
6d5f500
e37f8aa
 
65056d9
6d5f500
598cd1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d5f500
598cd1c
e37f8aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65056d9
 
 
 
 
 
 
 
a9bbb0b
 
e37f8aa
 
 
 
 
 
65056d9
 
e37f8aa
 
 
 
65056d9
 
 
 
 
 
 
 
 
 
 
 
 
a9bbb0b
65056d9
a9bbb0b
65056d9
 
 
 
 
 
 
a9bbb0b
65056d9
a9bbb0b
e37f8aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
598cd1c
 
 
 
 
 
 
 
 
 
 
 
 
 
e37f8aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
598cd1c
e37f8aa
 
 
 
ddf0f0c
e37f8aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
598cd1c
e37f8aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9bbb0b
e37f8aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9866893
e37f8aa
 
 
 
 
 
6d5f500
 
 
e37f8aa
 
 
 
 
 
 
 
 
 
 
 
 
6d5f500
e37f8aa
6d5f500
 
 
 
 
 
 
e37f8aa
a9bbb0b
e37f8aa
 
 
 
 
 
 
 
65056d9
 
 
 
6d5f500
 
 
65056d9
6d5f500
 
 
 
 
9866893
6d5f500
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e37f8aa
 
 
 
 
 
 
 
 
 
 
6d5f500
a9bbb0b
 
 
 
 
 
e37f8aa
 
65056d9
a9bbb0b
 
 
65056d9
a9bbb0b
 
e37f8aa
 
598cd1c
 
a9bbb0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e37f8aa
 
65056d9
e37f8aa
65056d9
e37f8aa
65056d9
a9bbb0b
65056d9
 
a9bbb0b
65056d9
e37f8aa
65056d9
a9bbb0b
 
e37f8aa
 
 
a9bbb0b
 
 
 
65056d9
a9bbb0b
598cd1c
ddf0f0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
598cd1c
 
 
 
ddf0f0c
 
 
 
 
 
 
 
 
 
 
 
598cd1c
 
ddf0f0c
 
 
 
 
 
 
598cd1c
ddf0f0c
598cd1c
ddf0f0c
 
 
 
 
 
 
 
 
 
 
 
 
598cd1c
ddf0f0c
598cd1c
ddf0f0c
 
 
 
 
 
 
 
 
 
598cd1c
 
ddf0f0c
598cd1c
ddf0f0c
 
598cd1c
 
 
 
e37f8aa
 
 
a9bbb0b
 
 
 
598cd1c
e37f8aa
 
a2e69c2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
import os
import datetime
import glob
import shutil
import requests
import io
import sys
import re
import boto3
from os import listdir
from os.path import isfile, join

import gradio
from sqlitedict import SqliteDict

import gradio as gr

from langchain import PromptTemplate, LLMChain
from langchain.agents import Tool
from langchain.agents import load_tools
from langchain.agents import initialize_agent

from langchain.agents import AgentType

from langchain.chains import LLMMathChain, StuffDocumentsChain
from langchain import SerpAPIWrapper
from langchain.chains import ConversationalRetrievalChain

from langchain.chains.summarize import load_summarize_chain

from langchain.llms import AzureOpenAI
from langchain.chat_models import AzureChatOpenAI

from langchain.embeddings.openai import OpenAIEmbeddings

from langchain.memory import ChatMessageHistory
from langchain.memory import ConversationBufferMemory

from langchain.vectorstores import Chroma

from langchain.text_splitter import CharacterTextSplitter
from langchain.text_splitter import RecursiveCharacterTextSplitter

from langchain.document_loaders import DirectoryLoader, UnstructuredAPIFileLoader
from langchain.document_loaders import UnstructuredFileLoader


import clickhouse_connect
from pathlib import Path

from langchain.document_loaders import YoutubeLoader

from azure_utils import AzureVoiceData
from polly_utils import PollyVoiceData, NEURAL_ENGINE
from contextlib import closing
from langchain_experimental.agents import create_pandas_dataframe_agent
import pandas as pd

#os env
os.environ["OPENAI_API_TYPE"] = "azure"
os.environ["OPENAI_API_VERSION"] = "1106-Preview"
os.environ["OPENAI_API_BASE"] = "https://chairman-azureopenai-australiaeast.openai.azure.com/"
os.environ["OPENAI_API_KEY"] = "ac523b401b664f9e800d43933f0c5df5"
os.environ["SERPAPI_API_KEY"] = "a5b67b8805b4e12b0ae147c9c6b2a7dbf3ab84fca5f24e531b6963b1f7fc1ff7"

global_deployment_id = "gpt-4-1106-preview"
global_model_name = "gpt-4"

#chroma settings
chroma_api_impl = "HH_Azure_Openai"
#root_file_path = "C:\\Users\\catsk\\SourceCode\\azure_openai_poc\\data\\"
root_file_path = "./data/" #其實是data 存放的位置
hr_source_path = "hr_source"
ks_source_path = "ks_source"
believe_source_path = 'be_source'

sqlite_name = "cache.sqlite3"
sqlite_key="stored_files"
persist_db = "persist_db"
hr_collection_name = "hr_db"
chroma_db_impl="localdb+langchain"
tmp_collection="tmp_collection"

#global text setting
inputText = "問題(按q 或Ctrl + c跳出): "
refuse_string="服務被拒. 內容可能涉及敏感字詞,政治,煽動他人或是其他不當言詞, 請改以其他內容嚐試"

#video
LOOPING_TALKING_HEAD = "./data/videos/Masahiro.mp4"
TALKING_HEAD_WIDTH = "192"
AZURE_VOICE_DATA = AzureVoiceData()
POLLY_VOICE_DATA = PollyVoiceData()

prompt_string =""

def save_sqlite(key,value):
    try:
        with SqliteDict(sqlite_name) as mydict:
            old_value = mydict[key]
            mydict[key] = value+old_value  # Using dict[key] to store
            mydict.commit()  # Need to commit() to actually flush the data
    except Exception as ex:
        print("Error during storing data (Possibly unsupported):", ex)

def load_sqlite(key):
    try:
        with SqliteDict(sqlite_name) as mydict:
            value = mydict[key] # No need to use commit(), since we are only loading data!
        return value
    except Exception as ex:
        print("Error during loading data:", ex)

def delete_sql(key):
    try:
        with SqliteDict(sqlite_name) as mydict:
            mydict[key] = []  # Using dict[key] to store
            mydict.commit()  # Need to commit() to actually flush the data
    except Exception as ex:
        print("Error during storing data (Possibly unsupported):", ex)

def ai_answer(answer):
    print('AI 回答: \033[32m' + answer +'\033[0m')

def get_openaiembeddings():
    return OpenAIEmbeddings(
        deployment="text-embedding-ada-002",
        model="text-embedding-ada-002",
        openai_api_base="https://hh-azure-openai-poc.openai.azure.com/",
        openai_api_type="azure",
        openai_api_key = "b3cfb72345be4001a470e827a694d083",
        chunk_size=1
    )

"""
def get_chroma_client():
    chroma_client = chromadb.Client(Settings(chroma_api_impl=chroma_api_impl,
                                             chroma_server_host=chroma_db_ip,
                                             chroma_server_http_port=chroma_db_port
                                             ))
    return chroma_client
"""

def multidocs_loader(files_path, file_ext):
    full_files_pattern = "*." + file_ext
    loader = DirectoryLoader(files_path, glob=full_files_pattern, show_progress=True)
    data = loader.load()
    text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=10)
    documents = text_splitter.split_documents(data)
    return documents

def unstructure_file_loader(filename_path):
    loader = UnstructuredFileLoader(filename_path)
    data = loader.load()
    text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=10)
    documents = text_splitter.split_documents(data)
    return documents

def add_documents_into_cromadb(db_name, file_path, collection_name):
    _db_name = db_name

    documents = multidocs_loader(file_path,"*")
    embeddings = get_openaiembeddings()

    chroma_db = Chroma.from_documents(
        documents,
        embeddings,
        collection_name=collection_name,
        persist_directory=root_file_path+ persist_db,
        #chroma_db_impl=chroma_db_impl
    )

    chroma_db.persist()
    print('adding documents done!')

def initial_croma_db(db_name, files_path, file_ext, collection_name):
    _db_name = db_name

    documents = multidocs_loader(files_path, file_ext)
    embeddings = get_openaiembeddings()

    chroma_db = Chroma.from_documents(
        documents,
        embeddings,
        collection_name = collection_name,
        persist_directory= root_file_path+ persist_db,
        chroma_db_impl=chroma_db_impl
    )

    chroma_db.persist()
    print('vectorstore done!')

def add_files_to_collection(input_file_path, collection_name):
    file_path=root_file_path+input_file_path
    add_documents_into_cromadb(persist_db, file_path, collection_name)

def get_prompt_summary_string():
    _local_prompt_string = """使用中文替下面內容做個精簡摘要:

{text}

精簡摘要:"""

    if prompt_string == "":
        return _local_prompt_string
    else:
        print("prompt_string: "+prompt_string)
        return prompt_string

template_string = """
我是鴻海(等同Foxconn)的員工, 你是一個鴻海的人資專家.
請根據歷史對話,針對這次的問題, 形成獨立問題. 請優先從提供的文件中尋找答案, 你被允許回答不知道, 但回答不知道時需要給中央人資的客服聯絡窗口資訊.
不論什麼問題, 都以中文回答

歷史對話: {chat_history}
這次的問題: {question}
人資專家:
"""

default_legal_contract_prompt = """
你是一位超級助理, 十分擅長從大量文字中擷取摘要.
以下用 ''' 包含的是保密合約的內容,幫我生成一份2,000個中文字以內保密合約摘要,摘要需要包含以下項目:
1.背景: 介紹對方公司的背景、為什麼要跟該公司簽訂保密合約
2.目的: 要與對方交換什麼資料, 資料內容與範圍
3.合約期間:保密合約的時間範圍
4.提前解約條款: 發生什麼樣的條件就會要提前解約
5.保密期間: 保密的時間範圍
6.管轄法院: 如有爭端,雙方同意的管轄法院是哪個法院

AI 風險評估: 希望AI 可以評估該資料交換是否有高風險的疑慮; 評估準測:
高風險: 涉及到營業秘密的內容
中風險: 沒有營業秘密, 但有涉及敏感資料(足以辨識個人的訊息)
低風險: 僅涉及作業面向的訊息

保密合約:
'''
{text}
'''

"""

default_legal_quotation_prompt = """
你是一位超級助理, 十分擅長從大量文字中擷取摘要.
以下用 ''' 包含的是報價單的內容,幫我生成一份2,000個中文字以內報價單摘要,摘要需要包含以下項目:

1. 標的名稱: 報價單中所列出的產品或服務的名稱。
2. 價格: 報價單中所列出的每個產品或服務的價格, 一定要有正確的幣別與金額數字.
3. 付款內容: 報價單中所列出的付款方式和相關內容, 包括訂金, 交貨款和保留款的金額和支付方式; 除了各款項的交付百分比, 也需要有正確的金額與幣別.
4. 交貨時間: 報價單中所列出的產品或服務的交付的日期或時間範圍。
5. 保固(英文為Warranty): 請摘要報價單中所有關於保固內容.
6. 維修費用:報價單中所列出的產品或服務的維修費用或相關條款, 有任何維修的金額請一定要列出.
7. 貿易條件(Trade Term)
8. 其他注意事項:報價單中所列出的其他重要事項或注意事項。

請根據報價單的內容, 生成一份清晰明確的摘要, 條列式地把摘要列出, 確保所有項目都被包含在內. 如果內容超過三句話, 請以子項目的方式逐一列舉出來.

請注意,生成的摘要應該是簡潔且易於理解的, 要詳細條列出內容, 不可產生 "依其他文件說明" 等說明方式.
在報價單裡沒有找到符合的資訊, 你被允許回答 "無相關資料".

報價單內容:

'''
{text}
'''
"""
def get_prompt_template_string():
    print("template:"+template_string)
    return template_string

def get_default_template_prompt():
    template = "你是個知識廣泛的超級助手, 以下所有問題請用中文回答, 並請在500個中文字以內來解釋 {concept} 概念"
    prompt = PromptTemplate(
        input_variables = ["concept"],
        template = template
    )

    return prompt

def fine_tuning_model_chat(my_deployment_id, my_model_name):
    _prompt = get_default_template_prompt()
    llm = AzureOpenAI(model_name=my_model_name, deployment_name = my_deployment_id)
    while 1:
        text = input(inputText)
        if text == 'q':
            break
        response = llm(_prompt.format(concept = text))
        ai_answer(response)

def chat_conversation():
    print("resource: " + global_deployment_id + " / " + global_model_name)
    chat = AzureChatOpenAI(
        deployment_name = global_deployment_id,
        model_name = global_model_name,
    )

    history = ChatMessageHistory()
    history.add_ai_message("你是一個超級助理, 以下問題都用中文回答")
    while 1:
        text = input(inputText)
        if text == 'q':
            break
        history.add_user_message(text)
        ai_response = chat(history.messages)
        ai_answer(ai_response.content)

def local_vector_search(question_str,chat_history, collection_name = hr_collection_name):
    embedding = get_openaiembeddings()
    vectorstore = Chroma( embedding_function=embedding,
                          collection_name=collection_name,
                          persist_directory=root_file_path+persist_db,
                          )

    memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True, ai_prefix = "AI超級助理")

    llm = AzureOpenAI(
        deployment_name = global_deployment_id,
        model_name= global_model_name,
        temperature = 0.0)

    chat_llm = AzureChatOpenAI(
        deployment_name = global_deployment_id,
        model_name= global_model_name,
        temperature = 0.0)


    prompt = PromptTemplate(
        template=get_prompt_template_string(),
        input_variables=["question","chat_history"]
    )
    prompt.format(question=question_str,chat_history=chat_history)
    km_chain = ConversationalRetrievalChain.from_llm(
        llm=chat_llm,
        retriever=vectorstore.as_retriever(),
        memory=memory,
        condense_question_prompt=prompt,
    )
    km_tool = Tool(
        name='Knowledge Base',
        func=km_chain.run,
        description='一個非常有用的工具, 當要查詢任何公司政策以及鴻海相關資料都使用這個工具'
    )

    math_math = LLMMathChain(llm=llm,verbose=True)
    math_tool = Tool(
        name='Calculator',
        func=math_math.run,
        description='Useful for when you need to answer questions about math.'
    )

    tools=[math_tool,km_tool]
    agent=initialize_agent(
        agent=AgentType.OPENAI_FUNCTIONS,
        tools=tools,
        llm=chat_llm,
        verbose=True,
        memory=memory,
        max_iterations=30,
    )

    result=km_chain(question_str)
    #result=agent.run(question_str)
    print(result)
    return result["answer"]

def make_markdown_table(array):
    nl = "\n"
    markdown = ""
    for entry in array:
        markdown += f"{entry} {nl}"
    return markdown

def get_hr_files():
    files = load_sqlite(sqlite_key)
    if files == None:
        return
    else:
        return make_markdown_table(files)

def update_hr_km(files):
    file_paths = [file.name for file in files]
    dest_file_path=root_file_path+hr_source_path
    if not os.path.exists(dest_file_path):
        os.makedirs(dest_file_path)

    for file in file_paths:
        shutil.copy(file, dest_file_path)
    add_files_to_collection(hr_source_path, hr_collection_name)

    save_sqlite(sqlite_key, [Path(file_path).name for file_path in file_paths])
    return get_hr_files()

def clear_all_collection(collection_name):
    pass

def all_files_under_diretory(path):
    files = glob.glob(path+'\*')
    for f in files:
        os.remove(f)

def clear_hr_datas():
    #remove hr collection
    client = get_chroma_client(hr_collection_name)
    client.delete_collection(name=hr_collection_name)
    print("Collection removed completely!")

    #remove files
    all_files_under_diretory(root_file_path+hr_source_path)
    delete_sql(sqlite_key)
    return get_hr_files()

def num_of_collection(collection_name):
    client = get_chroma_client(collection_name)
    number = client.get_collection(collection_name).count()
    return f"目前知識卷裡有{number}卷項目"

def clear_tmp_collection():
    client = get_chroma_client(tmp_collection)
    client.delete_collection(name=tmp_collection)
    all_files_under_diretory(root_file_path+ks_source_path)
    return num_of_collection(tmp_collection)

def content_summary(split_documents):
    llm = AzureChatOpenAI(
        deployment_name=global_deployment_id,
        model_name=global_model_name,
        temperature=0.0)
    _local_prompt_string = get_prompt_summary_string()
    _local_prompt = PromptTemplate.from_template(_local_prompt_string)

    llm_chain = LLMChain(llm=llm, prompt=_local_prompt)

    # Define StuffDocumentsChain
    stuff_chain = StuffDocumentsChain(
        llm_chain=llm_chain, document_variable_name="text"
    )
    output = stuff_chain(split_documents)
    return output

    '''
    map_prompt = get_prompt_summary_string()
    map_prompt_template = PromptTemplate(template=map_prompt, input_variables=["text"])
    chain = load_summarize_chain(
        llm=llm,
        chain_type="map_reduce",
        verbose=True,
        map_prompt=map_prompt_template,
        combine_prompt=map_prompt_template
    )
    try:
        output = chain({"input_documents": split_documents}, return_only_outputs=True)
        return output
    except Exception as e:
        print(e)
        return {'output_text':refuse_string}
    '''

def pdf_summary(file_name):
    print("file_name: "+file_name)
    loader = UnstructuredFileLoader(file_name)

    document = loader.load()
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=1000,
        chunk_overlap=20
    )
    split_documents = text_splitter.split_documents(document)
    return content_summary(split_documents)

def youtube_summary(youtube_url):
    loader=YoutubeLoader.from_youtube_url(youtube_url, add_video_info=True, language=['en','zh-TW'], translation='zh-TW')
    document=loader.load()
    text_splitter=CharacterTextSplitter(chunk_size=1000, chunk_overlap=10)
    split_documents=text_splitter.split_documents(document)
    result = content_summary(split_documents)
    return result['output_text']

def summary_large_file(files):
    file_paths = [file.name for file in files]
    print(file_paths[0])
    result = pdf_summary(file_paths[0])
    return result["output_text"]

def upload_large_file(files):
    file_paths = [file.name for file in files]
    return Path(file_paths[0]).stem

def set_allow_lightweight_delete():
    client = clickhouse_connect.get_client(host='127.0.0.1',port=8123)
    command = "SET allow_experimental_lightweight_delete = true;"
    #command = "show databases;"
    res=client.command(command)
    print(res)
def get_chroma_client(collection_name):
    vectorstore = Chroma(
        embedding_function=get_openaiembeddings(),
        collection_name=collection_name,
        persist_directory= root_file_path+persist_db,
    )
    return vectorstore._client

def create_db():
    files_path = root_file_path+hr_source_path
    file_ext = "pdf"
    initial_croma_db(persist_db, files_path, file_ext, hr_collection_name)

def generate_iframe_for_youtube(youtube_link):
    regex = r"(?:https:\/\/)?(?:www\.)?(?:youtube\.com|youtu\.be)\/(?:watch\?v=)?(.+)"
    _url=re.sub(regex, r"https://www.youtube.com/embed/\1", youtube_link)
    embed_html = f'<iframe width="650" height="365" src="{_url}" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>'
    print(embed_html)
    return embed_html

def create_html_video(file_name, width, temp_file_url):
    html_video = f'<video width={width} height={width} autoplay muted loop><source src={temp_file_url} type="video/mp4" poster="Masahiro.png"></video>'
    return html_video

def do_html_audio_speak(words_to_speak):
    polly_client = boto3.Session(
        aws_access_key_id="AKIAV7Q7AAGW54RBR6FZ",
        aws_secret_access_key="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",
        region_name='us-west-2'
    ).client('polly')

    language_code="cmn-CN"
    engine = NEURAL_ENGINE
    voice_id = "Zhiyu"

    print("voice_id: "+voice_id+"\nlanguage_code="+language_code)
    response = polly_client.synthesize_speech(
        Text=words_to_speak,
        OutputFormat='mp3',
        VoiceId=voice_id,
        LanguageCode=language_code,
        Engine=engine
    )

    html_audio = '<pre>no audio</pre>'

    # Save the audio stream returned by Amazon Polly on Lambda's temp directory
    if "AudioStream" in response:
        with closing(response["AudioStream"]) as stream:
            try:
                with open('./data/audios/tempfile.mp3', 'wb') as f:
                    f.write(stream.read())
                temp_aud_file = gr.File("./data/audios/tempfile.mp3")
                temp_aud_file_url = "/file=" + temp_aud_file.value['name']
                html_audio = f'<audio autoplay><source src={temp_aud_file_url} type="audio/mp3"></audio>'
            except IOError as error:
                # Could not write to file, exit gracefully
                print(error)
                return None, None
    else:
        # The response didn't contain audio data, exit gracefully
        print("Could not stream audio")
        return None, None

    return html_audio, "./data/audios/tempfile.mp3"

def do_html_video_speak():

    key = "eyJhbGciOiJIUzUxMiJ9.eyJ1c2VybmFtZSI6ImNhdHNreXR3QGdtYWlsLmNvbSJ9.OypOUZF-xv4-b8i9F4_aaMQiJpxv0mXRT5kyuJwTMXVd4awV-O-Obntp--AqGghNNowzQ9oG7zArSnQjz2vQgg"
    url = "https://api.exh.ai/animations/v2/generate_lipsync_from_audio"
    files = {"audio_file": ("./data/audios/tempfile.mp3", open("./data/audios/tempfile.mp3", "rb"), "audio/mpeg")}
    payload = {
        "animation_pipeline": "high_quality",
        "idle_url": "https://ugc-idle.s3-us-west-2.amazonaws.com/5fd9ba1b1607b39a4d559300c1e35bee.mp4"
    }
    headers = {
        "accept": "application/json",
        "authorization": f"Bearer {key}"
    }

    res = requests.post(url, data=payload, files=files, headers=headers)

    print("res.status_code: ", res.status_code)

    html_video = '<pre>no video</pre>'
    if isinstance(res.content, bytes):
        response_stream = io.BytesIO(res.content)
        print("len(res.content)): ", len(res.content))

        with open('./data/videos/tempfile.mp4', 'wb') as f:
            f.write(response_stream.read())
        temp_file = gr.File("./data/videos/tempfile.mp4")
        temp_file_url = "/file=" + temp_file.value['name']
        html_video = f'<video width={TALKING_HEAD_WIDTH} height={TALKING_HEAD_WIDTH} autoplay><source src={temp_file_url} type="video/mp4" poster="Masahiro.png"></video>'
    else:
        print('video url unknown')
    return res, html_video, "./data/videos/tempfile.mp4"

def kh_update_km(files):
    file_paths = [file.name for file in files]
    dest_file_path = root_file_path + ks_source_path

    if not os.path.exists(dest_file_path):
        os.makedirs(dest_file_path)

    for file in file_paths:
        shutil.copy(file, dest_file_path)
    add_files_to_collection(ks_source_path, tmp_collection)

    return num_of_collection(tmp_collection)

class Logger:
    def __init__(self, filename):
        self.terminal = sys.stdout
        self.log = open(filename, "w", encoding='UTF-8')

    def write(self, message):
        self.terminal.write(message)
        self.log.write(message)

    def flush(self):
        self.terminal.flush()
        self.log.flush()

    def isatty(self):
        return False

def read_logs():
    sys.stdout.flush()
    ansi_escape = re.compile(r'\x1B(?:[@-Z\\-_]|\[[0-?]*[ -/]*[@-~])')

    with open("output.log", "r", encoding='UTF-8') as f:
        return ansi_escape.sub('', f.read())

def lunch_style(demo, logs=gr.Text()):
    sys.stdout = Logger("output.log")
    demo.load(read_logs, None, logs, every=1)

    if len(sys.argv)==1:
        print("running server as default value")
        demo.launch(allowed_paths=[root_file_path, root_file_path+hr_source_path])
    elif len(sys.argv)==2 and sys.argv[1] == "server":
        local_ip = "10.40.23.232"
        local_port = 7788
        print(f"running server on http://{local_ip}:{local_port}")
        demo.launch(allowed_paths=[root_file_path, root_file_path+hr_source_path],auth=("Foxconn", "Foxconn123!"),server_name=local_ip, server_port=local_port)
    elif len(sys.argv)==4:
        local_ip = sys.argv[2]
        local_port = sys.argv[3]
        print(f"running server on http://{local_ip}:{local_port}")
        demo.launch(allowed_paths=[root_file_path, root_file_path+hr_source_path],auth=("Foxconn", "Foxconn123!"),server_name=local_ip, server_port=local_port)
    else:
        print("syntax: pythong <your_app>.py [server {ip_address, port}] ")

def gradio_run():
    print("User Login")
    with gr.Blocks(theme='bethecloud/storj_theme') as demo:

        with gr.Row():
            gr.Markdown("# HH Azure Openai Demo")
        #Header section
        with gr.Row():
            with gr.Column(scale=1):
                gr.Markdown("""            
### 這是一個基於各場景製造的Azure Openai Demo, 目前預計會包含場景有:
            
- 超長文本的摘要 ☑
- HR 智能客服小幫手 ☑
- 上傳過去歷史資料, 預測未來發展
- 上傳初步構想後, AI生成方案
- 網路上搜尋各式資料(包含google, wikipedia, youtube) 等, 綜合分析給結論
            
### 基礎的技術架構:
* 給予資料, 持續累加
* 存入vector(向量化) database, 依不同的collection 存放
* 問題以相似度(Similarity search), 結果再丟給gpt 做綜合回應

### 已知bug: 
* N/A

如有任何Bug 歡迎隨時回饋
            """)
            with gr.Column(scale=1):
                gr.Image(type="pil", value=root_file_path+"vector.png", label="技術概念圖")
                gr.Markdown("""
> 中央資訊 Change Liao(廖晨志)
> teams/email: change.cc.liao@foxconn.com 
> 分機: 5010108
                """)
        with gr.Row():
            gr.Markdown("""
            ------
            ## Playground
            請切換下方Tab 鍵試驗各項功能
            
            """)
        #First PoC Section
        with gr.Tab("HR 客服助手"):
            with gr.Row():
                with gr.Column(scale=1):
                    gr.Markdown(
                    """
                    ## 第一項實驗: HR 資料庫智能客服助手 AI 試驗
                    """
                    )
                    gr.Markdown("""
                    ### 使用方法
                    * 測試人員可在下方加入任何HR 相關資料, 亦可全部刪除後上傳.
                    * 系統會將資料向量化後,納入右方人資客服機器人資料庫
                    * 右方可以更新prompt 的內容, prompt 請不要刪掉chat_history, question 兩個變數, 其他可以隨意加入您想要的限制條件或是額外訊息
                    * 測試人員可在右下方與客服機器人對話

                    
                    (溫馨提醒: 儘可能所有檔案全部清掉, 再一次上傳所有想納入的檔案;且次數不要太多,以節省經費)
                    """)
                    file_list=gr.Textbox(get_hr_files, label="已存在知識庫的檔案(text,pdf,doc,csv)", placeholder="沒有任何檔案存在", max_lines=16, lines=16)
                    with gr.Row():
                        with gr.Column(scale=1):
                            upload_button = gr.UploadButton("上傳HR知識庫檔案",
                                                file_types=["text", ".pdf", ".doc", ".csv"], file_count="multiple")
                            upload_button.upload(update_hr_km, inputs=upload_button, outputs=file_list)
                        with gr.Column(scale=1):
                            cleanDataBtn = gr.Button(value="刪除所有知識以及檔案")
                            cleanDataBtn.click(clear_hr_datas,outputs=file_list)

                with gr.Column(scale=2):
                    with gr.Row():
                        prompt_textbox = gr.Textbox(template_string, lines=8, max_lines=8, label="Prompt")
                    with gr.Row():
                        def change_prompt(inputString):
                            template_string=inputString
                            return template_string
                        update_btn = gr.Button("更新Prompt")
                        update_btn.click(change_prompt,prompt_textbox,prompt_textbox)
                    with gr.Row():
                        chatbot = gr.Chatbot(value=[], elem_id="chatbot").style(height=400)
                    with gr.Row():
                        with gr.Column(scale=5):
                            msg = gr.Textbox(
                                show_label=False,
                                placeholder="輸入你的問題",
                            )
                        with gr.Column(scale=1):
                            clear = gr.Button("清除")

                    def respond(message, chat_history):
                        vector_search_message = local_vector_search(message, chat_history)
                        chat_history.append((message, vector_search_message))
                        return '', chat_history

                    msg.submit(respond, [msg, chatbot], [msg, chatbot], queue=True)
                    clear.click(lambda: None, None, chatbot, queue=False)
        #2nd Hr Section
        with gr.Tab("文本摘要"):
            with gr.Row():
                with gr.Column(scale=1):
                    gr.Markdown(f"""
        ## 第二項實驗: 超長文本摘要
        請上傳任何文檔(.pdf, .doc, .csv, text 格式),上傳完成後稍等一會, AI 會在右側TextField 提供文本摘要

        * 使用方式:
            * 請在右邊按下 `請上傳超長文本(可接受text, pdf, doc, csv 格式)` 上傳你的文本
             * AI 會開始解析內容, 檔案愈大解析愈久
            * 上傳完後可以按同個按鍵, 再次上傳
            * 後續會支援video 以及 audio格式

                        """)

                with gr.Column(scale=1):
                    gr.Markdown("1.")
                    file_name_field = gr.Textbox(max_lines=1, label="上傳檔案", placeholder="目前沒有上傳檔案")
                    upload_button = gr.UploadButton("請上傳超長文本(可接受text, pdf, doc, csv 格式)",
                                                    file_types=["text", ".pdf", ".doc", ".csv"], file_count="multiple")
                    gr.Markdown("2.")
                    summary_text = gr.Textbox()
                    summary_text.label = "AI 摘要:"
                    summary_text.change = False
                    summary_text.lines = 12
                    upload_button.upload(upload_large_file, upload_button, file_name_field).then(summary_large_file,
                                                                                                 upload_button,
                                                                                                 summary_text)
        #3rd youtube
        with gr.Tab("Youtube 影片摘要"):
            with gr.Row():
                with gr.Column(scale=1):
                    youtube_gr = gr.HTML(generate_iframe_for_youtube("https://www.youtube.com/embed/"))
                    youtube_link=gr.Textbox(interactive=True, label="在此貼上Youtube link:", placeholder="e.g. https://www.youtube.com/watch?v=xxxxxxxxx")
                    youtube_link.change(generate_iframe_for_youtube,youtube_link,youtube_gr)
                    youtube_analysis_btn=gr.Button("送出解析")
                with gr.Column(scale=1):
                    youtube_summary_textbox=gr.Textbox(interactive=False, label="AI 解析", lines=20)
            youtube_analysis_btn.click(youtube_summary,youtube_link,youtube_summary_textbox)
        #4th 相信人員統計助手
        with gr.Tab("相信人員統計助手"):

            mypath = root_file_path + believe_source_path
            onlyfiles = os.listdir(mypath)
            df = pd.concat((pd.read_csv(os.path.join(mypath, filename),encoding = "ISO-8859-1") for filename in onlyfiles))

            with gr.Row():
                gr.Markdown("""
### 使用方式
資料裡有 `相信` 的active user 資料,
右方己經有先算出平均每個問題花費多少, 隨意詢問算法AI 即可算出多少費用.
若要改費用, 請在右方prompt 更改數字
                        """)
                invField = gr.Textbox(visible=False)
                gr.Examples(onlyfiles, label="資料庫檔案", inputs=invField, examples_per_page=4)
            with gr.Row():
                with gr.Column():

                    llm = AzureChatOpenAI(
                        deployment_name=global_deployment_id,
                        model_name=global_model_name,
                        max_tokens=2000,
                        temperature=0,
                    )
                    be_agent = create_pandas_dataframe_agent(
                        llm,
                        df,
                        max_iterations=30,
                        return_intermediate_steps=False,
                        max_execution_time=60,
                        handle_parsing_errors="Check your output and make sure it conforms!",
                        verbose=True)
                    def tmp_respond(prompt_str, message, chat_history):
                        new_str = prompt_str.format(message=message, chat_history=chat_history)
                        answer = be_agent.run(new_str)
                        chat_history.append((message, answer))
                        """
                        try:
                            new_str = prompt_str.format(message=message, chat_history=chat_history)
                            answer = be_agent.run(new_str)
                            chat_history.append((message, answer))
                        except Exception as e:
                            response = str(e)
                            print(f"Got error!{response}")
                            if not response.startswith("Could not parse LLM output: `"):
                                raise e
                            answer = response.removeprefix("Could not parse LLM output: `").removesuffix("`")
                            print("answer:"+answer)
                            chat_history.append((message, answer))
                        """
                        return '', chat_history

                    tmp_chatbot = gr.Chatbot(value=[], elem_id="tmp_chatbot").style(height=500)
                    with gr.Row():
                        with gr.Column(scale=5):
                            tmp_msg = gr.Textbox(show_label=False,placeholder="輸入你的問題",)
                        with gr.Column(scale=1):
                            tmp_clear = gr.Button("清除對話")
                with gr.Column():
                    prompt_textbox = gr.Textbox("""
你是一位專業資料科學家,提供給你的是研究列表.
有下列定義:

1.Title是研究報告的標題

請以中文回答我下面的問題:{message}
                            """, lines=10, label="Prompt:有{chat_history}及{message}, 請至少保留{message}變數",interactive=True, max_lines=10)
                    console = gr.Textbox(lines=11, label="Console", max_lines=11)
                tmp_msg.submit(tmp_respond, [prompt_textbox, tmp_msg, tmp_chatbot], [tmp_msg, tmp_chatbot],queue=True)
                tmp_clear.click(lambda: None, None, tmp_chatbot, queue=False)
            with gr.Row():
                gr.Examples([
                    '你有什麼欄位?',
                    '資料裡有屬於台灣(TW)的員工有多少位?',
                    '全台灣的員工, 每人每天問五個問題, 1個月花費多少錢?',
                    '如果龍華廠區的員工每人每天問3個問題,台灣員工每人每天問7個問題, 請問這樣一個月多少錢?'
                    ], label="訊息範例", inputs=tmp_msg)

        with gr.Tab("法務AI幫手"):
            legal_path = "./data/"
            quotation_file = "legal_quotation_prompt.txt"
            contract_file = "legal_contract_prompt.txt"

            def load_prompt_from_file(typeString):
                if typeString == "保密合約":
                    _path_string = legal_path + contract_file
                else:
                    _path_string = legal_path + quotation_file
                f = open(_path_string, 'r', encoding="utf-8")
                return_string= f.read()
                f.close()
                return return_string
            def save_func(typeString, prompt_string):
                if typeString == "保密合約":
                    _path_string = legal_path + contract_file
                else:
                    _path_string = legal_path + quotation_file
                f = open(_path_string, "w", encoding="utf-8")
                f.write(prompt_string)
                f.close()
            def restore_func(typeString):
                if typeString == "保密合約":
                    content_string = default_legal_contract_prompt
                else:
                    content_string = default_legal_quotation_prompt
                save_func(typeString, content_string)
                return content_string
            def change_prompt(inputString):
                global prompt_string
                prompt_string = inputString
                return inputString
            gr.Markdown("""
                ### 面版說明:
                操作介面全部都在左側, 右側是摘要內容.
                ### 操作步驟                
                1. 選擇摘要的類型: 選 `保密合約` 或 `報價單`
                2. 微調prompt內容: 直接點選 `prompt對話框` 修改文字內容
                3. 上傳檔案: 支援PDF/doc/docx 等格式   
                                 
            """)
            gr.Markdown("""
            ---
            """)
            with gr.Row():
                with gr.Column(scale=2):
                    contract_type = gr.Radio(choices=["報價單","保密合約"],
                                             label="1. 請選擇摘要類型",
                                             info="選擇不一樣的摘要類型,會改變下方的prompt 內容",
                                             type="value",
                                             value="報價單",
                                             interactive=True)

                    gr.Markdown("""
                    ---
                    """)
                    _firstString = load_prompt_from_file("報價單")
                    prompt_textbox = gr.Textbox(_firstString,
                                                lines=20,
                                                max_lines=20,
                                                label="2. Prompt",
                                                interactive=True)
                    prompt_textbox.change(change_prompt, inputs=prompt_textbox)
                    with gr.Row():
                        with gr.Column():
                            saveBtn = gr.Button("保存現有Prompt")
                        with gr.Column():
                            restoreBtn = gr.Button("回覆預設Prompt")

                    gr.Markdown("""
                    ---
                    """)

                    file_name_field = gr.Textbox(max_lines=1, label="3. 上傳檔案", placeholder="目前沒有上傳檔案")

                    #event
                    saveBtn.click(save_func, inputs=[contract_type, prompt_textbox],)
                    restoreBtn.click(restore_func, inputs=contract_type, outputs=prompt_textbox)
                    upload_button = gr.UploadButton("請上傳保密合約或報價單(可接受text, pdf, docx, csv 格式)",
                                                file_types=["text", ".pdf", ".csv", ".docx", ".doc"], file_count="multiple")
                    contract_type.change(fn=load_prompt_from_file, inputs=contract_type, outputs=prompt_textbox)

                with gr.Column(scale=3):
                    summary_text = gr.Textbox()
                    summary_text.label = "AI 摘要:"
                    summary_text.change = False
                    summary_text.lines = 38
                    summary_text.max_lines = 38

            upload_button.upload(upload_large_file, upload_button, file_name_field).\
                then(change_prompt,inputs=prompt_textbox).\
                then(summary_large_file, upload_button, summary_text)
        demo.queue(concurrency_count=10)
        lunch_style(demo,console)

def test():
    mypath = "C:\\Users\\catsk\\SourceCode\\azure_openai_poc\\data\\ks_source_files"
    onlyfiles = [f for f in listdir(mypath) if isfile(join(mypath, f))]
    print(onlyfiles)

gradio_run()