File size: 11,533 Bytes
d2a60ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f245c03
 
 
 
 
 
 
 
 
 
 
d2a60ad
f245c03
d2a60ad
f245c03
d2a60ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f245c03
 
d2a60ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
import os
import time
import shutil
from pathlib import Path
from functools import partial
from typing import Union, Dict, List

import torch
from torch.utils.data import DataLoader
import datasets
from datasets import load_dataset, Dataset
from transformers import AutoTokenizer, PreTrainedTokenizer, DataCollatorWithPadding
from huggingface_hub import Repository, create_repo, HfApi
from optimum.onnxruntime import (
    AutoOptimizationConfig,
    ORTModelForFeatureExtraction,
    ORTOptimizer,
)

os.environ["TOKENIZERS_PARALLELISM"] = "false"

opt_configs = {
    "O2": AutoOptimizationConfig.O2(),
    "O3": AutoOptimizationConfig.O3(),
    "O4": AutoOptimizationConfig.O4(),
}


def get_batch_size(device_name: str, model_name: str, opt_level: str):
    """
    TODO: run actual tests

    T4 has 16GB
    A10 has 24GB

    Args:
        device_name (`str`):
            The name of the GPU device in use.
        model_name (`str`):
            The name of the model in use.
        opt_level (`str`):
            The optimization level in use.

    Returns:
        `int`:
            The batch size to use.
    """

    if "small" in model_name:
        bs = 192
    elif "base" in model_name:
        bs = 128
    elif "large" in model_name:
        bs = 64
    else:
        bs = 32

    if "A10" in device_name:
        bs *= 2

    if opt_level == "O4":
        bs *= 2

    return bs


def mean_pooling(last_hidden_state: torch.Tensor, attention_mask: torch.Tensor):
    """
    Mean pool the token embeddings.

    Args:
        last_hidden_state (`tuple`):
            The output of the model.
        attention_mask (`torch.Tensor`):
            The attention mask.

    Returns:
        `torch.Tensor`:
            The mean pooled embeddings.
    """
    input_mask_expanded = (
        attention_mask.unsqueeze(-1).expand(last_hidden_state.size()).float()
    )
    return torch.sum(last_hidden_state * input_mask_expanded, 1) / torch.clamp(
        input_mask_expanded.sum(1), min=1e-9
    )


def get_model_and_tokenizer(model_name: str, optimization_level: str, progress):
    """
    Load the model and tokenizer from the HuggingFace Hub.

    If the model is not already optimized, optimize it and save it to the local directory.

    Args:
        model_name (`str`):
            The name of the model to load.
        optimization_level (`str`):
            The optimization level to use. Should be one of `"O2"`, `"O3"`, or `"O4"`.

    Returns:
        model (`ORTModelForFeatureExtraction`):
            The optimized model.
        tokenizer (`PreTrainedTokenizer`):
            The tokenizer.
    """
    optimized_model_name = f"model_optimized_{optimization_level}.onnx"

    model_dir = Path(model_name.replace("/", "_"))
    if not (model_dir / optimized_model_name).exists():
        if progress is not None:
            progress(0.2, "Downloading tokenizer...")

        tokenizer = AutoTokenizer.from_pretrained(model_name)
        tokenizer.save_pretrained(model_dir)

        if progress is not None:
            progress(0.4, "Downloading model...")

        model = ORTModelForFeatureExtraction.from_pretrained(model_name, export=True)
        model.save_pretrained(model_dir)

        optimizer = ORTOptimizer.from_pretrained(model)
        optimization_config = opt_configs[optimization_level]

        if progress is not None:
            progress(0.6, "Optimizing model...")

        optimizer.optimize(save_dir=model_dir, optimization_config=optimization_config)
        Path(model_dir / "model_optimized.onnx").rename(
            model_dir / optimized_model_name
        )

    else:
        tokenizer = AutoTokenizer.from_pretrained(model_dir)

    if progress is not None:
        progress(0.8, "Loading optimized model and tokenizer...")

    return (
        ORTModelForFeatureExtraction.from_pretrained(
            model_dir,
            file_name=optimized_model_name,
            provider="CUDAExecutionProvider",
        ),
        tokenizer,
    )


def collate_fn(examples, column_name, tokenizer):
    feature_cols = ["input_ids", "attention_mask"]
    features = [{k: x[k] for k in feature_cols} for x in examples]

    tokenized = tokenizer.pad(
        features,
        padding=True,
        max_length=512,
        return_tensors="pt",
        pad_to_multiple_of=16,
        )

    tokenized[column_name] = [x[column_name] for x in examples]

    return tokenized


@torch.inference_mode()
def batch_embed(
    ds: datasets.IterableDataset,
    model: ORTModelForFeatureExtraction,
    tokenizer: PreTrainedTokenizer,
    model_name: str,
    column_name: str,
    new_dataset_id: str,
    opt_level: str,
    upload_batch_size: int = 10_000,
    map_batch_size: int = 2000,
    num2skip: int = 0,
    num2embed: int = -1,
    progress=None,
):
    """
    Run the model on the dataset and upload the embeddings to the hub.

    Args:
        ds (`datasets.Dataset`):
            dataset to embed. From `load_hf_dataset`
        model (`ORTModelForFeatureExtraction`):
            model to use for embedding. From `get_model_and_tokenizer`
        tokenizer (`AutoTokenizer`):
            tokenizer to use for embedding. From `get_model_and_tokenizer`
        model_name (`str`):
            name of the model to use. Used to determine batch size.
        column_name (`str`):
            column name to use for embedding. Default option in gradio app is `text`
        new_dataset_id (`str`):
            id of the new dataset to create. Should include username or organization.
            e.g. nbroad/new-embeddings
        opt_level (`str`):
            optimization level to use. Should be one of `O2`, `O3`, `O4`
            See here for more details on optimization levels:
            https://huggingface.co/docs/optimum/onnxruntime/usage_guides/optimization#optimization-configuration
        upload_batch_size (`int`, *optional*, defaults to `10_000`):
            number of embeddings to upload at once. Defaults to 10,000.
        map_batch_size (`int`, *optional*, defaults to `2000`):
            number of examples to tokenize at once. Defaults to 2000.
        num2skip (`int`, *optional*, defaults to `0`):
            number of examples to skip. Defaults to 0.
        num2embed (`int`, *optional*, defaults to `-1`):
            number of examples to embed. Defaults to -1, which means all examples.

    Returns:
        current_count (`int`):
            number of examples embedded so far
        time_taken (`float`):
            time taken to embed the examples in seconds

    """

    api = HfApi(
        token=os.environ["HF_TOKEN"],
    )

    username = api.whoami()["name"]

    if "/" not in new_dataset_id:
        new_dataset_id = username + "/" + new_dataset_id

    repo = init_git_repo(new_dataset_id)

    embeds = []
    texts = []

    # current count keeps track of how many have been embedded in total
    current_count = num2skip

    # last_count keeps track of how many had been embedded since last push
    last_count = current_count

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    inference_bs = get_batch_size(torch.cuda.get_device_name(0), model_name, opt_level)

    start_time = time.time()

    collator = partial(
        collate_fn, column_name=column_name, tokenizer=tokenizer
    )

    dl = DataLoader(
        ds,
        batch_size=inference_bs,
        shuffle=False,
        num_workers=2,
        pin_memory=True,
        drop_last=False,
        collate_fn=collator,
    )

    for batch in dl:
        ids = batch["input_ids"].to(device)
        mask = batch["attention_mask"].to(device)

        t_ids = torch.zeros_like(ids)

        outputs = model(input_ids=ids, attention_mask=mask, token_type_ids=t_ids)

        embeds.extend(mean_pooling(outputs[0], mask).cpu().tolist())
        texts.extend(batch[column_name])

        current_count += ids.shape[0]

        # Periodically upload to the hub
        if len(embeds) > upload_batch_size:
            push_to_repo(new_dataset_id, last_count, current_count, embeds, texts, api)
            embeds = []
            texts = []
            last_count = current_count

        # Provide updates
        if progress is not None:
            progress(
                (current_count, None),
                "Embedding docs...",
                total=None,
                unit="Docs Embedded",
            )

    time_taken = time.time() - start_time

    # If there are any remaining embeddings, upload them
    if len(embeds) > 0:
        push_to_repo(new_dataset_id, last_count, current_count, embeds, texts, api)

    return current_count - num2skip, time_taken


def init_git_repo(repo_id: str):
    """
    Initialize a git repo for the new dataset.

    ***Removes existing local folder if exists***

    Args:
        repo_id (`str`):
            id of the new dataset to create. Should include username or organization.
            e.g. nbroad/new-embeddings
    """
    local_dir = repo_id.replace("/", "_")

    create_repo(
        repo_id,
        repo_type="dataset",
        token=os.environ["HF_TOKEN"],
        private=True,
        exist_ok=True,
    )
    try:
        repo = Repository(
            local_dir=local_dir,
            clone_from=repo_id,
            repo_type="dataset",
            token=os.environ["HF_TOKEN"],
            skip_lfs_files=True,
        )
    except EnvironmentError:
        shutil.rmtree(local_dir)
        repo = Repository(
            local_dir=local_dir,
            clone_from=repo_id,
            repo_type="dataset",
            token=os.environ["HF_TOKEN"],
            skip_lfs_files=True,
        )

    if repo is not None:
        repo.git_pull()

    return repo


def push_to_repo(
    repo_id: str,
    last_count: int,
    current_count: int,
    embeds: List[List[float]],
    texts: List[str],
    api: HfApi,
):
    """
    Push embeddings to the repo.

    Args:
        repo_id (`str`):
            id of the new dataset to create. Should include username or organization.
        last_count (`int`):
            last count of embeddings.
            This is the number of embeddings that have already been pushed.
        current_count (`int`):
            current count of embeddings.
            This is the number of embeddings that have been pushed after this batch.
        embeds (`List[List[float]]`):
            list of embeddings to push to the repo
        texts (`List[str]`):
            list of texts to push to the repo
        api (`huggingface_hub.HfApi`):
            api to use to push to the repo
    """

    temp_ds = Dataset.from_dict(
        {
            "embedding": embeds,
            "text": texts,
        }
    )

    local_dir = repo_id.replace("/", "_")

    data_dir = Path(local_dir) / "data"
    data_dir.mkdir(exist_ok=True, parents=True)

    # use zfill so sorting puts the files in order
    filename = f"embeddings_{str(last_count).zfill(8)}_{current_count}.parquet"
    filepath = str(data_dir / filename)

    temp_ds.to_parquet(filepath)

    files = sorted(list(data_dir.glob("*.parquet")))

    api.upload_file(
        path_or_fileobj=filepath,
        path_in_repo=f"data/{filename}",
        repo_id=repo_id,
        repo_type="dataset",
        run_as_future=True,
        token=os.environ["HF_TOKEN"],
        commit_message=f"Embedded examples {last_count} thru {current_count}",
    )

    # Delete old files

    if len(files) > 4:
        for file in files[:2]:
            file.unlink()