File size: 6,500 Bytes
aca33e8
 
365b5f3
aca33e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
595c4bf
 
 
 
 
 
 
 
 
365b5f3
 
 
 
 
595c4bf
 
 
 
 
 
 
aca33e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0c5d5d
aca33e8
 
f0c5d5d
aca33e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0c5d5d
aca33e8
 
 
 
 
 
 
 
 
 
 
f0c5d5d
aca33e8
 
 
 
 
 
 
595c4bf
 
 
aca33e8
 
 
595c4bf
 
 
 
 
 
 
 
 
 
 
 
aca33e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
595c4bf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import gradio as gr

from utils import load_hf_dataset, get_model_and_tokenizer, batch_embed, download_wikipedia


# TODO: add instructor models
# "hkunlp/instructor-xl",
# "hkunlp/instructor-large",
# "hkunlp/instructor-base",

# model ids and hidden sizes
models_and_hidden_sizes = [
    ("intfloat/e5-small-v2", 384),
    ("intfloat/e5-base-v2", 768),
    ("intfloat/e5-large-v2", 1024),
    ("intfloat/multilingual-e5-small", 384),
    ("intfloat/multilingual-e5-base", 768),
    ("intfloat/multilingual-e5-large", 1024),
    ("sentence-transformers/all-MiniLM-L6-v2", 384),
    ("sentence-transformers/all-MiniLM-L12-v2", 384),
    ("sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2", 384),
]

model_options = [
    f"{model_name} (hidden_size = {hidden_size})"
    for model_name, hidden_size in models_and_hidden_sizes
]


opt2desc = {
    "O2": "Most precise, slowest (O2: basic and extended general optimizations, transformers-specific fusions)",
    "O3": "Less precise, faster (O3: O2 + gelu approx)",
    "O4": "Least precise, fastest (O4: O3 + fp16/bf16)",
}

desc2opt = {v: k for k, v in opt2desc.items()}


optimization_options = list(opt2desc.values())



def download(
    ds_name,
    ds_config,
    ds_split,
    progress=gr.Progress(),
):
    if progress is not None:
        progress(0.5, "Loading dataset...")
    
    if ds_name == "wikipedia":
        ds = download_wikipedia(ds_name, ds_config)
    else:
        ds = load_hf_dataset(ds_name, ds_config, ds_split)

    return f"Downloaded! It has {len(ds)} docs."
    
    


def embed(
    ds_name,
    ds_config,
    column_name,
    ds_split,
    model_choice,
    opt_desc,
    new_dataset_id,
    num2skip,
    num2embed,
    progress=gr.Progress(),
):
    if progress is not None:
        progress(0.5, "Loading dataset...")
    ds = load_hf_dataset(ds_name, ds_config, ds_split)

    opt_level = desc2opt[opt_desc]

    model_name = model_choice.split()[0]

    if progress is not None:
        progress(0.2, "Downloading model and tokenizer...")
    model, tokenizer = get_model_and_tokenizer(model_name, opt_level, progress)

    doc_count, seconds_taken = batch_embed(
        ds,
        model,
        tokenizer,
        model_name=model_name,
        column_name=column_name,
        new_dataset_id=new_dataset_id,
        opt_level=opt_level,
        num2skip=num2skip,
        num2embed=num2embed,
        progress=progress,
    )

    return f"Embedded {doc_count} docs in {seconds_taken/60:.2f} minutes ({doc_count/seconds_taken:.1f} docs/sec)"


with gr.Blocks(title="Bulk embeddings") as demo:
    gr.Markdown(
        """
        This Space allows you to embed a large dataset easily. For instance, this can easily create vectors for Wikipedia \
        articles -- taking about __ hours and costing approximately $__. 
        This utilizes state-of-the-art open-source embedding models, \
        and optimizes them for inference using Hugging Face [optimum](https://github.com/huggingface/optimum). There are various \
        levels of optimizations that can be applied - the quality of the embeddings will degrade as the optimizations increase.  
        Currently available options: O2/O3/O4 on T4/A10 GPUs using onnx runtime.  
        Future options: 
          - OpenVino for CPU inference
          - TensorRT for GPU inference
          - Quantized models
          - Instructor models
          - Text splitting options
          - More control about which rows to embed (skip some, stop early)
          - Dynamic padding
        ## Steps
        1. Upload the dataset to the Hugging Face Hub.
        2. Enter dataset details into the form below.
        3. Choose a model. These are taken from the top of the [MTEB leaderboard](https://huggingface.co/spaces/mteb/leaderboard).
        4. Enter optimization level. See [here](https://huggingface.co/docs/optimum/onnxruntime/usage_guides/optimization#optimization-configuration) for details.
        5. Choose a name for the new dataset.
        6. Hit run!
        ### Note:
        If you have short documents, O3 will be faster than O4. If you have long documents, O4 will be faster than O3. \
            O4 requires the tokenized documents to be padded to max length.
        """
    )

    with gr.Row():
        ds_name = gr.Textbox(
            lines=1,
            label="Dataset to load from Hugging Face Hub",
            value="wikipedia",
        )
        ds_config = gr.Textbox(
            lines=1, label="Dataset config (leave blank to use default)", value="20220301.en"
        )

        column_name = gr.Textbox(lines=1, label="Enter column to embed", value="text")
        ds_split = gr.Dropdown(
            choices=["train", "validation", "test"],
            label="Dataset split",
            value="train",
        )
        # TODO: idx column
        # TODO: text splitting options

    with gr.Row():
        model_choice = gr.Dropdown(
            choices=model_options, label="Embedding model", value=model_options[0]
        )
        opt_desc = gr.Dropdown(
            choices=optimization_options,
            label="Optimization level",
            value=optimization_options[0],
        )

    with gr.Row():
        new_dataset_id = gr.Textbox(
            lines=1,
            label="New dataset name, including username",
            value="wiki-embeds",
        )

        num2skip = gr.Slider(
            value=0,
            minimum=0,
            maximum=10_000_000,
            step=1,
            label="Number of rows to skip",
        )

        num2embed = gr.Slider(
            value=30000,
            minimum=-1,
            maximum=10_000_000,
            step=1,
            label="Number of rows to embed (-1 = all)",
        )

    with gr.Row():

        download_btn = gr.Button(value="Download dataset!")
        embed_btn = gr.Button(value="Embed texts!")

        last = gr.Textbox(value="")

    download_btn.click(
        fn=download,
        inputs=[
            ds_name,
            ds_config,
            ds_split,
        ],
        outputs=last,
    )

    embed_btn.click(
        fn=embed,
        inputs=[
            ds_name,
            ds_config,
            column_name,
            ds_split,
            model_choice,
            opt_desc,
            new_dataset_id,
            num2skip,
            num2embed,
        ],
        outputs=last,
    )


if __name__ == "__main__":
    demo.queue(concurrency_count=20).launch(show_error=True, debug=True)