Spaces:
Runtime error
Runtime error
File size: 11,533 Bytes
d2a60ad f245c03 d2a60ad f245c03 d2a60ad f245c03 d2a60ad f245c03 d2a60ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 |
import os
import time
import shutil
from pathlib import Path
from functools import partial
from typing import Union, Dict, List
import torch
from torch.utils.data import DataLoader
import datasets
from datasets import load_dataset, Dataset
from transformers import AutoTokenizer, PreTrainedTokenizer, DataCollatorWithPadding
from huggingface_hub import Repository, create_repo, HfApi
from optimum.onnxruntime import (
AutoOptimizationConfig,
ORTModelForFeatureExtraction,
ORTOptimizer,
)
os.environ["TOKENIZERS_PARALLELISM"] = "false"
opt_configs = {
"O2": AutoOptimizationConfig.O2(),
"O3": AutoOptimizationConfig.O3(),
"O4": AutoOptimizationConfig.O4(),
}
def get_batch_size(device_name: str, model_name: str, opt_level: str):
"""
TODO: run actual tests
T4 has 16GB
A10 has 24GB
Args:
device_name (`str`):
The name of the GPU device in use.
model_name (`str`):
The name of the model in use.
opt_level (`str`):
The optimization level in use.
Returns:
`int`:
The batch size to use.
"""
if "small" in model_name:
bs = 192
elif "base" in model_name:
bs = 128
elif "large" in model_name:
bs = 64
else:
bs = 32
if "A10" in device_name:
bs *= 2
if opt_level == "O4":
bs *= 2
return bs
def mean_pooling(last_hidden_state: torch.Tensor, attention_mask: torch.Tensor):
"""
Mean pool the token embeddings.
Args:
last_hidden_state (`tuple`):
The output of the model.
attention_mask (`torch.Tensor`):
The attention mask.
Returns:
`torch.Tensor`:
The mean pooled embeddings.
"""
input_mask_expanded = (
attention_mask.unsqueeze(-1).expand(last_hidden_state.size()).float()
)
return torch.sum(last_hidden_state * input_mask_expanded, 1) / torch.clamp(
input_mask_expanded.sum(1), min=1e-9
)
def get_model_and_tokenizer(model_name: str, optimization_level: str, progress):
"""
Load the model and tokenizer from the HuggingFace Hub.
If the model is not already optimized, optimize it and save it to the local directory.
Args:
model_name (`str`):
The name of the model to load.
optimization_level (`str`):
The optimization level to use. Should be one of `"O2"`, `"O3"`, or `"O4"`.
Returns:
model (`ORTModelForFeatureExtraction`):
The optimized model.
tokenizer (`PreTrainedTokenizer`):
The tokenizer.
"""
optimized_model_name = f"model_optimized_{optimization_level}.onnx"
model_dir = Path(model_name.replace("/", "_"))
if not (model_dir / optimized_model_name).exists():
if progress is not None:
progress(0.2, "Downloading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.save_pretrained(model_dir)
if progress is not None:
progress(0.4, "Downloading model...")
model = ORTModelForFeatureExtraction.from_pretrained(model_name, export=True)
model.save_pretrained(model_dir)
optimizer = ORTOptimizer.from_pretrained(model)
optimization_config = opt_configs[optimization_level]
if progress is not None:
progress(0.6, "Optimizing model...")
optimizer.optimize(save_dir=model_dir, optimization_config=optimization_config)
Path(model_dir / "model_optimized.onnx").rename(
model_dir / optimized_model_name
)
else:
tokenizer = AutoTokenizer.from_pretrained(model_dir)
if progress is not None:
progress(0.8, "Loading optimized model and tokenizer...")
return (
ORTModelForFeatureExtraction.from_pretrained(
model_dir,
file_name=optimized_model_name,
provider="CUDAExecutionProvider",
),
tokenizer,
)
def collate_fn(examples, column_name, tokenizer):
feature_cols = ["input_ids", "attention_mask"]
features = [{k: x[k] for k in feature_cols} for x in examples]
tokenized = tokenizer.pad(
features,
padding=True,
max_length=512,
return_tensors="pt",
pad_to_multiple_of=16,
)
tokenized[column_name] = [x[column_name] for x in examples]
return tokenized
@torch.inference_mode()
def batch_embed(
ds: datasets.IterableDataset,
model: ORTModelForFeatureExtraction,
tokenizer: PreTrainedTokenizer,
model_name: str,
column_name: str,
new_dataset_id: str,
opt_level: str,
upload_batch_size: int = 10_000,
map_batch_size: int = 2000,
num2skip: int = 0,
num2embed: int = -1,
progress=None,
):
"""
Run the model on the dataset and upload the embeddings to the hub.
Args:
ds (`datasets.Dataset`):
dataset to embed. From `load_hf_dataset`
model (`ORTModelForFeatureExtraction`):
model to use for embedding. From `get_model_and_tokenizer`
tokenizer (`AutoTokenizer`):
tokenizer to use for embedding. From `get_model_and_tokenizer`
model_name (`str`):
name of the model to use. Used to determine batch size.
column_name (`str`):
column name to use for embedding. Default option in gradio app is `text`
new_dataset_id (`str`):
id of the new dataset to create. Should include username or organization.
e.g. nbroad/new-embeddings
opt_level (`str`):
optimization level to use. Should be one of `O2`, `O3`, `O4`
See here for more details on optimization levels:
https://huggingface.co/docs/optimum/onnxruntime/usage_guides/optimization#optimization-configuration
upload_batch_size (`int`, *optional*, defaults to `10_000`):
number of embeddings to upload at once. Defaults to 10,000.
map_batch_size (`int`, *optional*, defaults to `2000`):
number of examples to tokenize at once. Defaults to 2000.
num2skip (`int`, *optional*, defaults to `0`):
number of examples to skip. Defaults to 0.
num2embed (`int`, *optional*, defaults to `-1`):
number of examples to embed. Defaults to -1, which means all examples.
Returns:
current_count (`int`):
number of examples embedded so far
time_taken (`float`):
time taken to embed the examples in seconds
"""
api = HfApi(
token=os.environ["HF_TOKEN"],
)
username = api.whoami()["name"]
if "/" not in new_dataset_id:
new_dataset_id = username + "/" + new_dataset_id
repo = init_git_repo(new_dataset_id)
embeds = []
texts = []
# current count keeps track of how many have been embedded in total
current_count = num2skip
# last_count keeps track of how many had been embedded since last push
last_count = current_count
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
inference_bs = get_batch_size(torch.cuda.get_device_name(0), model_name, opt_level)
start_time = time.time()
collator = partial(
collate_fn, column_name=column_name, tokenizer=tokenizer
)
dl = DataLoader(
ds,
batch_size=inference_bs,
shuffle=False,
num_workers=2,
pin_memory=True,
drop_last=False,
collate_fn=collator,
)
for batch in dl:
ids = batch["input_ids"].to(device)
mask = batch["attention_mask"].to(device)
t_ids = torch.zeros_like(ids)
outputs = model(input_ids=ids, attention_mask=mask, token_type_ids=t_ids)
embeds.extend(mean_pooling(outputs[0], mask).cpu().tolist())
texts.extend(batch[column_name])
current_count += ids.shape[0]
# Periodically upload to the hub
if len(embeds) > upload_batch_size:
push_to_repo(new_dataset_id, last_count, current_count, embeds, texts, api)
embeds = []
texts = []
last_count = current_count
# Provide updates
if progress is not None:
progress(
(current_count, None),
"Embedding docs...",
total=None,
unit="Docs Embedded",
)
time_taken = time.time() - start_time
# If there are any remaining embeddings, upload them
if len(embeds) > 0:
push_to_repo(new_dataset_id, last_count, current_count, embeds, texts, api)
return current_count - num2skip, time_taken
def init_git_repo(repo_id: str):
"""
Initialize a git repo for the new dataset.
***Removes existing local folder if exists***
Args:
repo_id (`str`):
id of the new dataset to create. Should include username or organization.
e.g. nbroad/new-embeddings
"""
local_dir = repo_id.replace("/", "_")
create_repo(
repo_id,
repo_type="dataset",
token=os.environ["HF_TOKEN"],
private=True,
exist_ok=True,
)
try:
repo = Repository(
local_dir=local_dir,
clone_from=repo_id,
repo_type="dataset",
token=os.environ["HF_TOKEN"],
skip_lfs_files=True,
)
except EnvironmentError:
shutil.rmtree(local_dir)
repo = Repository(
local_dir=local_dir,
clone_from=repo_id,
repo_type="dataset",
token=os.environ["HF_TOKEN"],
skip_lfs_files=True,
)
if repo is not None:
repo.git_pull()
return repo
def push_to_repo(
repo_id: str,
last_count: int,
current_count: int,
embeds: List[List[float]],
texts: List[str],
api: HfApi,
):
"""
Push embeddings to the repo.
Args:
repo_id (`str`):
id of the new dataset to create. Should include username or organization.
last_count (`int`):
last count of embeddings.
This is the number of embeddings that have already been pushed.
current_count (`int`):
current count of embeddings.
This is the number of embeddings that have been pushed after this batch.
embeds (`List[List[float]]`):
list of embeddings to push to the repo
texts (`List[str]`):
list of texts to push to the repo
api (`huggingface_hub.HfApi`):
api to use to push to the repo
"""
temp_ds = Dataset.from_dict(
{
"embedding": embeds,
"text": texts,
}
)
local_dir = repo_id.replace("/", "_")
data_dir = Path(local_dir) / "data"
data_dir.mkdir(exist_ok=True, parents=True)
# use zfill so sorting puts the files in order
filename = f"embeddings_{str(last_count).zfill(8)}_{current_count}.parquet"
filepath = str(data_dir / filename)
temp_ds.to_parquet(filepath)
files = sorted(list(data_dir.glob("*.parquet")))
api.upload_file(
path_or_fileobj=filepath,
path_in_repo=f"data/{filename}",
repo_id=repo_id,
repo_type="dataset",
run_as_future=True,
token=os.environ["HF_TOKEN"],
commit_message=f"Embedded examples {last_count} thru {current_count}",
)
# Delete old files
if len(files) > 4:
for file in files[:2]:
file.unlink()
|