File size: 5,733 Bytes
3590c0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0a085b
03b48c7
f0a085b
3590c0c
f0a085b
 
994c238
3590c0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
994c238
 
 
 
 
 
 
 
 
 
 
 
 
3590c0c
ea07244
 
 
 
 
 
 
 
3590c0c
 
 
 
 
 
 
 
 
 
f0a085b
 
 
 
 
3590c0c
 
ea07244
3590c0c
 
 
 
 
 
 
 
 
 
 
f0a085b
 
 
 
 
03b48c7
 
 
 
 
 
 
 
994c238
03b48c7
3590c0c
 
 
 
 
 
 
ea07244
3590c0c
 
 
 
 
 
 
ea07244
 
 
 
 
 
 
 
 
 
 
 
3590c0c
 
 
 
 
 
f0a085b
3590c0c
 
 
994c238
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3590c0c
 
 
 
ea07244
3590c0c
 
03b48c7
994c238
 
 
 
03b48c7
3590c0c
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
#!/usr/bin/env python3
#
# Copyright      2022-2023  Xiaomi Corp.        (authors: Fangjun Kuang)
#
# See LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# References:
# https://gradio.app/docs/#dropdown


import logging
import os
from pathlib import Path

import gradio as gr

from decode import decode
from model import get_pretrained_model, get_vad, language_to_models, get_file

title = "# Next-gen Kaldi: Generate subtitles for videos"

description = """
This space shows how to generate subtitles/captions with Next-gen Kaldi.

It is running on CPU within a docker container provided by Hugging Face.

See more information by visiting the following links:

- <https://github.com/k2-fsa/sherpa-onnx>
- <https://github.com/k2-fsa/icefall>
- <https://github.com/k2-fsa/k2>
- <https://github.com/lhotse-speech/lhotse>

If you want to deploy it locally, please see
<https://k2-fsa.github.io/sherpa/>
"""

# css style is copied from
# https://huggingface.co/spaces/alphacep/asr/blob/main/app.py#L113
css = """
.result {display:flex;flex-direction:column}
.result_item {padding:15px;margin-bottom:8px;border-radius:15px;width:100%}
.result_item_success {background-color:mediumaquamarine;color:white;align-self:start}
.result_item_error {background-color:#ff7070;color:white;align-self:start}
"""

examples = [
    "President-Obama-on-the-Importance-of-Education.mp4",
]

for name in examples:
    filename = get_file(
        "csukuangfj/vad",
        name,
        subfolder=".",
    )

    shutil.copyfile(filename, name)


def update_model_dropdown(language: str):
    if language in language_to_models:
        choices = language_to_models[language]
        return gr.Dropdown.update(choices=choices, value=choices[0])

    raise ValueError(f"Unsupported language: {language}")


def build_html_output(s: str, style: str = "result_item_success"):
    return f"""
    <div class='result'>
        <div class='result_item {style}'>
          {s}
        </div>
    </div>
    """


def show_file_info(in_filename: str):
    logging.info(f"Input file: {in_filename}")
    _ = os.system(f"ffprob -hide_banner -i '{in_filename}'")


def process_uploaded_file(
    language: str,
    repo_id: str,
    in_filename: str,
):
    if in_filename is None or in_filename == "":
        return "", build_html_output(
            "Please first upload a file and then click "
            'the button "submit for recognition"',
            "result_item_error",
        )

    logging.info(f"Processing uploaded file: {in_filename}")

    recognizer = get_pretrained_model(repo_id)
    vad = get_vad()

    result = decode(recognizer, vad, in_filename)

    srt_filename = Path(in_filename).with_suffix(".srt")
    with open(srt_filename, "w", encoding="utf-8") as f:
        f.write(result)

    return (
        (in_filename, srt_filename),
        srt_filename,
        build_html_output("Done! Please download the SRT file", "result_item_success"),
        result,
    )


demo = gr.Blocks(css=css)


with demo:
    gr.Markdown(title)
    language_choices = list(language_to_models.keys())

    language_radio = gr.Radio(
        label="Language",
        choices=language_choices,
        value=language_choices[0],
    )

    model_dropdown = gr.Dropdown(
        choices=language_to_models[language_choices[0]],
        label="Select a model",
        value=language_to_models[language_choices[0]][0],
    )

    language_radio.change(
        update_model_dropdown,
        inputs=language_radio,
        outputs=model_dropdown,
    )

    with gr.Tabs():
        with gr.TabItem("Upload video from disk"):
            uploaded_file = gr.Video(
                source="upload",
                interactive=True,
                label="Upload from disk",
                show_share_button=True,
            )
            upload_button = gr.Button("Submit for recognition")

            output_video = gr.Video(label="Output")
            output_srt_file = gr.File(label="Generated subtitles", show_label=True)

            output_info = gr.HTML(label="Info")
            output_textbox = gr.Textbox(label="Recognized speech from uploaded file")

            gr.Examples(
                examples=examples,
                inputs=[
                    language_radio,
                    model_dropdown,
                    uploaded_file,
                ],
                outputs=[
                    output_video,
                    output_srt_file,
                    output_info,
                    output_textbox,
                ],
                fn=process_uploaded_file,
            )

        upload_button.click(
            process_uploaded_file,
            inputs=[
                language_radio,
                model_dropdown,
                uploaded_file,
            ],
            outputs=[
                output_video,
                output_srt_file,
                output_info,
                output_textbox,
            ],
        )

    gr.Markdown(description)

if __name__ == "__main__":
    formatter = "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"

    logging.basicConfig(format=formatter, level=logging.INFO)

    demo.launch()