File size: 9,482 Bytes
ea07244
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6781708
 
 
ea07244
 
6781708
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
994c238
 
 
6781708
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0a085b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06b4245
 
 
f0a085b
 
 
 
 
 
 
 
 
06b4245
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7cc7c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b26be81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06b4245
 
f7cc7c3
06b4245
 
ea07244
 
 
 
b26be81
ea07244
 
 
 
 
 
 
 
 
 
 
 
8ebeeb8
bf79b4c
ea07244
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
# Copyright      2022-2023  Xiaomi Corp.        (authors: Fangjun Kuang)
#
# See LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from functools import lru_cache

import sherpa_onnx
from huggingface_hub import hf_hub_download

sample_rate = 16000


def _get_nn_model_filename(
    repo_id: str,
    filename: str,
    subfolder: str = "exp",
) -> str:
    nn_model_filename = hf_hub_download(
        repo_id=repo_id,
        filename=filename,
        subfolder=subfolder,
    )
    return nn_model_filename


get_file = _get_nn_model_filename


def _get_bpe_model_filename(
    repo_id: str,
    filename: str = "bpe.model",
    subfolder: str = "data/lang_bpe_500",
) -> str:
    bpe_model_filename = hf_hub_download(
        repo_id=repo_id,
        filename=filename,
        subfolder=subfolder,
    )
    return bpe_model_filename


def _get_token_filename(
    repo_id: str,
    filename: str = "tokens.txt",
    subfolder: str = "data/lang_char",
) -> str:
    token_filename = hf_hub_download(
        repo_id=repo_id,
        filename=filename,
        subfolder=subfolder,
    )
    return token_filename


@lru_cache(maxsize=10)
def _get_whisper_model(repo_id: str) -> sherpa_onnx.OfflineRecognizer:
    name = repo_id.split("-")[1]
    assert name in ("tiny.en", "base.en", "small.en", "medium.en"), repo_id
    full_repo_id = "csukuangfj/sherpa-onnx-whisper-" + name
    encoder = _get_nn_model_filename(
        repo_id=full_repo_id,
        filename=f"{name}-encoder.int8.ort",
        subfolder=".",
    )

    decoder = _get_nn_model_filename(
        repo_id=full_repo_id,
        filename=f"{name}-decoder.int8.ort",
        subfolder=".",
    )

    tokens = _get_token_filename(
        repo_id=full_repo_id, subfolder=".", filename=f"{name}-tokens.txt"
    )

    recognizer = sherpa_onnx.OfflineRecognizer.from_whisper(
        encoder=encoder,
        decoder=decoder,
        tokens=tokens,
        num_threads=2,
    )

    return recognizer


@lru_cache(maxsize=10)
def _get_paraformer_zh_pre_trained_model(repo_id: str) -> sherpa_onnx.OfflineRecognizer:
    assert repo_id in [
        "csukuangfj/sherpa-onnx-paraformer-zh-2023-03-28",
    ], repo_id

    nn_model = _get_nn_model_filename(
        repo_id=repo_id,
        filename="model.int8.onnx",
        subfolder=".",
    )

    tokens = _get_token_filename(repo_id=repo_id, subfolder=".")

    recognizer = sherpa_onnx.OfflineRecognizer.from_paraformer(
        paraformer=nn_model,
        tokens=tokens,
        num_threads=2,
        sample_rate=sample_rate,
        feature_dim=80,
        decoding_method="greedy_search",
        debug=False,
    )

    return recognizer


@lru_cache(maxsize=10)
def _get_russian_pre_trained_model(repo_id: str) -> sherpa_onnx.OfflineRecognizer:
    assert repo_id in (
        "alphacep/vosk-model-ru",
        "alphacep/vosk-model-small-ru",
    ), repo_id

    if repo_id == "alphacep/vosk-model-ru":
        model_dir = "am-onnx"
    elif repo_id == "alphacep/vosk-model-small-ru":
        model_dir = "am"

    encoder_model = _get_nn_model_filename(
        repo_id=repo_id,
        filename="encoder.onnx",
        subfolder=model_dir,
    )

    decoder_model = _get_nn_model_filename(
        repo_id=repo_id,
        filename="decoder.onnx",
        subfolder=model_dir,
    )

    joiner_model = _get_nn_model_filename(
        repo_id=repo_id,
        filename="joiner.onnx",
        subfolder=model_dir,
    )

    tokens = _get_token_filename(repo_id=repo_id, subfolder="lang")

    recognizer = sherpa_onnx.OfflineRecognizer.from_transducer(
        tokens=tokens,
        encoder=encoder_model,
        decoder=decoder_model,
        joiner=joiner_model,
        num_threads=2,
        sample_rate=16000,
        feature_dim=80,
        decoding_method="greedy_search",
    )

    return recognizer


@lru_cache(maxsize=2)
def get_vad() -> sherpa_onnx.VoiceActivityDetector:
    vad_model = _get_nn_model_filename(
        repo_id="csukuangfj/vad",
        filename="silero_vad.onnx",
        subfolder=".",
    )

    config = sherpa_onnx.VadModelConfig()
    config.silero_vad.model = vad_model
    config.silero_vad.min_silence_duration = 0.15
    config.silero_vad.min_speech_duration = 0.25
    config.sample_rate = sample_rate

    vad = sherpa_onnx.VoiceActivityDetector(
        config,
        buffer_size_in_seconds=180,
    )

    return vad


@lru_cache(maxsize=10)
def get_pretrained_model(repo_id: str) -> sherpa_onnx.OfflineRecognizer:
    if repo_id in chinese_models:
        return chinese_models[repo_id](repo_id)
    elif repo_id in english_models:
        return english_models[repo_id](repo_id)
    elif repo_id in chinese_english_mixed_models:
        return chinese_english_mixed_models[repo_id](repo_id)
    elif repo_id in russian_models:
        return russian_models[repo_id](repo_id)
    else:
        raise ValueError(f"Unsupported repo_id: {repo_id}")


def _get_wenetspeech_pre_trained_model(repo_id):
    assert repo_id in (
        "csukuangfj/sherpa-onnx-conformer-zh-stateless2-2023-05-23",
    ), repo_id

    encoder_model = _get_nn_model_filename(
        repo_id=repo_id,
        filename="encoder-epoch-99-avg-1.onnx",
        subfolder=".",
    )

    decoder_model = _get_nn_model_filename(
        repo_id=repo_id,
        filename="decoder-epoch-99-avg-1.onnx",
        subfolder=".",
    )

    joiner_model = _get_nn_model_filename(
        repo_id=repo_id,
        filename="joiner-epoch-99-avg-1.onnx",
        subfolder=".",
    )

    tokens = _get_token_filename(repo_id=repo_id, subfolder=".")

    recognizer = sherpa_onnx.OfflineRecognizer.from_transducer(
        tokens=tokens,
        encoder=encoder_model,
        decoder=decoder_model,
        joiner=joiner_model,
        num_threads=2,
        sample_rate=16000,
        feature_dim=80,
        decoding_method="greedy_search",
    )

    return recognizer


def _get_multi_zh_hans_pre_trained_model(repo_id):
    assert repo_id in ("zrjin/sherpa-onnx-zipformer-multi-zh-hans-2023-9-2",), repo_id

    encoder_model = _get_nn_model_filename(
        repo_id=repo_id,
        filename="encoder-epoch-20-avg-1.onnx",
        subfolder=".",
    )

    decoder_model = _get_nn_model_filename(
        repo_id=repo_id,
        filename="decoder-epoch-20-avg-1.onnx",
        subfolder=".",
    )

    joiner_model = _get_nn_model_filename(
        repo_id=repo_id,
        filename="joiner-epoch-20-avg-1.onnx",
        subfolder=".",
    )

    tokens = _get_token_filename(repo_id=repo_id, subfolder=".")

    recognizer = sherpa_onnx.OfflineRecognizer.from_transducer(
        tokens=tokens,
        encoder=encoder_model,
        decoder=decoder_model,
        joiner=joiner_model,
        num_threads=2,
        sample_rate=16000,
        feature_dim=80,
        decoding_method="greedy_search",
    )

    return recognizer


def _get_english_model(repo_id: str) -> sherpa_onnx.OfflineRecognizer:
    assert (
        repo_id
        == "yfyeung/icefall-asr-multidataset-pruned_transducer_stateless7-2023-05-04"
    ), repo_id

    encoder_model = _get_nn_model_filename(
        repo_id=repo_id,
        filename="encoder-epoch-30-avg-4.onnx",
        subfolder="exp",
    )

    decoder_model = _get_nn_model_filename(
        repo_id=repo_id,
        filename="decoder-epoch-30-avg-4.onnx",
        subfolder="exp",
    )

    joiner_model = _get_nn_model_filename(
        repo_id=repo_id,
        filename="joiner-epoch-30-avg-4.onnx",
        subfolder="exp",
    )

    tokens = _get_token_filename(repo_id=repo_id, subfolder="lang_bpe_500")

    recognizer = sherpa_onnx.OfflineRecognizer.from_transducer(
        tokens=tokens,
        encoder=encoder_model,
        decoder=decoder_model,
        joiner=joiner_model,
        num_threads=2,
        sample_rate=16000,
        feature_dim=80,
        decoding_method="greedy_search",
    )

    return recognizer


chinese_models = {
    "csukuangfj/sherpa-onnx-conformer-zh-stateless2-2023-05-23": _get_wenetspeech_pre_trained_model,  # noqa
    "zrjin/sherpa-onnx-zipformer-multi-zh-hans-2023-9-2": _get_multi_zh_hans_pre_trained_model,  # noqa
}

english_models = {
    "whisper-tiny.en": _get_whisper_model,
    "whisper-base.en": _get_whisper_model,
    "whisper-small.en": _get_whisper_model,
    "yfyeung/icefall-asr-multidataset-pruned_transducer_stateless7-2023-05-04": _get_english_model,  # noqa
}

chinese_english_mixed_models = {
    "csukuangfj/sherpa-onnx-paraformer-zh-2023-03-28": _get_paraformer_zh_pre_trained_model,
}

russian_models = {
    "alphacep/vosk-model-ru": _get_russian_pre_trained_model,
    "alphacep/vosk-model-small-ru": _get_russian_pre_trained_model,
}

language_to_models = {
    "Chinese+English": list(chinese_english_mixed_models.keys()),
    "Chinese": list(chinese_models.keys()),
    "English": list(english_models.keys()),
    "Russian": list(russian_models.keys()),
}